1
|
Shaha S, Rodrigues D, Mitragotri S. Locoregional drug delivery for cancer therapy: Preclinical progress and clinical translation. J Control Release 2024; 367:737-767. [PMID: 38325716 DOI: 10.1016/j.jconrel.2024.01.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
Systemic drug delivery is the current clinically preferred route for cancer therapy. However, challenges associated with tumor localization and off-tumor toxic effects limit the clinical effectiveness of this route. Locoregional drug delivery is an emerging viable alternative to systemic therapies. With the improvement in real-time imaging technologies and tools for direct access to tumor lesions, the clinical applicability of locoregional drug delivery is becoming more prominent. Theoretically, locoregional treatments can bypass challenges faced by systemic drug delivery. Preclinically, locoregional delivery of drugs has demonstrated enhanced therapeutic efficacy with limited off-target effects while still yielding an abscopal effect. Clinically, an array of locoregional strategies is under investigation for the delivery of drugs ranging in target and size. Locoregional tumor treatment strategies can be classified into two main categories: 1) direct drug infusion via injection or implanted port and 2) extended drug elution via injected or implanted depot. The number of studies investigating locoregional drug delivery strategies for cancer treatment is rising exponentially, in both preclinical and clinical settings, with some approaches approved for clinical use. Here, we highlight key preclinical advances and the clinical relevance of such locoregional delivery strategies in the treatment of cancer. Furthermore, we critically analyze 949 clinical trials involving locoregional drug delivery and discuss emerging trends.
Collapse
Affiliation(s)
- Suyog Shaha
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Danika Rodrigues
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA 02134, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
2
|
Design of Biopolymer-Based Interstitial Therapies for the Treatment of Glioblastoma. Int J Mol Sci 2021; 22:ijms222313160. [PMID: 34884965 PMCID: PMC8658694 DOI: 10.3390/ijms222313160] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/31/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common form of primary brain cancer and has the highest morbidity rate and current treatments result in a bleak 5-year survival rate of 5.6%. Interstitial therapy is one option to increase survival. Drug delivery by interstitial therapy most commonly makes use of a polymer implant encapsulating a drug which releases as the polymer degrades. Interstitial therapy has been extensively studied as a treatment option for GBM as it provides several advantages over systemic administration of chemotherapeutics. Primarily, it can be applied behind the blood–brain barrier, increasing the number of possible chemotherapeutic candidates that can be used and reducing systemic levels of the therapy while concentrating it near the cancer source. With interstitial therapy, multiple drugs can be released locally into the brain at the site of resection as the polymer of the implant degrades, and the release profile of these drugs can be tailored to optimize combination therapy or maintain synergistic ratios. This can bypass the blood–brain barrier, alleviate systemic toxicity, and resolve drug resistance in the tumor. However, tailoring drug release requires appropriate consideration of the complex relationship between the drug, polymer, and formulation method. Drug physicochemical properties can result in intermolecular bonding with the polymeric matrix and affect drug distribution in the implant depending on the formulation method used. This review is focused on current works that have applied interstitial therapy towards GBM, discusses polymer and formulation methods, and provides design considerations for future implantable biodegradable materials.
