1
|
Fletcher SMP, Chisholm A, Lavelle M, Guthier R, Zhang Y, Power C, Berbeco R, McDannold N. A study combining microbubble-mediated focused ultrasound and radiation therapy in the healthy rat brain and a F98 glioma model. Sci Rep 2024; 14:4831. [PMID: 38413663 PMCID: PMC10899261 DOI: 10.1038/s41598-024-55442-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/23/2024] [Indexed: 02/29/2024] Open
Abstract
Focused Ultrasound (FUS) has been shown to sensitize tumors outside the brain to Radiotherapy (RT) through increased ceramide-mediated apoptosis. This study investigated the effects of FUS + RT in healthy rodent brains and F98 gliomas. Tumors, or striata in healthy rats, were targeted with microbubble-mediated, pulsed FUS (220 kHz, 102-444 kPa), followed by RT (4, 8, 15 Gy). FUS + RT (8, 15 Gy) resulted in ablative lesions, not observed with FUS or RT only, in healthy tissue. Lesions were visible using Magnetic Resonance Imaging (MRI) within 72 h and persisted until 21 days post-treatment, indicating potential applications in ablative neurosurgery. In F98 tumors, at 8 and 15 Gy, where RT only had significant effects, FUS + RT offered limited improvements. At 4 Gy, where RT had limited effects compared with untreated controls, FUS + RT reduced tumor volumes observed on MRI by 45-57%. However, survival benefits were minimal (controls: 27 days, RT: 27 days, FUS + RT: 28 days). Histological analyses of tumors 72 h after FUS + RT (4 Gy) showed 93% and 396% increases in apoptosis, and 320% and 336% increases in vessel-associated ceramide, compared to FUS and RT only. Preliminary evidence shows that FUS + RT may improve treatment of glioma, but additional studies are required to optimize effect size.
Collapse
Affiliation(s)
- Stecia-Marie P Fletcher
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.
- Department of Radiology, Harvard Medical School, Boston, MA, USA.
| | - Amanda Chisholm
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Lavelle
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
| | - Romy Guthier
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Yongzhi Zhang
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Chanikarn Power
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ross Berbeco
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiation Oncology, Harvard Medical School, Boston, MA, USA
| | - Nathan McDannold
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Slika H, Karimov Z, Alimonti P, Abou-Mrad T, De Fazio E, Alomari S, Tyler B. Preclinical Models and Technologies in Glioblastoma Research: Evolution, Current State, and Future Avenues. Int J Mol Sci 2023; 24:16316. [PMID: 38003507 PMCID: PMC10671665 DOI: 10.3390/ijms242216316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Glioblastoma is the most common malignant primary central nervous system tumor and one of the most debilitating cancers. The prognosis of patients with glioblastoma remains poor, and the management of this tumor, both in its primary and recurrent forms, remains suboptimal. Despite the tremendous efforts that are being put forward by the research community to discover novel efficacious therapeutic agents and modalities, no major paradigm shifts have been established in the field in the last decade. However, this does not mirror the abundance of relevant findings and discoveries made in preclinical glioblastoma research. Hence, developing and utilizing appropriate preclinical models that faithfully recapitulate the characteristics and behavior of human glioblastoma is of utmost importance. Herein, we offer a holistic picture of the evolution of preclinical models of glioblastoma. We further elaborate on the commonly used in vitro and vivo models, delving into their development, favorable characteristics, shortcomings, and areas of potential improvement, which aids researchers in designing future experiments and utilizing the most suitable models. Additionally, this review explores progress in the fields of humanized and immunotolerant mouse models, genetically engineered animal models, 3D in vitro models, and microfluidics and highlights promising avenues for the future of preclinical glioblastoma research.
Collapse
Affiliation(s)
- Hasan Slika
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Ziya Karimov
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
- Faculty of Medicine, Ege University, 35100 Izmir, Turkey
| | - Paolo Alimonti
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Tatiana Abou-Mrad
- Faculty of Medicine, American University of Beirut, Beirut P.O. Box 11-0236, Lebanon;
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Emerson De Fazio
- School of Medicine, Vita-Salute San Raffaele University, 20132 Milan, Italy; (P.A.); (E.D.F.)
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.S.); (Z.K.); (S.A.)
| |
Collapse
|
3
|
Jaekel F, Bräuer-Krisch E, Bartzsch S, Laissue J, Blattmann H, Scholz M, Soloviova J, Hildebrandt G, Schültke E. Microbeam Irradiation as a Simultaneously Integrated Boost in a Conventional Whole-Brain Radiotherapy Protocol. Int J Mol Sci 2022; 23:ijms23158319. [PMID: 35955454 PMCID: PMC9368396 DOI: 10.3390/ijms23158319] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Microbeam radiotherapy (MRT), an experimental high-dose rate concept with spatial fractionation at the micrometre range, has shown a high therapeutic potential as well as good preservation of normal tissue function in pre-clinical studies. We investigated the suitability of MRT as a simultaneously integrated boost (SIB) in conventional whole-brain irradiation (WBRT). A 174 Gy MRT SIB was administered with an array of quasi-parallel, 50 µm wide microbeams spaced at a centre-to-centre distance of 400 µm either on the first or last day of a 5 × 4 Gy radiotherapy schedule in healthy adult C57 BL/6J mice and in F98 glioma cell cultures. The animals were observed for signs of intracranial pressure and focal neurologic signs. Colony counts were conducted in F98 glioma cell cultures. No signs of acute adverse effects were observed in any of the irradiated animals within 3 days after the last irradiation fraction. The tumoricidal effect on F98 cell in vitro was higher when the MRT boost was delivered on the first day of the irradiation course, as opposed to the last day. Therefore, the MRT SIB should be integrated into a clinical radiotherapy schedule as early as possible.
Collapse
Affiliation(s)
- Felix Jaekel
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
| | - Elke Bräuer-Krisch
- Biomedical Beamline ID 17, European Synchrotron Radiation Facility (ESRF), 38043 Grenoble, France;
| | - Stefan Bartzsch
- Department of Radiooncology, Technical University of Munich, 81675 Munich, Germany;
- Institute for Radiation Medicine, Helmholtz Center Munich, 85764 Munich, Germany
| | - Jean Laissue
- Institute of Anatomy, University of Bern, 3012 Bern, Switzerland;
| | | | - Marten Scholz
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
| | - Julia Soloviova
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
- Department of Paediatric Surgery, Leipzig University Medical Centre, 04103 Leipzig, Germany
| | - Guido Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
| | - Elisabeth Schültke
- Department of Radiooncology, Rostock University Medical Center, 18059 Rostock, Germany; (F.J.); (M.S.); (J.S.); (G.H.)
