1
|
Kim H, Noh H, Shim J, Oh SJ, Lee JH, Lee DY, Park JH. Pleomorphic dermal sarcoma presenting in a child with Li-Fraumeni syndrome: A case report and review of the literature. Pediatr Dermatol 2024; 41:311-314. [PMID: 38014598 DOI: 10.1111/pde.15452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/23/2023] [Indexed: 11/29/2023]
Abstract
Pleomorphic dermal sarcoma (PDS) is an uncommon malignant soft-tissue tumor that occurs mostly in elderly patients, with only 5% of cases occurring in children. However, pediatric patients with Li-Fraumeni syndrome (LFS) can develop several types of cancer, particularly sarcomas. Here, we describe a young LFS patient who presented with early-onset PDS and review the literature.
Collapse
Affiliation(s)
- Heeyeon Kim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hyungrye Noh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Joonho Shim
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Se Jin Oh
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jong Hee Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Medical Device Management & Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong-Youn Lee
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ji Hye Park
- Department of Dermatology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Hobayan CGP, Roman J, Kaffenberger BH, Chung CG. Characterization of cutaneous fibrohistiocytic tumors associated with Li-Fraumeni syndrome: a retrospective single-center study and review of the literature. Int J Dermatol 2023; 62:e498-e500. [PMID: 37042442 DOI: 10.1111/ijd.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/16/2023] [Accepted: 03/10/2023] [Indexed: 04/13/2023]
Affiliation(s)
| | - Jorge Roman
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | | | - Catherine G Chung
- Department of Pathology, The Ohio State University, Columbus, OH, USA
- Department of Dermatology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
3
|
Kim B, Tabori U, Hawkins C. An update on the CNS manifestations of brain tumor polyposis syndromes. Acta Neuropathol 2020; 139:703-715. [PMID: 31970492 DOI: 10.1007/s00401-020-02124-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 12/23/2019] [Accepted: 01/01/2020] [Indexed: 12/17/2022]
Abstract
Cancer predisposition syndromes are associated with an increased risk of developing primary malignancies. Here we discuss those which are associated with an increased risk of tumors of the central nervous system (CNS) and gastrointestinal (GI) tract. These can be grouped into those in which the CNS tumors predominate versus those in which the GI cancers predominate. The former include constitutional mismatch repair deficiency (CMMRD) syndrome, Li-Fraumeni syndrome (LFS), and Cowden syndrome (CS) while the latter include familial adenomatosis polyposis 1 (FAP1), Lynch syndrome and polymerase proofreading-associated polyposis syndrome (PPAP). Tumor specificity does exist as medulloblastoma occur in FAP, LFS and CMMRD while glioma are most commonly seen in all replication repair-deficient genes and LFS. Choroid plexus carcinoma is strictly observed in LFS while Cowden syndrome patients develop Lhermitte Duclos disease or meningioma. In each syndrome, specific types of low-grade and high-grade gastrointestinal cancers can occur, but these will be discussed elsewhere. Underlying cancer predisposition syndromes are important to consider when faced with brain tumors, particularly in the pediatric and young adult age groups, as identification of an underlying germ line mutation may change the upfront management of the patient and has implications for future cancer surveillance for both the patient and potentially affected family members. Considerations of family history, presence of skin lesions and consanguinity provide valuable information in identifying patients at potential increased risk.
Collapse
Affiliation(s)
- Byungjin Kim
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Uri Tabori
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada
- Division of Haematology and Oncology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Cynthia Hawkins
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Canada.
- Division of Pathology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Andrade RC, Dos Santos ACE, de Aguirre Neto JC, Nevado J, Lapunzina P, Vargas FR. TP53 and CDKN1A mutation analysis in families with Li-Fraumeni and Li-Fraumeni like syndromes. Fam Cancer 2017; 16:243-248. [PMID: 27714481 DOI: 10.1007/s10689-016-9935-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Li-Fraumeni and Li-Fraumeni like syndromes (LFS/LFL) represent rare cancer-prone conditions associated mostly with sarcomas, breast cancer, brain tumors, and adrenocortical carcinomas. TP53 germline mutations are present in up to 80 % of families with classic Li-Fraumeni syndrome, and in 20-60 % of families with Li-Fraumeni like phenotypes. The frequency of LFS/LFL families with no TP53 mutations detected suggests the involvement of other genes in the syndrome. In this study, we searched for mutations in TP53 in 39 probands from families with criteria for LFS/LFL. We also searched for mutations in the gene encoding the main mediator of p53 in cell cycle arrest, CDKN1A/p21, in all patients with no mutations in TP53. Eight probands carried germline disease-causing mutations in TP53: six missense mutations and two partial gene deletions. No mutations in CDKN1A coding region were detected. TP53 partial deletions in our cohort represented 25 % (2/8) of the mutations found, a much higher frequency than usually reported, emphasizing the need to search for TP53 rearrangements in patients with LFS/LFL phenotypes. Two benign tumors were detected in two TP53 mutation carriers: an adrenocortical adenoma and a neurofibroma, which raises a question about the possible implication of TP53 mutations on the development of such lesions.