Collapse
|
3
|
Ōmura S, Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J Antibiot (Tokyo) 2019; 72:189-201. [PMID: 30755736 PMCID: PMC6760633 DOI: 10.1038/s41429-019-0141-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Lactacystin exemplifies the role that serendipity plays in drug discovery and why “finding things without actually looking for them” retains such a pivotal role in the search for the useful properties of chemicals. The first proteasome inhibitor discovered, lactacystin stimulated new possibilities in cancer control. New and innovative uses are regularly being found for lactacystin, including as a model to study dementia, while new formulations and delivery systems may facilitate its use clinically as an anticancer agent. All this provides yet more evidence that we need a comprehensive, collaborative and coordinated programme to fully investigate all new and existing chemical compounds, especially those of microbial origin. We need to do so in order to avoid failing to detect and successfully exploit unsought yet potentially life-saving or extremely advantageous properties of microbial metabolites.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
4
|
Singh D, Harding AJ, Albadawi E, Boissonade FM, Haycock JW, Claeyssens F. Additive manufactured biodegradable poly(glycerol sebacate methacrylate) nerve guidance conduits. Acta Biomater 2018; 78:48-63. [PMID: 30075322 DOI: 10.1016/j.actbio.2018.07.055] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/09/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022]
Abstract
Entubulating devices to repair peripheral nerve injuries are limited in their effectiveness particularly for critical gap injuries. Current clinically used nerve guidance conduits are often simple tubes, far stiffer than that of the native tissue. This study assesses the use of poly(glycerol sebacate methacrylate) (PGSm), a photocurable formulation of the soft biodegradable material, PGS, for peripheral nerve repair. The material was synthesized, the degradation rate and mechanical properties of material were assessed and nerve guidance conduits were structured via stereolithography. In vitro cell studies confirmed PGSm as a supporting substrate for both neuronal and glial cell growth. Ex vivo studies highlight the ability of the cells from a dissociated dorsal root ganglion to grow out and align along the internal topographical grooves of printed nerve guide conduits. In vivo results in a mouse common fibular nerve injury model show regeneration of axons through the PGSm conduit into the distal stump after 21 days. After conduit repair levels of spinal cord glial activation (an indicator for neuropathic pain development) were equivalent to those seen following graft repair. In conclusion, results indicate that PGSm can be structured via additive manufacturing into functional NGCs. This study opens the route of personalized conduit manufacture for nerve injury repair. STATEMENT OF SIGNIFICANCE This study describes the use of photocurable of Poly(Glycerol Sebacate) (PGS) for light-based additive manufacturing of Nerve Guidance Conduits (NGCs). PGS is a promising flexible biomaterial for soft tissue engineering, and in particular for nerve repair. Its mechanical properties and degradation rate are within the desirable range for use in neuronal applications. The nerve regeneration supported by the PGS NGCs is similar to an autologous nerve transplant, the current gold standard. A second assessment of regeneration is the activation of glial cells within the spinal cord of the tested animals which reveals no significant increase in neuropathic pain by using the NGCs. This study highlights the successful use of a biodegradable additive manufactured NGC for peripheral nerve repair.
Collapse
Affiliation(s)
- Dharaminder Singh
- Department of Materials Science and Engineering, Broad Lane, Sheffield S3 7HQ, United Kingdom
| | - Adam J Harding
- School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TN, United Kingdom
| | - Emad Albadawi
- School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TN, United Kingdom; Department of Anatomy, Faculty of Medicine, Taibah University, Almadinah Almunawarah, Kingdom of Saudi Arabia
| | - Fiona M Boissonade
- School of Clinical Dentistry, Claremont Crescent, Sheffield S10 2TN, United Kingdom.
| | - John W Haycock
- Department of Materials Science and Engineering, Broad Lane, Sheffield S3 7HQ, United Kingdom.
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Broad Lane, Sheffield S3 7HQ, United Kingdom.
| |
Collapse
|
5
|
Vlachostergios PJ, Voutsadakis IA, Papandreou CN. Mechanisms of proteasome inhibitor-induced cytotoxicity in malignant glioma. Cell Biol Toxicol 2013; 29:199-211. [PMID: 23733249 DOI: 10.1007/s10565-013-9248-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 05/23/2013] [Indexed: 12/12/2022]
Abstract
The 26S proteasome constitutes an essential degradation apparatus involved in the consistent recycling of misfolded and damaged proteins inside cells. The aberrant activation of the proteasome has been widely observed in various types of cancers and implicated in the development and progression of carcinogenesis. In the era of targeted therapies, the clinical use of proteasome inhibitors necessitates a better understanding of the molecular mechanisms of cell death responsible for their cytotoxic action, which are reviewed here in the context of sensitization of malignant gliomas, a tumor type particularly refractory to conventional treatments.