- Correspondence:
| |
Collapse
|
4
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Sahu U, Barth RF, Otani Y, McCormack R, Kaur B. Rat and Mouse Brain Tumor Models for Experimental Neuro-Oncology Research. J Neuropathol Exp Neurol 2022; 81:312-329. [PMID: 35446393 PMCID: PMC9113334 DOI: 10.1093/jnen/nlac021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Rodent brain tumor models have been useful for developing effective therapies for glioblastomas (GBMs). In this review, we first discuss the 3 most commonly used rat brain tumor models, the C6, 9L, and F98 gliomas, which are all induced by repeated injections of nitrosourea to adult rats. The C6 glioma arose in an outbred Wistar rat and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma arose in a Fischer rat and is strongly immunogenic, which must be taken into consideration when using it for therapy studies. The F98 glioma may be the best of the 3 but it does not fully recapitulate human GBMs because it is weakly immunogenic. Next, we discuss a number of mouse models. The first are human patient-derived xenograft gliomas in immunodeficient mice. These have failed to reproduce the tumor-host interactions and microenvironment of human GBMs. Genetically engineered mouse models recapitulate the molecular alterations of GBMs in an immunocompetent environment and “humanized” mouse models repopulate with human immune cells. While the latter are rarely isogenic, expensive to produce, and challenging to use, they represent an important advance. The advantages and limitations of each of these brain tumor models are discussed. This information will assist investigators in selecting the most appropriate model for the specific focus of their research.
Collapse
Affiliation(s)
- Upasana Sahu
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Yoshihiro Otani
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ryan McCormack
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Balveen Kaur
- From the Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Liu J, Hormuth DA, Yang J, Yankeelov TE. A Multi-Compartment Model of Glioma Response to Fractionated Radiation Therapy Parameterized via Time-Resolved Microscopy Data. Front Oncol 2022; 12:811415. [PMID: 35186747 PMCID: PMC8855115 DOI: 10.3389/fonc.2022.811415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Conventional radiobiology models, including the linear-quadratic model, do not explicitly account for the temporal effects of radiation, thereby making it difficult to make time-resolved predictions of tumor response to fractionated radiation. To overcome this limitation, we propose and validate an experimental-computational approach that predicts the changes in cell number over time in response to fractionated radiation. METHODS We irradiated 9L and C6 glioma cells with six different fractionation schemes yielding a total dose of either 16 Gy or 20 Gy, and then observed their response via time-resolved microscopy. Phase-contrast images and Cytotox Red images (to label dead cells) were collected every 4 to 6 hours up to 330 hours post-radiation. Using 75% of the total data (i.e., 262 9L curves and 211 C6 curves), we calibrated a two-species model describing proliferative and senescent cells. We then applied the calibrated parameters to a validation dataset (the remaining 25% of the data, i.e., 91 9L curves and 74 C6 curves) to predict radiation response. Model predictions were compared to the microscopy measurements using the Pearson correlation coefficient (PCC) and the concordance correlation coefficient (CCC). RESULTS For the 9L cells, we observed PCCs and CCCs between the model predictions and validation data of (mean ± standard error) 0.96 ± 0.007 and 0.88 ± 0.013, respectively, across all fractionation schemes. For the C6 cells, we observed PCCs and CCCs between model predictions and the validation data were 0.89 ± 0.008 and 0.75 ± 0.017, respectively, across all fractionation schemes. CONCLUSION By proposing a time-resolved mathematical model of fractionated radiation response that can be experimentally verified in vitro, this study is the first to establish a framework for quantitative characterization and prediction of the dynamic radiobiological response of 9L and C6 gliomas to fractionated radiotherapy.
Collapse
Affiliation(s)
- Junyan Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - David A. Hormuth
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
| | - Jianchen Yang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Thomas E. Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
- Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, United States
- Department of Diagnostic Medicine, The University of Texas at Austin, Austin, TX, United States
- Department of Oncology, The University of Texas at Austin, Austin, TX, United States
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
7
|
Guardiola C, Prezado Y, Roulin C, Bergs JW. Effect of X-ray minibeam radiation therapy on clonogenic survival of glioma cells. Clin Transl Radiat Oncol 2018; 13:7-13. [PMID: 30211325 PMCID: PMC6134191 DOI: 10.1016/j.ctro.2018.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 07/26/2018] [Accepted: 07/31/2018] [Indexed: 01/02/2023] Open
Abstract
The goal is to compare, in vitro, the efficiency of minibeam radiotherapy (MBRT) and standard RT in inducing clonogenic cell death in glioma cell lines. With this aim, we report on the first in vitro study performed in an X-ray Small Animal Radiation Research Platform (SARRP) modified for minibeam irradiations. F98 rat and U87 human glioma cells were irradiated with either an array of minibeams (MB) or with conventional homogeneous beams (broad beam, BB). A specially designed multislit collimator was used to generate the minibeams with a with of a center-to-center distance of 1465 (±10) μm, and a PVDR value of 12.4 (±2.3) measured at 1 cm depth in a water phantom. Cells were either replated for clonogenic assay directly (immediate plating, IP) or 24 h after irradiation (delayed plating, DP) to assess the effect of potentially lethal damage repair (PLDR) on cell survival. Our hypothesis is that with MBRT, a similar level of clonogenic cell death can be reached compared to standard RT, when using equal mean radiation doses. To prove this, we performed dose escalations to determine the minimum integrated dose needed to reach a similar level of clonogenic cell death for both treatments. We show that this minimum dose can vary per cell line: in F98 cells a dose of 19 Gy was needed to obtain similar levels of clonogenic survival, whereas in U87 cells there was still a slightly increased survival with MB compared to BB 19 Gy treatment. The results suggest also an impairment of DNA damage repair in F98 cells as there is no difference in clonogenic cell survival between immediately and delayed plated cells for each dose and irradiation mode. For U87 cells, a small IP-DP effect was observed in the case of BB irradiation up to a dose of 17 Gy. However, at 19 Gy BB, as well as for the complete dose range of MB irradiation, U87 cells did not show a difference in clonogenic survival between IP and DP. We therefore speculate that MBRT might influence PLDR. The current results show that X-ray MBRT is a promising method for treatment of gliomas: future preclinical and clinical studies should aim at reaching a minimum radiation (valley) dose for effective eradication of gliomas with increased sparing of normal tissues compared to standard RT.
Collapse
Affiliation(s)
- Consuelo Guardiola
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Yolanda Prezado
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| | - Christophe Roulin
- Institut Curie, PSL Research University, Translational Research Department, Experimental Radiotherapy Platform, Orsay, France
| | - Judith W.J. Bergs
- IMNC-UMR 8165, CNRS Paris-Saclay University, 15 rue Georges Clemenceau, 91406 Orsay cedex, France
| |
Collapse
|
8
|
Debus C, Afshar-Oromieh A, Floca R, Ingrisch M, Knoll M, Debus J, Haberkorn U, Abdollahi A. Feasibility and robustness of dynamic 18F-FET PET based tracer kinetic models applied to patients with recurrent high-grade glioma prior to carbon ion irradiation. Sci Rep 2018; 8:14760. [PMID: 30283013 PMCID: PMC6170489 DOI: 10.1038/s41598-018-33034-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 09/07/2018] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to analyze the robustness and diagnostic value of different compartment models for dynamic 18F-FET PET in recurrent high-grade glioma (HGG). Dynamic 18F-FET PET data of patients with recurrent WHO grade III (n:7) and WHO grade IV (n: 9) tumors undergoing re-irradiation with carbon ions were analyzed by voxelwise fitting of the time-activity curves with a simplified and an extended one-tissue compartment model (1TCM) and a two-tissue compartment model (2TCM), respectively. A simulation study was conducted to assess robustness and precision of the 2TCM. Parameter maps showed enhanced detail on tumor substructure. Neglecting the blood volume VB in the 1TCM yields insufficient results. Parameter K1 from both 1TCM and 2TCM showed correlation with overall patient survival after carbon ion irradiation (p = 0.043 and 0.036, respectively). The 2TCM yields realistic estimates for tumor blood volume, which was found to be significantly higher in WHO IV compared to WHO III (p = 0.031). Simulations on the 2TCM showed that K1 yields good accuracy and robustness while k2 showed lowest stability of all parameters. The 1TCM provides the best compromise between parameter stability and model accuracy; however application of the 2TCM is still feasible and provides a more accurate representation of tracer-kinetics at the cost of reduced robustness. Detailed tracer kinetic analysis of 18F-FET PET with compartment models holds valuable information on tumor substructures and provides additional diagnostic and prognostic value.