Collapse
Affiliation(s)
| | | | | | - Julián Nevado
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ-CIBERER, Universidad Autónoma de Madrid, Madrid, Spain
| | - Pablo Lapunzina
- INGEMM, Instituto de Genética Médica y Molecular, IdiPAZ-CIBERER, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fernando Regla Vargas
- Genetics Division, Instituto Nacional de Câncer, Rio de Janeiro, Brazil. .,Genetics and Molecular Biology Department, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil. .,Birth Defects Epidemiology Laboratory, Fundação Oswaldo Cruz, Av. Brasil 4365 - Pavilhão Leônidas Deane Sala 617, Manguinhos, Rio de Janeiro, RJ, 21040-900, Brazil.
| |
Collapse
|
5
|
Ripperger T, Bielack SS, Borkhardt A, Brecht IB, Burkhardt B, Calaminus G, Debatin KM, Deubzer H, Dirksen U, Eckert C, Eggert A, Erlacher M, Fleischhack G, Frühwald MC, Gnekow A, Goehring G, Graf N, Hanenberg H, Hauer J, Hero B, Hettmer S, von Hoff K, Horstmann M, Hoyer J, Illig T, Kaatsch P, Kappler R, Kerl K, Klingebiel T, Kontny U, Kordes U, Körholz D, Koscielniak E, Kramm CM, Kuhlen M, Kulozik AE, Lamottke B, Leuschner I, Lohmann DR, Meinhardt A, Metzler M, Meyer LH, Moser O, Nathrath M, Niemeyer CM, Nustede R, Pajtler KW, Paret C, Rasche M, Reinhardt D, Rieß O, Russo A, Rutkowski S, Schlegelberger B, Schneider D, Schneppenheim R, Schrappe M, Schroeder C, von Schweinitz D, Simon T, Sparber-Sauer M, Spix C, Stanulla M, Steinemann D, Strahm B, Temming P, Thomay K, von Bueren AO, Vorwerk P, Witt O, Wlodarski M, Wössmann W, Zenker M, Zimmermann S, Pfister SM, Kratz CP. Childhood cancer predisposition syndromes-A concise review and recommendations by the Cancer Predisposition Working Group of the Society for Pediatric Oncology and Hematology. Am J Med Genet A 2017; 173:1017-1037. [PMID: 28168833 DOI: 10.1002/ajmg.a.38142] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 12/30/2016] [Indexed: 12/12/2022]
Abstract
Heritable predisposition is an important cause of cancer in children and adolescents. Although a large number of cancer predisposition genes and their associated syndromes and malignancies have already been described, it appears likely that there are more pediatric cancer patients in whom heritable cancer predisposition syndromes have yet to be recognized. In a consensus meeting in the beginning of 2016, we convened experts in Human Genetics and Pediatric Hematology/Oncology to review the available data, to categorize the large amount of information, and to develop recommendations regarding when a cancer predisposition syndrome should be suspected in a young oncology patient. This review summarizes the current knowledge of cancer predisposition syndromes in pediatric oncology and provides essential information on clinical situations in which a childhood cancer predisposition syndrome should be suspected.