Collapse
Affiliation(s)
- Panagiotis J Vlachostergios
- Department of Medical Oncology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Larissa, 41110, Greece.
| | | | | |
Collapse
|
6
|
Wang H, Zhang S, Zhong J, Zhang J, Luo Y, Pengfei G. The proteasome inhibitor lactacystin exerts its therapeutic effects on glioma via apoptosis: an in vitro and in vivo study. J Int Med Res 2013; 41:72-81. [PMID: 23569132 DOI: 10.1177/0300060513476992] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To examine the effect and underlying mechanism of action of the proteasome inhibitor lactacystin on glioma, in vitro and in vivo. METHODS Rat C6 glioma cells were cultured with or without lactacystin. Cell proliferation, apoptosis and mitochondrial membrane potential were determined. A glioma xenograft model was established in mice and animals were treated with 0, 1 or 5 µg/20 g body weight lactacystin for 7 days. Animals were sacrificed on day 17 after completion of treatment. Apoptosis in tumour tissue was examined by terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Levels of B cell lymphoma 2 (Bcl-2), and Bcl2-associated X protein (Bax) protein and mRNA, were determined in C6 cells and tumour tissues. RESULTS Lactacystin significantly inhibited the proliferation of C6 cells, increased apoptosis and reduced mitochondrial membrane potential in vitro, and suppressed tumour growth in vivo. Lactacystin increased the ratio of Bax to Bcl-2 at the mRNA and protein levels, both in vitro and in vivo. CONCLUSIONS The effects of lactacystin are associated with apoptosis induction. Proteasome inhibition may represent an effective treatment option for glioma.
Collapse
Affiliation(s)
- Haifeng Wang
- Department of Neurosurgery, First Bethune Hospital of Jilin University, Changchun, Jilin Province, China
| | | | | | | | | | | |
Collapse
|
7
|
Attenello F, Raza SM, Dimeco F, Olivi A. Chemotherapy for brain tumors with polymer drug delivery. HANDBOOK OF CLINICAL NEUROLOGY 2012; 104:339-53. [PMID: 22230452 DOI: 10.1016/b978-0-444-52138-5.00022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Frank Attenello
- Department of Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | | |
Collapse
|
8
|
Proteasome inhibitor MG-132 induces C6 glioma cell apoptosis via oxidative stress. Acta Pharmacol Sin 2011; 32:619-25. [PMID: 21499287 DOI: 10.1038/aps.2011.16] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
AIM Proteasome inhibitors have been found to suppress glioma cell proliferation and induce apoptosis, but the mechanisms are not fully elucidated. In this study we investigated the mechanisms underlying the apoptosis induced by the proteasome inhibitor MG-132 in glioma cells. METHODS C6 glioma cells were used. MTT assay was used to analyze cell proliferation. Proteasome activity was assayed using Succinyl-LLVY-AMC, and intracellular ROS level was evaluated with the redox-sensitive dye DCFH-DA. Apoptosis was detected using fluorescence and transmission electron microscopy as well as flow cytometry. The expression of apoptosis-related proteins was investigated using Western blot analysis. RESULTS MG-132 inhibited C6 glioma cell proliferation in a time- and dose-dependent manner (the IC(50) value at 24 h was 18.5 μmol/L). MG-132 (18.5 μmol/L) suppressed the proteasome activity by about 70% at 3 h. It induced apoptosis via down-regulation of antiapoptotic proteins Bcl-2 and XIAP, up-regulation of pro-apoptotic protein Bax and caspase-3, and production of cleaved C-terminal 85 kDa PARP). It also caused a more than 5-fold increase of reactive oxygen species. Tiron (1 mmol/L) effectively blocked oxidative stress induced by MG-132 (18.5 μmol/L), attenuated proliferation inhibition and apoptosis in C6 glioma cells, and reversed the expression pattern of apoptosis-related proteins. CONCLUSION MG-132 induced apoptosis of C6 glioma cells via the oxidative stress.