Collapse
Affiliation(s)
- Charlotte Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany.
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.
| | - Ali Afshar-Oromieh
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ralf Floca
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Ingrisch
- Department of Radiology, University Hospital Munich, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Maximilian Knoll
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Nuclear Medicine, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Amir Abdollahi
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Translational Radiation Oncology, National Center for Tumor Diseases (NCT), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Molecular and Translational Radiation Oncology, Heidelberg University Medical School, Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Research in Oncology (NCRO), Heidelberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
9
|
Schültke E, Bräuer-Krisch E, Blattmann H, Requardt H, Laissue JA, Hildebrandt G. Survival of rats bearing advanced intracerebral F 98 tumors after glutathione depletion and microbeam radiation therapy: conclusions from a pilot project. Radiat Oncol 2018; 13:89. [PMID: 29747666 PMCID: PMC5946497 DOI: 10.1186/s13014-018-1038-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 04/30/2018] [Indexed: 12/24/2022] Open
Abstract
Background Resistance to radiotherapy is frequently encountered in patients with glioblastoma multiforme. It is caused at least partially by the high glutathione content in the tumour tissue. Therefore, the administration of the glutathione synthesis inhibitor Buthionine-SR-Sulfoximine (BSO) should increase survival time. Methods BSO was tested in combination with an experimental synchrotron-based treatment, microbeam radiation therapy (MRT), characterized by spatially and periodically alternating microscopic dose distribution. One hundred thousand F98 glioma cells were injected into the right cerebral hemisphere of adult male Fischer rats to generate an orthotopic small animal model of a highly malignant brain tumour in a very advanced stage. Therapy was scheduled for day 13 after tumour cell implantation. At this time, 12.5% of the animals had already died from their disease. The surviving 24 tumour-bearing animals were randomly distributed in three experimental groups: subjected to MRT alone (Group A), to MRT plus BSO (Group B) and tumour-bearing untreated controls (Group C). Thus, half of the irradiated animals received an injection of 100 μM BSO into the tumour two hours before radiotherapy. Additional tumour-free animals, mirroring the treatment of the tumour-bearing animals, were included in the experiment. MRT was administered in bi-directional mode with arrays of quasi-parallel beams crossing at the tumour location. The width of the microbeams was ≈28 μm with a center-to-center distance of ≈400 μm, a peak dose of 350 Gy, and a valley dose of 9 Gy in the normal tissue and 18 Gy at the tumour location; thus, the peak to valley dose ratio (PVDR) was 31. Results After tumour-cell implantation, otherwise untreated rats had a mean survival time of 15 days. Twenty days after implantation, 62.5% of the animals receiving MRT alone (group A) and 75% of the rats given MRT + BSO (group B) were still alive. Thirty days after implantation, survival was 12.5% in Group A and 62.5% in Group B. There were no survivors on or beyond day 35 in Group A, but 25% were still alive in Group B. Thus, rats which underwent MRT with adjuvant BSO injection experienced the largest survival gain. Conclusions In this pilot project using an orthotopic small animal model of advanced malignant brain tumour, the injection of the glutathione inhibitor BSO with MRT significantly increased mean survival time.
Collapse
Affiliation(s)
- E Schültke
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany.
| | - E Bräuer-Krisch
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | | | - H Requardt
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - J A Laissue
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - G Hildebrandt
- Department of Radiooncology, Rostock University Medical Center, Südring 75, 18059, Rostock, Germany
| |
Collapse
|
10
|
Hormuth DA, Weis JA, Barnes SL, Miga MI, Quaranta V, Yankeelov TE. Biophysical Modeling of In Vivo Glioma Response After Whole-Brain Radiation Therapy in a Murine Model of Brain Cancer. Int J Radiat Oncol Biol Phys 2018; 100:1270-1279. [PMID: 29398129 PMCID: PMC5934308 DOI: 10.1016/j.ijrobp.2017.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/17/2017] [Accepted: 12/03/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To develop and investigate a set of biophysical models based on a mechanically coupled reaction-diffusion model of the spatiotemporal evolution of tumor growth after radiation therapy. METHODS AND MATERIALS Post-radiation therapy response is modeled using a cell death model (Md), a reduced proliferation rate model (Mp), and cell death and reduced proliferation model (Mdp). To evaluate each model, rats (n = 12) with C6 gliomas were imaged with diffusion-weighted magnetic resonance imaging (MRI) and contrast-enhanced MRI at 7 time points over 2 weeks. Rats received either 20 or 40 Gy between the third and fourth imaging time point. Diffusion-weighted MRI was used to estimate tumor cell number within enhancing regions in contrast-enhanced MRI data. Each model was fit to the spatiotemporal evolution of tumor cell number from time point 1 to time point 5 to estimate model parameters. The estimated model parameters were then used to predict tumor growth at the final 2 imaging time points. The model prediction was evaluated by calculating the error in tumor volume estimates, average surface distance, and voxel-based cell number. RESULTS For both the rats treated with either 20 or 40 Gy, significantly lower error in tumor volume, average surface distance, and voxel-based cell number was observed for the Mdp and Mp models compared with the Md model. The Mdp model fit, however, had significantly lower sum squared error compared with the Mp and Md models. CONCLUSIONS The results of this study indicate that for both doses, the Mp and Mdp models result in accurate predictions of tumor growth, whereas the Md model poorly describes response to radiation therapy.