Collapse
Affiliation(s)
- Tim Ripperger
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Stefan S Bielack
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Arndt Borkhardt
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Ines B Brecht
- General Pediatrics, Hematology/Oncology, University Children's Hospital Tuebingen, Tuebingen, Germany.,Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Birgit Burkhardt
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Gabriele Calaminus
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Hedwig Deubzer
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Uta Dirksen
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charité University Medicine, Berlin, Germany
| | - Miriam Erlacher
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Gudrun Fleischhack
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Michael C Frühwald
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Astrid Gnekow
- Children's Hospital Augsburg, Swabian Children's Cancer Center, Augsburg, Germany
| | - Gudrun Goehring
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Norbert Graf
- Department of Pediatric Hematology and Oncology, University of Saarland, Homburg, Germany
| | - Helmut Hanenberg
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany.,Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich Heine University, Düsseldorf, Germany
| | - Julia Hauer
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Barbara Hero
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Simone Hettmer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Katja von Hoff
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Horstmann
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Juliane Hoyer
- Institute of Human Genetics, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Illig
- Department of Human Genetics, Hannover Medical School, Hannover, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Peter Kaatsch
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Roland Kappler
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Kornelius Kerl
- Pediatric Hematology and Oncology, University Children's Hospital Muenster, Muenster, Germany
| | - Thomas Klingebiel
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Uwe Kordes
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dieter Körholz
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Ewa Koscielniak
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Christof M Kramm
- Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany
| | - Michaela Kuhlen
- Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Britta Lamottke
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ivo Leuschner
- Kiel Paediatric Tumor Registry, Department of Paediatric Pathology, University of Kiel, Kiel, Germany
| | - Dietmar R Lohmann
- Institute of Human Genetics, University Hospital Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Andrea Meinhardt
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Markus Metzler
- Department of Pediatrics and Adolescent Medicine, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lüder H Meyer
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Olga Moser
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, University Medical Center, Aachen, Germany
| | - Michaela Nathrath
- Department of Pediatric Oncology, Klinikum Kassel, Kassel, Germany.,Clinical Cooperation Group Osteosarcoma, Helmholtz Zentrum Munich, Neuherberg, Germany.,Pediatric Oncology Center, Technical University Munich, Munich, Germany
| | - Charlotte M Niemeyer
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Rainer Nustede
- Department of Surgery, Children's Hospital, Hannover Medical School, Hannover, Germany
| | - Kristian W Pajtler
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Paret
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Mareike Rasche
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Dirk Reinhardt
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Alexandra Russo
- Department of Pediatric Hematology/Oncology, University Medical Center Mainz, Mainz, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Reinhard Schneppenheim
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Christopher Schroeder
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Dietrich von Schweinitz
- Department of Pediatric Surgery, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Thorsten Simon
- Department of Pediatric Hematology and Oncology, University of Cologne, Cologne, Germany
| | - Monika Sparber-Sauer
- Pediatrics 5 (Oncology, Hematology, Immunology), Klinikum Stuttgart-Olgahospital, Stuttgart, Germany
| | - Claudia Spix
- German Childhood Cancer Registry (GCCR), Institute for Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stanulla
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Doris Steinemann
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Brigitte Strahm
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Petra Temming
- Pediatric Oncology and Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany.,Eye Oncogenetics Research Group, University Hospital Essen, Essen, Germany
| | - Kathrin Thomay
- Department of Human Genetics, Hannover Medical School, Hannover, Germany
| | - Andre O von Bueren
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University Medical Center Goettingen, Goettingen, Germany.,Division of Pediatric Hematology and Oncology, University Hospital of Geneva, Geneva, Switzerland
| | - Peter Vorwerk
- Pediatric Oncology, Otto von Guericke University Children's Hospital, Magdeburg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Marcin Wlodarski
- Faculty of Medicine, Division of Pediatric Hematology and Oncology Medical Center, Department of Pediatrics and Adolescent Medicine, University of Freiburg, Freiburg, Germany