Collapse
|
9
|
Ge P, Ji X, Ding Y, Wang X, Fu S, Meng F, Jin X, Ling F, Luo Y. Celastrol causes apoptosis and cell cycle arrest in rat glioma cells. Neurol Res 2009; 32:94-100. [PMID: 19909582 DOI: 10.1179/016164109x12518779082273] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Glioma still remains a major health problem in the world. Celastrol has been proved to be an effective natural proteasome inhibitor and was used for treatment of autoimmune disease, chronic inflammation and neurodegenerative disease. However, its effect on glioma is unclear. In this study, we investigated the therapeutic effects of celastrol on C6 glioma cells. The results demonstrated that celastrol inhibited cell proliferation in a time- and dose-dependent manner, suppressed proteasome chymotrypsin-like activity and induced apoptosis and cell cycle arrest at G2/M phase in C6 cells. Proapoptosis proteins bax and caspase-3 were up-regulated, as well as cell cycle G2/M-related proteins cyclin B(1), p21 and p27. Conversely, anti-apoptosis proteins bcl-2 and XIAP and cell cycle regulator cyclin-dependent kinase 2 were down-regulated. Taken together, our data suggest that celastrol can suppress proteasome activity and induce apoptosis and cell cycle arrest in C6 glioma cells, which make it be a potential drug for glioma.
Collapse
Affiliation(s)
- Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ge PF, Zhang JZ, Wang XF, Meng FK, Li WC, Luan YX, Ling F, Luo YN. Inhibition of autophagy induced by proteasome inhibition increases cell death in human SHG-44 glioma cells. Acta Pharmacol Sin 2009; 30:1046-52. [PMID: 19575007 DOI: 10.1038/aps.2009.71] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
AIM The ubiquitin-proteasome system (UPS) and lysosome-dependent macroautophagy (autophagy) are two major intracellular pathways for protein degradation. Recent studies suggest that proteasome inhibitors may reduce tumor growth and activate autophagy. Due to the dual roles of autophagy in tumor cell survival and death, the effect of autophagy on the destiny of glioma cells remains unclear. In this study, we sought to investigate whether inhibition of the proteasome can induce autophagy and the effects of autophagy on the fate of human SHG-44 glioma cells. METHODS The proteasome inhibitor MG-132 was used to induce autophagy in SHG-44 glioma cells, and the effect of autophagy on the survival of SHG-44 glioma cells was investigated using an autophagy inhibitor 3-MA. Cell viability was measured by MTT assay. Apoptosis and cell cycle were detected by flow cytometry. The expression of autophagy related proteins was determined by Western blot. RESULTS MG-132 inhibited cell proliferation, induced cell death and cell cycle arrest at G(2)/M phase, and activated autophagy in SHG-44 glioma cells. The expression of autophagy-related Beclin-1 and LC3-I was significantly up-regulated and part of LC3-I was converted into LC3-II. However, when SHG-44 glioma cells were co-treated with MG-132 and 3-MA, the cells became less viable, but cell death and cell numbers at G(2)/M phase increased. Moreover, the accumulation of acidic vesicular organelles was decreased, the expression of Beclin-1 and LC3 was significantly down-regulated and the conversion of LC3-II from LC3-I was also inhibited. CONCLUSION Inhibition of the proteasome can induce autophagy in human SHG-44 glioma cells, and inhibition of autophagy increases cell death. This discovery may shed new light on the effect of autophagy on modulating the fate of SHG-44 glioma cells.Acta Pharmacologica Sinica (2009) 30: 1046-1052; doi: 10.1038/aps.2009.71.
Collapse
|
11
|
Lin SH, Kleinberg LR. Carmustine wafers: localized delivery of chemotherapeutic agents in CNS malignancies. Expert Rev Anticancer Ther 2008; 8:343-59. [PMID: 18366283 DOI: 10.1586/14737140.8.3.343] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
High-grade glioma is a devastating disease that leaves the majority of its victims dead within 2 years. To meaningfully increase survival, a trimodality approach of surgery, radiation, and chemotherapy is needed. Carmustine (1,3-bis (2-chloroethyl)-1-nitrosourea) is a nitrosourea alkylating agent that exerts its antitumor effect by akylating DNA and RNA. Systemic administration of nitrosoureas as a single agent or as part of procarbazine/3-cyclohexyl-1-nitroso-urea/vincristine has demonstrated little efficacy in the treatment of high-grade glioma. The development of carmustine wafers (Gliadel((R)) Wafer) as a method for controlled released delivery of carmustine from biodegradable polymer wafers enhances the therapeutic ratio by fully containing the drug within the confines of the brain tumor environment while minimizing systemic toxicities. Preclinical and clinical studies have proven the safety and efficacy of Gliadel in the management of glioblastoma. From these results, Gliadel is currently approved for use in patients with recurrent glioblastoma as an adjunct to surgery and in newly diagnosed patients with high-grade glioma as an adjunct to surgery and radiation. Other promising advances in the use of locally delivered chemotherapy for CNS malignancies, including Gliadel for brain metastases and combination therapies with systemic or biologic agents, are discussed.