Collapse
Affiliation(s)
- David A Hormuth
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas.
| | - Jared A Weis
- Department of Biomedical Engineering, Wake Forest School of Medicine, Winston-Salem, North Carolina; Comprehensive Cancer Center, Wake Forest Baptist Medical Center, Winston-Salem, North Carolina
| | - Stephanie L Barnes
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas
| | - Michael I Miga
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee; Department of Neurological Surgery, Vanderbilt University, Nashville, Tennessee
| | - Vito Quaranta
- Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee
| | - Thomas E Yankeelov
- Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas; Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
11
|
He X, Fan S. hsa-miR-212 modulates the radiosensitivity of glioma cells by targeting BRCA1. Oncol Rep 2018; 39:977-984. [PMID: 29286157 PMCID: PMC5802039 DOI: 10.3892/or.2017.6156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 12/12/2017] [Indexed: 01/06/2023] Open
Abstract
Radioresistance remains a major challenge in the treatment of glioma, and the response of patients to radio-therapy varies considerably. MicroRNAs (miRNAs) are involved in various biological processes. The purpose of the present study was to investigate miRNAs involved in the response to radiation in glioma cell lines. Total RNA was isolated from human glioma U251 cells 30 min after γ-ray exposure and hybridized to an miRNA chip array. miRNA expression profiles were analyzed by quantitative real-time PCR. pcDNA3/EGFP-miR-212 mimic transfection was used to verify the function of miR-212 in colony formation tests, and the effect of miR-212 overexpression on U251 cells was examined by western blot analysis of apoptosis-related proteins (Bcl-2, Bax, caspase-3 and cytochrome c). The target genes of miR-212 were predicted using bioinformatic tools including miRNA databases, and breast cancer susceptibility gene 1 (BRCA1) was selected for further confirmation by EGFP fluorescence reporter and loss- and gain-of-function assays. Of the 16 candidate miRNAs showing altered expression, five were assessed by real-time PCR; miR-212 was identified as contributing to the radioresistance of glioma cells and was shown to attenuate radiation-induced apoptosis. miR-212 negatively regulated BRCA1 expression by interacting with its 3'-untranslated region, suggesting a correlation between BRCA1 expression and radiosensitivity in glioma cells. U-118MG and SHG-44 cell lines were used to confirm these observations. The response of glioma cells to radiation involves the miR-212-mediated modulation of BRCA1 gene expression, suggesting that the miR-212/BRCA1 axis may play a potential role in the radiotherapy of gliomas.
Collapse
Affiliation(s)
- Xin He
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, P.R. China
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Sciences, Tianjin 300192, P.R. China
| |
Collapse
|
12
|
Timbie KF, Afzal U, Date A, Zhang C, Song J, Wilson Miller G, Suk JS, Hanes J, Price RJ. MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release 2017; 263:120-131. [PMID: 28288892 DOI: 10.1016/j.jconrel.2017.03.017] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/21/2017] [Accepted: 03/08/2017] [Indexed: 12/24/2022]
Abstract
Systemically administered chemotherapeutic drugs are often ineffective in the treatment of invasive brain tumors due to poor therapeutic index. Within gliomas, despite the presence of heterogeneously leaky microvessels, dense extracellular matrix and high interstitial pressure generate a "blood-tumor barrier" (BTB), which inhibits drug delivery and distribution. Meanwhile, beyond the contrast MRI-enhancing edge of the tumor, invasive cancer cells are protected by the intact blood-brain barrier (BBB). Here, we tested whether brain-penetrating nanoparticles (BPN) that possess dense surface coatings of polyethylene glycol (PEG) and are loaded with cisplatin (CDDP) could be delivered across both the blood-tumor and blood-brain barriers with MR image-guided focused ultrasound (MRgFUS), and whether this treatment could control glioma growth and invasiveness. To this end, we first established that MRgFUS is capable of significantly enhancing the delivery of ~60nm fluorescent tracer BPN across the blood-tumor barrier in both the 9L (6-fold improvement) gliosarcoma and invasive F98 (28-fold improvement) glioma models. Importantly, BPN delivery across the intact BBB, just beyond the tumor edge, was also markedly increased in both tumor models. We then showed that a CDDP loaded BPN formulation (CDDP-BPN), composed of a blend of polyaspartic acid (PAA) and heavily PEGylated polyaspartic acid (PAA-PEG), was highly stable, provided extended drug release, and was effective against F98 cells in vitro. These CDDP-BPN were delivered from the systemic circulation into orthotopic F98 gliomas using MRgFUS, where they elicited a significant reduction in tumor invasiveness and growth, as well as improved animal survival. We conclude that this therapy may offer a powerful new approach for the treatment invasive gliomas, particularly for preventing and controlling recurrence.
Collapse
Affiliation(s)
- Kelsie F Timbie
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road Building MR5, Charlottesville, VA 22908, United States
| | - Umara Afzal
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Department of Biochemistry, PMAS-Arid Agriculture University, Shamsabad, Muree Road, Rawalpindi, Pakistan
| | - Abhijit Date
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Clark Zhang
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Ji Song
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road Building MR5, Charlottesville, VA 22908, United States
| | - G Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, 480 Ray C Hunt Drive, Charlottesville, VA 22908, United States
| | - Jung Soo Suk
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Justin Hanes
- Department of Ophthalmology, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States; Center for Nanomedicine, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, United States
| | - Richard J Price
- Department of Biomedical Engineering, University of Virginia, 415 Lane Road Building MR5, Charlottesville, VA 22908, United States.
| |
Collapse
|
13
|
Brown R, Corde S, Oktaria S, Konstantinov K, Rosenfeld A, Lerch M, Tehei M. Nanostructures, concentrations and energies: an ideal equation to extend therapeutic efficiency on radioresistant 9L tumor cells using ${{\rm{Ta}}}_{2}{{\rm{O}}}_{5}$ ceramic nanostructured particles. Biomed Phys Eng Express 2017. [DOI: 10.1088/2057-1976/aa56f2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Zinc and zinc-containing biomolecules in childhood brain tumors. J Mol Med (Berl) 2016; 94:1199-1215. [PMID: 27638340 DOI: 10.1007/s00109-016-1454-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/13/2016] [Accepted: 07/27/2016] [Indexed: 12/21/2022]
Abstract
Zinc ions are essential cofactors of a wide range of enzymes, transcription factors, and other regulatory proteins. Moreover, zinc is also involved in cellular signaling and enzymes inhibition. Zinc dysregulation, deficiency, over-supply, and imbalance in zinc ion transporters regulation are connected with various diseases including cancer. A zinc ion pool is maintained by two types of proteins: (i) zinc-binding proteins, which act as a buffer and intracellular donors of zinc and (ii) zinc transporters responsible for zinc fluxes into/from cells and organelles. The decreased serum zinc ion levels have been identified in patients suffering from various cancer diseases, including head and neck tumors and breast, prostate, liver, and lung cancer. On the contrary, increased zinc ion levels have been found in breast cancer and other malignant tissues. Zinc metalloproteomes of a majority of tumors including brain ones are still not yet fully understood. Current knowledge show that zinc ion levels and detection of certain zinc-containing proteins may be utilized for diagnostic and prognostic purposes. In addition, these proteins can also be promising therapeutic targets. The aim of the present work is an overview of the importance of zinc ions, zinc transporters, and zinc-containing proteins in brain tumors, which are, after leukemia, the second most common type of childhood cancer and the second leading cause of death in children after accidents.
Collapse
|
15
|
Abstract
BRCA is a tumor suppressor gene implicated in the major mechanisms of cellular stability in every type of cell. Its mutations are described in numerous cancers, mainly breast and ovarian in women. It was also found an increase of lifetime risk of pancreas, colon, prostate cancer or lymphoma in men carriers. We report the cases of two female patients aged 40 and 58-years-old female patients and one 35-years-old male patient, with brain or medullar gliomas, carriers of a germline mutation of BRCA gene. Those gliomas were particularly aggressive and were not responding to the standard treatment, with chemo and radiotherapy. The very unusual characteristics in location and evolutive profile of these central nervous system tumors raise the question of a genetical underlying mechanism, maybe linked to the BRCA gene mutation that carry these patients. In addition, a non-fortuitous association between germline mutation of BRCA and occurrence of a glioma can be evoked according to the embryological, epidemiological and biomolecular findings noted in the literature. Other clinical and experimental studies are necessary to precise the physiopathological link existing between BRCA mutations and the occurrence of a glioma; this could have therapeutical and clinical implications in the future.