| | - Willy Wössmann
- Department of Pediatric Hematology and Oncology, Justus Liebig University, Giessen, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefanie Zimmermann
- Hospital for Children and Adolescents, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Stefan M Pfister
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Pediatric Neuro-Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian P Kratz
- Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
6
|
Guidi M, Giunti L, Lucchesi M, Scoccianti S, Giglio S, Favre C, Oliveri G, Sardi I. Brain tumors in Li-Fraumeni syndrome: a commentary and a case of a gliosarcoma patient. Future Oncol 2016; 13:9-12. [PMID: 27523101 DOI: 10.2217/fon-2016-0236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Milena Guidi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, Florence, Italy
| | - Laura Giunti
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Maurizio Lucchesi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, Florence, Italy
| | - Silvia Scoccianti
- Radiation Oncology Unit, Azienda Universitaria Ospedaliera Careggi, Florence, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Meyer Children's University Hospital, Florence, Italy
| | - Claudio Favre
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, Florence, Italy
| | - Giuseppe Oliveri
- Department of Neurosurgery, Policlinico 'Santa Maria alle Scotte', Siena, Italy
| | - Iacopo Sardi
- Neuro-Oncology Unit, Department of Pediatric Oncology, Meyer Children's University Hospital, Florence, Italy
| |
Collapse
|
7
|
Mantere T, Winqvist R, Kauppila S, Grip M, Jukkola-Vuorinen A, Tervasmäki A, Rapakko K, Pylkäs K. Targeted Next-Generation Sequencing Identifies a Recurrent Mutation in MCPH1 Associating with Hereditary Breast Cancer Susceptibility. PLoS Genet 2016; 12:e1005816. [PMID: 26820313 PMCID: PMC4731077 DOI: 10.1371/journal.pgen.1005816] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/23/2015] [Indexed: 11/18/2022] Open
Abstract
Breast cancer is strongly influenced by hereditary risk factors, a majority of which still remain unknown. Here, we performed a targeted next-generation sequencing of 796 genes implicated in DNA repair in 189 Finnish breast cancer cases with indication of hereditary disease susceptibility and focused the analysis on protein truncating mutations. A recurrent heterozygous mutation (c.904_916del, p.Arg304ValfsTer3) was identified in early DNA damage response gene, MCPH1, significantly associating with breast cancer susceptibility both in familial (5/145, 3.4%, P = 0.003, OR 8.3) and unselected cases (16/1150, 1.4%, P = 0.016, OR 3.3). A total of 21 mutation positive families were identified, of which one-third exhibited also brain tumors and/or sarcomas (P = 0.0007). Mutation carriers exhibited significant increase in genomic instability assessed by cytogenetic analysis for spontaneous chromosomal rearrangements in peripheral blood lymphocytes (P = 0.0007), suggesting an effect for MCPH1 haploinsufficiency on cancer susceptibility. Furthermore, 40% of the mutation carrier tumors exhibited loss of the wild-type allele. These findings collectively provide strong evidence for MCHP1 being a novel breast cancer susceptibility gene, which warrants further investigations in other populations.
Collapse
Affiliation(s)
- Tuomo Mantere
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
| | - Robert Winqvist
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
- * E-mail: (RW); (KP)
| | - Saila Kauppila
- Department of Pathology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mervi Grip
- Department of Surgery, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Arja Jukkola-Vuorinen
- Department of Oncology, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Anna Tervasmäki
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
| | - Katrin Rapakko
- Laboratory of Genetics, Northern Finland Laboratory Centre NordLab Oulu, Oulu, Finland
| | - Katri Pylkäs
- Laboratory of Cancer Genetics and Tumor Biology, Cancer and Translational Medicine Research Unit and Biocenter Oulu, Northern Finland Laboratory Centre NordLab Oulu, University of Oulu, Oulu, Finland
- * E-mail: (RW); (KP)
| |
Collapse
|
8
|
Fogh SE, Johnson DR, Barker FG, Brastianos PK, Clarke JL, Kaufmann TJ, Oberndorfer S, Preusser M, Raghunathan A, Santagata S, Theodosopoulos PV. Case-Based Review: meningioma. Neurooncol Pract 2016; 3:120-134. [PMID: 31386096 DOI: 10.1093/nop/npv063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Indexed: 12/30/2022] Open
Abstract
Meningioma is by far the most common primary intracranial tumor in adults. Treatment of meningioma is complex due to a tremendous amount of variability in tumor behavior. Many patients are incidentally found to have tumors that will remain asymptomatic throughout their lives. It is important to identify these patients so that they can be spared from potentially morbid interventions. On the other end of the spectrum, high-grade meningiomas can behave very aggressively. When treatment is necessary, surgical resection is the cornerstone of meningioma therapy. Studies spanning decades have demonstrated that extent of resection correlates with prognosis. Radiation therapy, either in the form of external beam radiation therapy or stereotactic radiosurgery, represents another important therapeutic tool that can be used in place of or as a supplement to surgery. There are no chemotherapeutic agents of proven efficacy against meningioma, and chemotherapy treatment is generally reserved for patients who have exhausted surgical and radiotherapy options. Ongoing and future studies will help to answer unresolved questions such as the optimum use of radiation in resected WHO grade II meningiomas and the efficacy of additional chemotherapy agents.