Collapse
Affiliation(s)
- Steven H Lin
- Department of Radiation Oncology & Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA.
| | | |
Collapse
|
12
|
Yang H, Landis-Piwowar KR, Chen D, Milacic V, Dou QP. Natural compounds with proteasome inhibitory activity for cancer prevention and treatment. Curr Protein Pept Sci 2008; 9:227-39. [PMID: 18537678 PMCID: PMC3303152 DOI: 10.2174/138920308784533998] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The proteasome is a multicatalytic protease complex that degrades most endogenous proteins including misfolded or damaged proteins to ensure normal cellular function. The ubiquitin-proteasome degradation pathway plays an essential role in multiple cellular processes, including cell cycle progression, proliferation, apoptosis and angiogenesis. It has been shown that human cancer cells are more sensitive to proteasome inhibition than normal cells, indicating that a proteasome inhibitor could be used as a novel anticancer drug. Indeed, this idea has been supported by the encouraging results of the clinical trials using the proteasome inhibitor Bortezomib (Velcade, PS-341), a drug approved by the US Food and Drug Administration (FDA). Several natural compounds, including the microbial metabolite lactacystin, green tea polyphenols, and traditional medicinal triterpenes, have been shown to be potent proteasome inhibitors. These findings suggest the potential use of natural proteasome inhibitors as not only chemopreventive and chemotherapeutic agents, but also tumor sensitizers to conventional radiotherapy and chemotherapy. In this review, we will summarize the structures and biological activities of the proteasome and several natural compounds with proteasome inhibitory activity, and will discuss the potential use of these compounds for the prevention and treatment of human cancers.
Collapse
Affiliation(s)
- H Yang
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - KR. Landis-Piwowar
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - D Chen
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - V Milacic
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | - QP Dou
- The Prevention Program, Barbara Ann Karmanos Cancer Institute, and Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| |
Collapse
|
13
|
Naujokat C, Fuchs D, Berges C. Adaptive modification and flexibility of the proteasome system in response to proteasome inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1389-97. [PMID: 17582523 DOI: 10.1016/j.bbamcr.2007.05.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 05/16/2007] [Accepted: 05/16/2007] [Indexed: 01/07/2023]
Abstract
The highly conserved ubiquitin-proteasome system is the principal machinery for extralysosomal protein degradation in eukaryotic cells. The 26S proteasome, a large multicatalytic multisubunit protease that processes cell proteins by limited and controlled proteolysis, constitutes the central proteolytic component of the ubiquitin-proteasome system. By processing cell proteins essential for development, differentiation, proliferation, cell cycling, apoptosis, gene transcription, signal transduction, senescence, and inflammatory and stress response, the 26S proteasome plays a key role in the regulation and maintenance of basic cellular processes. Various synthetic and biologic inhibitors with different inhibitory profiles towards the proteolytic activities of the 26S proteasome have been identified recently. Such proteasome inhibitors induce apoptosis and cell cycle arrest preferentially in neoplastic cells. Based on these findings proteasome inhibitors became useful in cancer therapy. However, under the pressure of continuous proteasome inhibition, eukaryotic cells can develop complex adaptive mechanisms to subvert the lethal attack of proteasome inhibitors. Such mechanisms include the adaptive modification of the proteasome system with increased expression, enhanced proteolytic activity and altered subcomplex assembly and subunit composition of proteasomes as well as the expression of a giant oligomeric protease complex, tripeptidyl peptidase II, which partially compensates for impaired proteasome function. Here we review the adaptive mechanisms developed by eukaryotic cells in response to proteasome inhibition. These mechanisms reveal enormous flexibility of the proteasome system and may have implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Cord Naujokat
- Institut of Immunology, Department of Transplantation Immunology, University of Heidelberg, Im Neuenheimer Feld 305, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|