Collapse
|
16
|
Fernandez-Palomo C, Bräuer-Krisch E, Laissue J, Vukmirovic D, Blattmann H, Seymour C, Schültke E, Mothersill C. Use of synchrotron medical microbeam irradiation to investigate radiation-induced bystander and abscopal effects in vivo. Phys Med 2015; 31:584-95. [PMID: 25817634 DOI: 10.1016/j.ejmp.2015.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/06/2015] [Accepted: 03/09/2015] [Indexed: 01/01/2023] Open
Abstract
The question of whether bystander and abscopal effects are the same is unclear. Our experimental system enables us to address this question by allowing irradiated organisms to partner with unexposed individuals. Organs from both animals and appropriate sham and scatter dose controls are tested for expression of several endpoints such as calcium flux, role of 5HT, reporter assay cell death and proteomic profile. The results show that membrane related functions of calcium and 5HT are critical for true bystander effect expression. Our original inter-animal experiments used fish species whole body irradiated with low doses of X-rays, which prevented us from addressing the abscopal effect question. Data which are much more relevant in radiotherapy are now available for rats which received high dose local irradiation to the implanted right brain glioma. The data were generated using quasi-parallel microbeams at the biomedical beamline at the European Synchrotron Radiation Facility in Grenoble France. This means we can directly compare abscopal and "true" bystander effects in a rodent tumour model. Analysis of right brain hemisphere, left brain and urinary bladder in the directly irradiated animals and their unirradiated partners strongly suggests that bystander effects (in partner animals) are not the same as abscopal effects (in the irradiated animal). Furthermore, the presence of a tumour in the right brain alters the magnitude of both abscopal and bystander effects in the tissues from the directly irradiated animal and in the unirradiated partners which did not contain tumours, meaning the type of signal was different.
Collapse
Affiliation(s)
- Cristian Fernandez-Palomo
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | - Elke Bräuer-Krisch
- European Synchrotron Radiation Facility, BP 220 6, rue Jules Horowitz, 38043 Grenoble, France
| | - Jean Laissue
- University of Bern, Hochschulstrasse 4, CH-3012 Bern, Switzerland
| | - Dusan Vukmirovic
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | | | - Colin Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Elisabeth Schültke
- Department of Radiotherapy, Rostock University Medical Center, Südring 75, 18059 Rostock, Germany
| | - Carmel Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
17
|
Alvarez D, Hogstrom KR, Brown TAD, Ii KLM, Dugas JP, Ham K, Varnes ME. Impact of IUdR on Rat 9L glioma cell survival for 25-35 keV photon-activated auger electron therapy. Radiat Res 2015; 182:607-17. [PMID: 25409122 DOI: 10.1667/rr13841.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The goal of the current study was to measure the energy dependence of survival of rat 9L glioma cells labeled with iododeoxyuridine (IUdR) that underwent photon-activated Auger electron therapy using 25-35 keV monochromatic X rays, i.e., above and below the K-edge energy of iodine. Rat 9L glioma cells were selected because of their radioresistance, ability to be implanted for future in vivo studies and analogy to radioresistant human gliomas. Survival curves were measured for a 4 MV X-ray beam and synchrotron produced monochromatic 35, 30 and 25 keV X-ray beams. IUdR was incorporated into the DNA at levels of 0, 9 and 18% thymidine replacement for 4 MV and 35 keV and 0 and 18% thymidine replacement for 30 and 25 keV. For 10 combinations of beam energy and thymidine replacement, 62 data sets (3-13 per combination) provided 776 data points (47-148 per combination). Survival versus dose data taken for the same combination, but on different days, were merged by including the zero-dose points in the nonlinear, chi-squared data fitting using the linear-quadratic model and letting the best estimate to the zero-dose plating efficiency for each of the different days be a fitting parameter. When comparing two survival curves, the ratio of doses resulting in 10% survival gave sensitization enhancement ratios (SER10) from which contributions due to linear energy transfer (LET) (SER10,LET), IUdR radiosensitization (SER10,RS), the Auger effect (SER10,AE) and the total of all effects (SER10,T) were determined. At 4 MV and 35, 30 and 25 keV, SER10,LET values were 1.00, 1.08 ± 0.03, 1.22 ± 0.02 and 1.37 ± 0.02, respectively. At 4 MV SER10,RS values for 9 and 18% IUdR were 1.28 ± 0.02 and 1.40 ± 0.02, respectively. Assuming LET effects were independent of percentage IUdR and radiosensitization effects were independent of energy, SER10,AE values for 18% IUdR at 35, 30 and 25 keV were 1.35 ± 0.05, 1.06 ± 0.03 and 0.98 ± 0.03, respectively. The value for 9% IUdR at 35 keV was 1.01 ± 0.04. First, we found the radioresistant rat 9L glioma cell line exhibited an SER10 due to the Auger effect of 1.35 at (35 keV, 18% IUdR) and an SER10 due to the radiosensitizing effect of 1.40 at (4 MV, 18% IUdR), both significantly less than values for previously reported cell lines. These low individual values emphasize the benefit of their combined value (SER10 of approximately 1.9) for achieving clinical benefit. Second, as expected, we observed that energies below the K-edge of iodine (25 and 30 keV), for which there are L, M and higher shell photoelectric events creating Auger electrons, show no promise for Auger electron therapy. Third, to proceed with future in vivo studies, additional data from 35-65 keV are needed to determine the optimal X-ray energy for IUdR Auger electron therapy. Only then can there be an answer to the question, how well the energy dependence of in vitro survival data supports the potential for photon-activated Auger electron therapy with IUdR in cancer radiotherapy.
Collapse
Affiliation(s)
- Diane Alvarez
- a Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Protein p73 is a member of the p53 protein family that can induce cell cycle arrest or apoptosis by the activation of p53-responsive genes as well as p53-independent pathways. Alternative promoter usage, together with differential splicing of the C-terminal exons, forms several distinct mRNAs that are translated into corresponding protein isoforms containing different domains. While TAp73 isoforms respond to genotoxic stress in a manner similar to tumor suppressor p53, ΔTAp73 isoforms inhibit apoptosis during normal development and in cancer cell lines. Thus, the impact of p73 on tumorigenesis depends on a subtle balance between tumor-promoting and -suppressing isoforms. Due to the structural homology between p53 and p73, a subtle balance among p53 family members and their isoforms could influence glioma cell evolution toward malignancy. Thus, the p73 status has to be considered when studying the regulatory role of p53 protein in gliomagenesis. The presented review summarizes recent knowledge about the issue of p73 and its isoforms with respect to neuro-oncology research.