Collapse
Affiliation(s)
- Shannon E Fogh
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Derek R Johnson
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Fred G Barker
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Priscilla K Brastianos
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Jennifer L Clarke
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Timothy J Kaufmann
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Stephan Oberndorfer
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Matthias Preusser
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Aditya Raghunathan
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Sandro Santagata
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| | - Philip V Theodosopoulos
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA (S.E.F.); Department of Radiology, Mayo Clinic, Rochester, MN, USA (D.R.J., T.J.K.); Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (F.G.B.); Division of Neuro-Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA (P.K.B.); Department of Neurology and Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (J.L.C.); Department of Neurology, Karl Landsteiner University Clinic, St Pölten, Austria (S.O.); Department of Internal Medicine, Medical University, Vienna, CCC, Austria (M.P.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA (A.R.); Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA (S.S.); Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA (P.V.T.)
| |
Collapse
|
9
|
Chu YWY, Cheuk DKL, Chung BHY, Bowers NL, Ha SY, Chiang AKS, Chan GCF. A patient with mosaic neurofibromatosis type 2 presenting with early onset meningioma. BMJ Case Rep 2014; 2014:bcr-2014-203919. [PMID: 25406210 DOI: 10.1136/bcr-2014-203919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A female patient was found to have meningioma when she was 3 years and 11 months old and subtotal excision was performed. The residual tumour recurred 3 months after the first excision, and again 11 months after the second one. She was also found to have subcutaneous neurofibroma. However, her clinical features did not fulfil the diagnostic criteria for neurofibromatosis type 2 (NF2), and her family history was unremarkable. Considering that primary meningioma is extremely rare in the paediatric population, the diagnosis of NF2 was considered. It was thought that this might have an impact on her subsequent management. Genetic testing on blood DNA for NF2 was arranged, and the results confirmed that she had mosaic deletion of the promoter to exon 16 of NF2. With uncertainty of whether NF2 mutations are also present in other tissues, vigilant follow-up for other NF2-related complications would be required in the future.
Collapse
Affiliation(s)
- Yoyo Wing-Yiu Chu
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Daniel Ka Leung Cheuk
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Brian Hon Yin Chung
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong
| | - Naomi L Bowers
- Genomic Diagnostics Laboratory, Central Manchester University Hospitals NHS Foundation Trust, Saint Mary's Hospital, Manchester, UK
| | - Shau-Yin Ha
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong
| | | | - Godfrey Chi-Fung Chan
- Department of Paediatrics & Adolescent Medicine, The University of Hong Kong, Hong Kong
| |
Collapse
|
10
|
Linhares P, Martinho O, Carvalho B, Castro L, Lopes JM, Vaz R, Reis RM. Analysis of a synchronous gliosarcoma and meningioma with long survival: A case report and review of the literature. Surg Neurol Int 2014; 4:151. [PMID: 24381794 PMCID: PMC3872647 DOI: 10.4103/2152-7806.122229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 10/03/2013] [Indexed: 12/15/2022] Open
Abstract
Background: The simultaneous occurrence of multiple intracranial neoplasms has been reported, especially in genetic familial syndromes and after cranial irradiation. In the absence of these etiologic factors, some reports showed simultaneous occurrence of glioblastoma and meningioma but the association between gliosarcoma and meningioma is unknown. Case Description: We report a case of a 51-year-old woman with synchronous gliosarcoma and meningioma in whom extensive immunohistochemical characterization and molecular profile was performed. The gliosarcoma recurred 21 months after the first resection, reaching 3 years of overall survival. A molecular characterization of all three lesions was performed. None of the lesions showed the presence of mutations in TP53 and BRAF genes. MGMT analysis showed the presence of loss of expression associated with promoter hypermethylation in both gliosarcoma lesions. EGFR overexpression and gene amplification was found only in the recurrent gliosarcoma. Conclusion: The immunohistochemistry and molecular data of this unique case, suggest the distinct clonal origin of meningioma and gliosarcoma lesions, and the association of MGMT methylation with the presumable favorable prognosis observed.
Collapse
Affiliation(s)
- Paulo Linhares
- Department of Neurosurgery, Hospital S. João, Porto, Portugal ; Medical Faculty of Porto University, Porto, Portugal
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Bruno Carvalho
- Department of Neurosurgery, Hospital S. João, Porto, Portugal ; Medical Faculty of Porto University, Porto, Portugal
| | - Lígia Castro
- Department of Pathology, Hospital S. João, Porto, Portugal
| | - José Manuel Lopes
- Department of Pathology, Hospital S. João, Porto, Portugal ; Medical Faculty of Porto University, Porto, Portugal ; Medical Faculty of Porto University, IPATIMUP, Porto, Portugal
| | - Rui Vaz
- Department of Neurosurgery, Hospital S. João, Porto, Portugal ; Medical Faculty of Porto University, Porto, Portugal
| | - Rui Manuel Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, S. Paulo, Brazil ; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Suzuki K, Momota H, Tonooka A, Noguchi H, Yamamoto K, Wanibuchi M, Minamida Y, Hasegawa T, Houkin K. Glioblastoma simultaneously present with adjacent meningioma: case report and review of the literature. J Neurooncol 2010; 99:147-53. [PMID: 20063176 DOI: 10.1007/s11060-009-0109-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 12/28/2009] [Indexed: 11/24/2022]
Abstract
The simultaneous occurrence of multiple primary intracranial tumors has been reported previously. However, most of these tumors arise after cranial radiotherapy or in association with familial tumor syndromes. Double tumors of different histologies that are unrelated to radiotherapy or genetic disorders are very rare. We present a case of two primary intracranial tumors occurring simultaneously at adjacent sites. Preoperative gadolinium-enhanced magnetic resonance imaging of these tumors revealed a single continuous lesion. Postoperative histological examination revealed the presence of two distinct tumors, meningioma and glioblastoma multiforme. To elucidate the mechanism of synchronous tumor formation, we performed immunohistochemical analysis of the proteins involved in the receptor tyrosine kinase, Wnt, and Notch signaling pathways. These analyses showed that platelet-derived growth factor (PDGF) receptors-alpha and beta were overexpressed in both tumors, thereby indicating the oncogenic effects of activated signaling of these receptors. The PDGF-mediated paracrine system may induce one tumor from another.
Collapse
Affiliation(s)
- Kengo Suzuki
- Department of Neurosurgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo 060-8543, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
p53 tetramerization domain mutations: germline R342X and R342P, and somatic R337G identified in pediatric patients with Li–Fraumeni syndrome and a child with adrenocortical carcinoma. Fam Cancer 2009; 8:541-6. [DOI: 10.1007/s10689-009-9284-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
13
|
Szybka M, Zakrzewska M, Rieske P, Pasz-Walczak G, Kulczycka-Wojdala D, Zawlik I, Stawski R, Jesionek-Kupnicka D, Liberski PP, Kordek R. cDNA sequencing improves the detection of P53 missense mutations in colorectal cancer. BMC Cancer 2009; 9:278. [PMID: 19671129 PMCID: PMC2731783 DOI: 10.1186/1471-2407-9-278] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Accepted: 08/11/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently published data showed discrepancies between P53 cDNA and DNA sequencing in glioblastomas. We hypothesised that similar discrepancies may be observed in other human cancers. METHODS To this end, we analyzed 23 colorectal cancers for P53 mutations and gene expression using both DNA and cDNA sequencing, real-time PCR and immunohistochemistry. RESULTS We found P53 gene mutations in 16 cases (15 missense and 1 nonsense). Two of the 15 cases with missense mutations showed alterations based only on cDNA, and not DNA sequencing. Moreover, in 6 of the 15 cases with a cDNA mutation those mutations were difficult to detect in the DNA sequencing, so the results of DNA analysis alone could be misinterpreted if the cDNA sequencing results had not also been available. In all those 15 cases, we observed a higher ratio of the mutated to the wild type template by cDNA analysis, but not by the DNA analysis. Interestingly, a similar overexpression of P53 mRNA was present in samples with and without P53 mutations. CONCLUSION In terms of colorectal cancer, those discrepancies might be explained under three conditions: 1, overexpression of mutated P53 mRNA in cancer cells as compared with normal cells; 2, a higher content of cells without P53 mutation (normal cells and cells showing K-RAS and/or APC but not P53 mutation) in samples presenting P53 mutation; 3, heterozygous or hemizygous mutations of P53 gene. Additionally, for heterozygous mutations unknown mechanism(s) causing selective overproduction of mutated allele should also be considered. Our data offer new clues for studying discrepancy in P53 cDNA and DNA sequencing analysis.