Collapse
Affiliation(s)
- Radim Jancalek
- Department of Neurosurgery and International Clinical Research Center, St. Anne's University Hospital Brno and Faculty of Medicine, Masaryk University , Brno , Czech Republic
| |
Collapse
|
19
|
Characterization of the 9L gliosarcoma implanted in the Fischer rat: an orthotopic model for a grade IV brain tumor. Tumour Biol 2014; 35:6221-33. [PMID: 24633919 DOI: 10.1007/s13277-014-1783-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 02/19/2014] [Indexed: 10/25/2022] Open
Abstract
Among rodent models for brain tumors, the 9L gliosarcoma is one of the most widely used. Our 9L-European Synchrotron Radiation Facility (ESRF) model was developed from cells acquired at the Brookhaven National Laboratory (NY, USA) in 1997 and implanted in the right caudate nucleus of syngeneic Fisher rats. It has been largely used by the user community of the ESRF during the last decade, for imaging, radiotherapy, and chemotherapy, including innovative treatments based on particular irradiation techniques and/or use of new drugs. This work presents a detailed study of its characteristics, assessed by magnetic resonance imaging (MRI), histology, immunohistochemistry, and cytogenetic analysis. The data used for this work were from rats sampled in six experiments carried out over a 3-year period in our lab (total number of rats = 142). The 9L-ESRF tumors were induced by a stereotactic inoculation of 10(4) 9L cells in the right caudate nucleus of the brain. The assessment of vascular parameters was performed by MRI (blood volume fraction and vascular size index) and by immunostaining of vessels (rat endothelial cell antigen-1 and type IV collagen). Immunohistochemistry and regular histology were used to describe features such as tumor cell infiltration, necrosis area, nuclear pleomorphism, cellularity, mitotic characteristics, leukocytic infiltration, proliferation, and inflammation. Moreover, for each of the six experiments, the survival of the animals was assessed and related to the tumor growth observed by MRI or histology. Additionally, the cytogenetic status of the 9L cells used at ESRF lab was investigated by comparative genomics hybridization analysis. Finally, the response of the 9L-ESRF tumor to radiotherapy was estimated by plotting the survival curves after irradiation. The median survival time of 9L-ESRF tumor-bearing rats was highly reproducible (19-20 days). The 9L-ESRF tumors presented a quasi-exponential growth, were highly vascularized with a high cellular density and a high proliferative index, accompanied by signs of inflammatory responses. We also report an infiltrative pattern which is poorly observed on conventional 9 L tumor. The 9L-ESRF cells presented some cytogenetic specificities such as altered regions including CDK4, CDKN2A, CDKN2B, and MDM2 genes. Finally, the lifespan of 9L-ESRF tumor-bearing rats was enhanced up to 28, 35, and 45 days for single doses of 10, 20, and 2 × 20 Gy, respectively. First, this report describes an animal model that is used worldwide. Second, we describe few features typical of our model if compared to other 9L models worldwide. Altogether, the 9L-ESRF tumor model presents characteristics close to the human high-grade gliomas such as high proliferative capability, high vascularization and a high infiltrative pattern. Its response to radiotherapy demonstrates its potential as a tool for innovative radiotherapy protocols.
Collapse
|
20
|
Ricard C, Fernandez M, Requardt H, Wion D, Vial JC, Segebarth C, van der Sanden B. Synergistic effect of cisplatin and synchrotron irradiation on F98 gliomas growing in nude mice. JOURNAL OF SYNCHROTRON RADIATION 2013; 20:777-84. [PMID: 23955042 PMCID: PMC3943558 DOI: 10.1107/s0909049513016567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 06/14/2013] [Indexed: 06/02/2023]
Abstract
Among brain tumors, glioblastoma multiforme appears as one of the most aggressive forms of cancer with poor prognosis and no curative treatment available. Recently, a new kind of radio-chemotherapy has been developed using synchrotron irradiation for the photoactivation of molecules with high-Z elements such as cisplatin (PAT-Plat). This protocol showed a cure of 33% of rats bearing the F98 glioma but the efficiency of the treatment was only measured in terms of overall survival. Here, characterization of the effects of the PAT-Plat on tumor volume and tumor blood perfusion are proposed. Changes in these parameters may predict the overall survival. Firstly, changes in tumor growth of the F98 glioma implanted in the hindlimb of nude mice after the PAT-Plat treatment and its different modalities have been characterized. Secondly, the effects of the treatment on tumor blood perfusion have been observed by intravital two-photon microscopy. Cisplatin alone had no detectable effect on the tumor volume. A reduction of tumor growth was measured after a 15 Gy synchrotron irradiation, but the whole therapy (15 Gy irradiation + cisplatin) showed the largest decrease in tumor growth, indicating a synergistic effect of both synchrotron irradiation and cisplatin treatment. A high number of unperfused vessels (52%) were observed in the peritumoral area in comparison with untreated controls. In the PAT-Plat protocol the transient tumor growth reduction may be due to synergistic interactions of tumor-cell-killing effects and reduction of the tumor blood perfusion.
Collapse
Affiliation(s)
- Clement Ricard
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Manuel Fernandez
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | | | - Didier Wion
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Jean-Claude Vial
- Université Joseph Fourier, Grenoble, France
- CNRS UMR 5588, Laboratoire Interdisciplinaire de Physique, St Martin d’Hères, France
| | - Christoph Segebarth
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| | - Boudewijn van der Sanden
- INSERM U836, Grenoble Institut des Neurosciences, Grenoble, France
- Université Joseph Fourier, Grenoble, France
| |
Collapse
|
21
|
Hou H, Mupparaju SP, Lariviere JP, Hodge S, Gui J, Swartz HM, Khan N. Assessment of the changes in 9L and C6 glioma pO2 by EPR oximetry as a prognostic indicator of differential response to radiotherapy. Radiat Res 2013; 179:343-51. [PMID: 23391148 DOI: 10.1667/rr2811.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Tumor hypoxia impedes the outcome of radiotherapy. As the extent of hypoxia in solid tumors varies during the course of radiotherapy, methods that can provide repeated assessment of tumor pO2 such as EPR oximetry may enhance the efficacy of radiotherapy by scheduling irradiations when the tumors are oxygenated. The repeated measurements of tumor pO2 may also identify responders, and thereby facilitate the design of better treatment plans for nonresponding tumors. We have investigated the temporal changes in the ectopic 9L and C6 glioma pO2 irradiated with single radiation doses less than 10 Gy by EPR oximetry. The 9L and C6 tumors were hypoxic with pO2 of approximately 5-9 mmHg. The pO2 of C6 tumors increased significantly with irradiation of 4.8-9.3 Gy. However, no change in the 9L tumor pO2 was observed. The irradiation of the oxygenated C6 tumors with a second dose of 4.8 Gy resulted in a significant delay in growth compared to hypoxic and 2 Gy × 5 treatment groups. The C6 tumors with an increase in pO2 of greater than 50% from the baseline of irradiation with 4.8 Gy (responders) had a significant tumor growth delay compared to nonresponders. These results indicate that the ectopic 9L and C6 tumors responded differently to radiotherapy. We propose that the repeated measurement of the oxygen levels in the tumors during radiotherapy can be used to identify responders and to design tumor oxygen guided treatment plans to improve the outcome.
Collapse
Affiliation(s)
- Huagang Hou
- EPR Center for Viable Systems, Department of Radiology, Geisel School of Medicine, Hanover, New Hampshire, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Gil S, Sarun S, Biete A, Prezado Y, Sabés M. Survival analysis of F98 glioma rat cells following minibeam or broad-beam synchrotron radiation therapy. Radiat Oncol 2011; 6:37. [PMID: 21489271 PMCID: PMC3094367 DOI: 10.1186/1748-717x-6-37] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/13/2011] [Indexed: 12/01/2022] Open
Abstract
Background In the quest of a curative radiotherapy treatment for gliomas new delivery modes are being explored. At the Biomedical Beamline of the European Synchrotron Radiation Facility (ESRF), a new spatially-fractionated technique, called Minibeam Radiation Therapy (MBRT) is under development. The aim of this work is to compare the effectiveness of MBRT and broad-beam (BB) synchrotron radiation to treat F98 glioma rat cells. A dose escalation study was performed in order to delimit the range of doses where a therapeutic effect could be expected. These results will help in the design and optimization of the forthcoming in vivo studies at the ESRF. Methods Two hundred thousand F98 cells were seeded per well in 24-well plates, and incubated for 48 hours before being irradiated with spatially fractionated and seamless synchrotron x-rays at several doses. The percentage of each cell population (alive, early apoptotic and dead cells, where either late apoptotic as necrotic cells are included) was assessed by flow cytometry 48 hours after irradiation, whereas the metabolic activity of surviving cells was analyzed on days 3, 4, and 9 post-irradiation by using QBlue test. Results The endpoint (or threshold dose from which an important enhancement in the effectiveness of both radiation treatments is achieved) obtained by flow cytometry could be established just before 12 Gy in the two irradiation schemes, whilst the endpoints assessed by the QBlue reagent, taking into account the cell recovery, were set around 18 Gy in both cases. In addition, flow cytometric analysis pointed at a larger effectiveness for minibeams, due to the higher proportion of early apoptotic cells. Conclusions When the valley doses in MBRT equal the dose deposited in the BB scheme, similar cell survival ratio and cell recovery were observed. However, a significant increase in the number of early apoptotic cells were found 48 hours after the minibeam radiation in comparison with the seamless mode.
Collapse
Affiliation(s)
- Silvia Gil
- Centre d'Estudis en Biofísica, Faculty of Medicine, Autonomous University of Barcelona, Cerdanyola del Vallès, Spain.
| | | | | | | | | |
Collapse
|
23
|
Foray N. Réponse aux commentaires de H. Elleaume et al. sur la revue intitulée « aspects radiobiologiques des traitements anticancéreux par rayonnement synchrotron : bilan et perspectives ». Cancer Radiother 2011. [DOI: 10.1016/j.canrad.2010.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
External irradiation models for intracranial 9L glioma studies. J Exp Clin Cancer Res 2010; 29:142. [PMID: 21059193 PMCID: PMC2992475 DOI: 10.1186/1756-9966-29-142] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 11/08/2010] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Radiotherapy has been shown to be an effective for the treatment human glioma and consists of 30 fractions of 2 Gy each for 6-7 weeks in the tumor volume with margins. However. in preclinical studies, many different radiation schedules are used. The main purpose of this work was to review the relevant literature and to propose an external whole-brain irradiation (WBI) protocol for a rat 9L glioma model. MATERIALS AND METHODS 9L cells were implanted in the striatum of twenty 344-Fisher rats to induce a brain tumor. On day 8, animals were randomized in two groups: an untreated group and an irradiated group with three fractions of 6 Gy at day 8, 11 and 14. Survival and toxicity were assessed. RESULTS Irradiated rats had significantly a longer survival (p = 0.01). No deaths occurred due to the treatment. Toxicities of reduced weight and alopecia were increased during the radiation period but no serious morbidity or mortality was observed. Moreover, abnormalities disappeared the week following the end of the therapeutic schedule. CONCLUSIONS Delivering 18 Gy in 3 fractions of 6 Gy every 3 days, with mild anaesthesia, is safe, easy to reproduce and allows for standardisation in preclinical studies of different treatment regimens glioma rat model.
Collapse
|
25
|
Comment to the paper "efficacy of intracerebral delivery of cisplatin in combination with photon irradiation for treatment of brain tumors" from Rousseau et al., in press. J Neurooncol 2010; 101:161-3; author reply 165-7. [PMID: 20495850 DOI: 10.1007/s11060-010-0212-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 04/14/2010] [Indexed: 10/19/2022]
|
26
|
Foray N. Aspects radiobiologiques des traitements anticancéreux par rayonnement synchrotron : bilan et perspectives. Cancer Radiother 2010; 14:145-54. [DOI: 10.1016/j.canrad.2009.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 11/26/2009] [Accepted: 12/03/2009] [Indexed: 10/19/2022]
|
27
|
Frosina G. DNA repair and resistance of gliomas to chemotherapy and radiotherapy. Mol Cancer Res 2009; 7:989-99. [PMID: 19609002 DOI: 10.1158/1541-7786.mcr-09-0030] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The importance of DNA repair as a resistance mechanism in gliomas, the most aggressive form of brain tumor, is a clinically relevant topic. Recent studies show that not all cells are equally malignant in gliomas. Certain subpopulations are particularly prone to drive tumor progression and resist chemo- and radiotherapy. Those cells have been variably named cancer stem cells or cancer-initiating cells or tumor-propagating cells, owing to their possible (but still uncertain) origin from normal stem cells. Although DNA repair reduces the efficacy of chemotherapeutics and ionizing radiation toward bulk gliomas, its contribution to resistance of the rare glioma stem cell subpopulations is less clear. Mechanisms other than DNA repair (in particular low proliferation and activation of the DNA damage checkpoint response) are likely main players of resistance in glioma stem cells and their targeting might yield significant therapeutic gains.
Collapse
Affiliation(s)
- Guido Frosina
- Molecular Mutagenesis & DNA Repair Unit, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi n. 10, 16132 Genova, Italy.
| |
Collapse
|
28
|
Allard E, Jarnet D, Vessières A, Vinchon-Petit S, Jaouen G, Benoit JP, Passirani C. Local delivery of ferrociphenol lipid nanocapsules followed by external radiotherapy as a synergistic treatment against intracranial 9L glioma xenograft. Pharm Res 2009; 27:56-64. [PMID: 19908129 DOI: 10.1007/s11095-009-0006-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 10/27/2009] [Indexed: 11/25/2022]
Abstract
PURPOSE The goal of the present study was to evaluate the efficacy of a new organometallic drug, ferrociphenol (Fc-diOH), in combination with external radiotherapy in intracerebral 9L glioma model. We tested the hypothesis that the combination of external radiotherapy with Fc-diOH could potentiate the action of this drug. METHODS 9L cells were treated with Fc-diOH-LNCs (from 0.01 to 1 micromol/L) and irradiated with external radiotherapy (from 2 to 40 Gy). In vivo assessment was evaluated by the inoculation of 9L cells in Fisher rats. Chemotherapy with Fc-diOH-LNCs (0.36 mg/rat) was administered by means of convection-enhanced delivery (CED), and the treatment was followed by three irradiations of 6 Gy doses (total dose = 18 Gy). RESULTS In vitro evaluations evidenced that a combined treatment with Fc-diOH-LNCs and irradiations showed synergistic antitumor activity on 9L cells. Combining cerebral irradiation with CED of Fc-diOH-LNCs led to a significantly longer survival and the existence of long-term survivors compared to Fc-diOH-LNCs-treated animals (p < 0.0001) and to the group treated with blank LNCs + radiotherapy (p = 0.0079). CONCLUSION The synergistic effect between ferrociphenol-loaded LNCs and radiotherapy was due to a closely oxidative relationship. Upon these considerations, Fc-diOH-LNCs appear to be an efficient radiosensitive anticancer drug delivery system.