Collapse
Affiliation(s)
- Malgorzata Szybka
- Department of Oncological Pathology, Medical University of Lodz, Lodz, Poland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Konieczny PL, Reimer R. 25-year-old woman with new-onset seizures. Mayo Clin Proc 2009; 84:285-8. [PMID: 19252118 PMCID: PMC2664602 DOI: 10.1016/s0025-6196(11)61148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Peter L. Konieczny
- Resident in Neurology, Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN
| | - Ronald Reimer
- Adviser to resident and Consultant in Neurosurgery, Mayo Clinic, Jacksonville, FL
- Individual reprints of this article are not available. Address correspondence to Ronald Reimer, MD, Department of Neurosurgery, Mayo Clinic, 4500 San Pablo Rd, Jacksonville, FL 32224 ()
| |
Collapse
|
15
|
Konieczny PL, Reimer R. 25-year-old woman with new-onset seizures. Mayo Clin Proc 2009; 84:285-8. [PMID: 19252118 PMCID: PMC2664602 DOI: 10.4065/84.3.285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Affiliation(s)
- Peter L. Konieczny
- Resident in Neurology, Mayo School of Graduate Medical Education, Mayo Clinic, Rochester, MN
| | - Ronald Reimer
- Adviser to resident and Consultant in Neurosurgery, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
16
|
Wallin JL, Tanna N, Misra S, Puri PK, Sadeghi N. Sinonasal carcinoma after irradiation for medulloblastoma in nevoid basal cell carcinoma syndrome. Am J Otolaryngol 2007; 28:360-2. [PMID: 17826543 DOI: 10.1016/j.amjoto.2006.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Accepted: 10/16/2006] [Indexed: 10/22/2022]
Abstract
BACKGROUND Nevoid basal cell carcinoma syndrome (NBCCS) is associated with multiple basal cell carcinomas, odontogenic cysts, craniofacial anomalies, and childhood medulloblastomas. In addition, it has been associated with irradiation-induced neoplasms including, meningiomas, sarcomas, and gliomas. METHODS We present a 19-year-old man with NBCCS who presented with a sinonasal carcinoma 17 years after receiving craniospinal irradiation for treatment of medulloblastoma. RESULTS To our knowledge, this is the first report of a sinonasal tumor after irradiation in a patient with NBCCS. CONCLUSIONS With this case, the authors examine the genotype of NBCCS patients and their propensity for radiation-induced tumors. In addition, the management of neoplasms in these tumor-sensitive patients is reviewed.
Collapse
Affiliation(s)
- Jordan L Wallin
- The George Washington University School of Medicine, Washington DC, USA
| | | | | | | | | |
Collapse
|
17
|
Simon M, Boström JP, Hartmann C. Molecular genetics of meningiomas: from basic research to potential clinical applications. Neurosurgery 2007; 60:787-98; discussion 787-98. [PMID: 17460514 DOI: 10.1227/01.neu.0000255421.78431.ae] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To review our current understanding of the molecular pathogenesis of meningiomas, to suggest topics for future investigations, and to present perspectives for clinical application. Significant progress has been made in recent years in delineating the molecular mechanisms involved in meningioma formation, growth, and malignant progression. However, many questions remain unanswered. Mutations in the NF2 gene probably account for the formation of more than half of all meningiomas. On the other hand, the molecular events underlying the initiation of meningiomas without NF2 mutations have yet to be identified. Investigating hereditary conditions associated with an increased meningioma incidence and the mechanisms underlying the development of radiation-induced meningiomas could potentially yield relevant insights. Meningioma growth is sustained by the dysregulated expression of steroid hormones, growth factors, their receptors, and activation of signal transduction cascades. The underlying genetic causes are unknown. Malignant progression of meningiomas probably involves the inactivation of tumor suppressor genes on chromosomes 1p, 9p, 10q, and 14q. However, with the possible exception of INK4A/INK4B, the actual targets of these chromosomal losses have remained largely elusive. Cell cycle dysregulation and telomerase activation have been recognized as important steps in meningioma progression. Telomere dynamics, cell cycle control, and the mechanisms responsible for deoxyribonucleic acid damage control are tightly interwoven. Investigating genes involved in the maintenance of genomic integrity might significantly deepen the understanding of meningioma progression. An area that has received relatively little attention thus far is the genetic background of meningioma spread and invasion. Possible clinical applications of the molecular data available may include a meningioma grading system based on genetic alterations, as well as therapeutic strategies for refractory meningiomas aimed at interfering with signal transduction pathways.
Collapse
|