Collapse
Affiliation(s)
- Emilie Allard
- Inserm U646, Pôle pharmaceutique, CHU d'Angers, Université d'Angers, 49100, Angers, France
| | | | | | | | | | | | | |
Collapse
|
29
|
Serduc R, Bouchet A, Bräuer-Krisch E, Laissue JA, Spiga J, Sarun S, Bravin A, Fonta C, Renaud L, Boutonnat J, Siegbahn EA, Estève F, Le Duc G. Synchrotron microbeam radiation therapy for rat brain tumor palliation—influence of the microbeam width at constant valley dose. Phys Med Biol 2009; 54:6711-24. [DOI: 10.1088/0031-9155/54/21/017] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Biston MC, Joubert A, Charvet AM, Balosso J, Foray N. In vitro and in vivo optimization of an anti-glioma modality based on synchrotron X-ray photoactivation of platinated drugs. Radiat Res 2009; 172:348-58. [PMID: 19708784 DOI: 10.1667/rr1650.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
For the past 5 years, a radio-chemotherapy approach based on the photoactivation of platinum atoms (PAT-Plat) consisting of treating tumors with platinated compounds and irradiating them above the platinum K edge (78.4 keV) has been developed at the European Synchrotron Radiation Facility (Grenoble, France). Compared to other preclinical modalities, PAT-Plat provides the highest survivals of rats bearing the rodent F98 glioma. However, further investigations are required to optimize its efficiency and to allow its clinical application. Here we examined in vitro and in vivo whether monochromatic X rays are more efficient than high-energy photons in producing the PAT-Plat effect by measuring DNA double-strand breaks (DSBs) and survival of glioma-bearing rats and whether an increase in the platinum concentration in the tumor results in increased rat survival. DSBs were assessed by pulsed-field gel electrophoresis with different DNA fragment migration programs and with gamma-H2AX immunofluorescence. In vivo, F98 glioma cells were injected intracerebrally, treated with a single intracranial injection of cisplatin or carboplatin 13 days after tumor implantation, and irradiated the day after with 78.8 keV X rays or 6 MV photons. Our results indicate that 78.8 keV X rays are more efficient than high-energy photons at producing the PAT-Plat effect. At low concentrations, cisplatin is more efficient than carboplatin; this is likely due to more efficient DNA binding and DSB repair inhibition. High concentrations of carboplatin inside tumors do not necessarily lead to protracted survival of rats. The therapeutic benefit of anti-glioma synchrotron strategies appears to be correlated with the percentage of unrepaired DSBs but not with the number of DSBs induced.
Collapse
|
31
|
Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, T9, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol 2009; 94:299-312. [PMID: 19381449 DOI: 10.1007/s11060-009-9875-7] [Citation(s) in RCA: 300] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 03/16/2009] [Indexed: 02/08/2023]
Abstract
In this review we will describe eight commonly used rat brain tumor models and their application for the development of novel therapeutic and diagnostic modalities. The C6, 9L and T9 gliomas were induced by repeated injections of methylnitrosourea (MNU) to adult rats. The C6 glioma has been used extensively for a variety of studies, but since it arose in an outbred Wistar rat, it is not syngeneic to any inbred strain, and its potential to evoke an alloimmune response is a serious limitation. The 9L gliosarcoma has been used widely and has provided important information relating to brain tumor biology and therapy. The T9 glioma, although not generally recognized, was and probably still is the same as the 9L. Both of these tumors arose in Fischer rats and can be immunogenic in syngeneic hosts, a fact that must be taken into consideration when used in therapy studies, especially if survival is the endpoint. The RG2 and F98 gliomas were both chemically induced by administering ethylnitrosourea (ENU) to pregnant rats, the progeny of which developed brain tumors that subsequently were propagated in vitro and cloned. They are either weakly or non-immunogenic and have an invasive pattern of growth and uniform lethality, which make them particularly attractive models to test new therapeutic modalities. The CNS-1 glioma was induced by administering MNU to a Lewis rat. It has an infiltrative pattern of growth and is weakly immunogenic, which should make it useful in experimental neuro-oncology. Finally, the BT4C glioma was induced by administering ENU to a BD IX rat, following which brain cells were propagated in vitro until a tumorigenic clone was isolated. This tumor has been used for a variety of studies to evaluate new therapeutic modalities. The Avian Sarcoma Virus (ASV) induced tumors, and a continuous cell line derived from one of them designated RT-2, have been useful for studies in which de novo tumor induction is an important requirement. These tumors also are immunogenic and this limits their usefulness for therapy studies. It is essential to recognize the limitations of each of the models that have been described, and depending upon the nature of the study to be conducted, it is important that the appropriate model be selected.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, 165 Hamilton Hall, Columbus, OH 43210, USA.
| | | |
Collapse
|
32
|
Behavioral and electrophysiological studies in rats with cisplatin-induced chemoneuropathy. Brain Res 2008; 1230:91-8. [PMID: 18657527 DOI: 10.1016/j.brainres.2008.07.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 07/02/2008] [Accepted: 07/07/2008] [Indexed: 11/20/2022]
Abstract
Neuropathy is the chief dose-limiting side effect associated with the major classes of frontline cancer therapy drugs. Here the changes in behavioral responses of rats to cutaneous mechanical and thermal stimuli occurring following treatment with cisplatin and the changes in spinal neurophysiology accompanying the development of chemotherapy-induced hyperalgesia were explored. Systemic treatment with cisplatin induced changes in both mechanical and thermal cutaneous sensory withdrawal thresholds of Sprague-Dawley rats. High doses of chemotherapy produced hypoalgesia whereas lower doses produced hyperalgesia. Follow-up neurophysiological studies in rats with chemotherapy-induced hyperalgesia revealed that deep spinal lamina wide dynamic range neurons had significantly higher spontaneous activity and longer afterdischarges to noxious mechanical stimuli than wide dynamic range neurons in control rats; cisplatin administration was also associated with longer afterdischarges and abnormal wind-up to transcutaneous electrical stimuli. The hyperexcitability observed during cisplatin-induced hyperalgesia is very similar to that observed in rats with hyperalgesia produced following treatment with other very diverse types of chemotherapeutic agents and similar to that observed following specific types of direct nerve injury.
Collapse
|
33
|
Regnard P, Duc GL, Bräuer-Krisch E, Troprès I, Siegbahn EA, Kusak A, Clair C, Bernard H, Dallery D, Laissue JA, Bravin A. Irradiation of intracerebral 9L gliosarcoma by a single array of microplanar x-ray beams from a synchrotron: balance between curing and sparing. Phys Med Biol 2008; 53:861-78. [DOI: 10.1088/0031-9155/53/4/003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|