1
|
Szu JI, Tsigelny IF, Wojcinski A, Kesari S. Biological functions of the Olig gene family in brain cancer and therapeutic targeting. Front Neurosci 2023; 17:1129434. [PMID: 37274223 PMCID: PMC10232966 DOI: 10.3389/fnins.2023.1129434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/26/2023] [Indexed: 06/06/2023] Open
Abstract
The Olig genes encode members of the basic helix-loop-helix (bHLH) family of transcription factors. Olig1, Olig2, and Olig3 are expressed in both the developing and mature central nervous system (CNS) and regulate cellular specification and differentiation. Over the past decade extensive studies have established functional roles of Olig1 and Olig2 in development as well as in cancer. Olig2 overexpression drives glioma proliferation and resistance to radiation and chemotherapy. In this review, we summarize the biological functions of the Olig family in brain cancer and how targeting Olig family genes may have therapeutic benefit.
Collapse
Affiliation(s)
- Jenny I. Szu
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
| | - Igor F. Tsigelny
- San Diego Supercomputer Center, University of California, San Diego, San Diego, CA, United States
- CureScience, San Diego, CA, United States
| | - Alexander Wojcinski
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| | - Santosh Kesari
- Department of Translational Neurosciences, Providence Saint John’s Health Center, Saint John’s Cancer Institute, Santa Monica, CA, United States
- Pacific Neuroscience Institute, Santa Monica, CA, United States
| |
Collapse
|
2
|
Whitehouse JP, Howlett M, Hii H, Mayoh C, Wong M, Barahona P, Ajuyah P, White CL, Buntine MK, Dyke JM, Lee S, Valvi S, Stanley J, Andradas C, Carline B, Kuchibhotla M, Ekert PG, Cowley MJ, Gottardo NG, Endersby R. A Novel Orthotopic Patient-Derived Xenograft Model of Radiation-Induced Glioma Following Medulloblastoma. Cancers (Basel) 2020; 12:cancers12102937. [PMID: 33053751 PMCID: PMC7600047 DOI: 10.3390/cancers12102937] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Radiation-induced glioma (RIG) is a highly aggressive brain cancer arising as a consequence of radiation therapy. We report a case of RIG that arose in the brain stem following treatment for paediatric medulloblastoma, and the development and characterisation of a matched orthotopic patient-derived xenograft (PDX) model (TK-RIG915). Patient and PDX tumours were analysed using DNA methylation profiling, whole genome sequencing (WGS) and RNA sequencing. While initially thought to be a diffuse intrinsic pontine glioma (DIPG) based on disease location, results from methylation profiling and WGS were not consistent with this diagnosis. Furthermore, clustering analyses based on RNA expression suggested the tumours were distinct from primary DIPG. Additional gene expression analysis demonstrated concordance with a published RIG expression profile. Multiple genetic alterations that enhance PI3K/AKT and Ras/Raf/MEK/ERK signalling were discovered in TK-RIG915 including an activating mutation in PIK3CA, upregulation of PDGFRA and AKT2, inactivating mutations in NF1, and a gain-of-function mutation in PTPN11. Additionally, deletion of CDKN2A/B, increased IDH1 expression, and decreased ARID1A expression were observed. Detection of phosphorylated S6, 4EBP1 and ERK via immunohistochemistry confirmed PI3K pathway and ERK activation. Here, we report one of the first PDX models for RIG, which recapitulates the patient disease and is molecularly distinct from primary brain stem glioma. Genetic interrogation of this model has enabled the identification of potential therapeutic vulnerabilities in this currently incurable disease.
Collapse
Affiliation(s)
- Jacqueline P. Whitehouse
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Meegan Howlett
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Hilary Hii
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
| | - Chelsea Mayoh
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
| | - Marie Wong
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
| | - Paulette Barahona
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
| | - Pamela Ajuyah
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
| | - Christine L. White
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; (C.L.W.); (M.K.B.)
- Department of Molecular and Translational Science, Monash University, Melbourne 3168, Victoria, Australia
| | - Molly K. Buntine
- Genetics and Molecular Pathology Laboratory, Hudson Institute of Medical Research, Clayton 3168, Victoria, Australia; (C.L.W.); (M.K.B.)
- Department of Molecular and Translational Science, Monash University, Melbourne 3168, Victoria, Australia
| | - Jason M. Dyke
- Department of Neuropathology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth 6000, Australia;
- Pathology and Laboratory Medicine, University of Western Australia, Nedlands 6009, Australia
| | - Sharon Lee
- Department of Neurosurgery, Perth Children’s Hospital, Nedlands 6009, Australia;
| | - Santosh Valvi
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands 6009, Australia
- Division of Paediatrics, University of Western Australia Medical School, Nedlands 6009, Australia
| | - Jason Stanley
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Clara Andradas
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
| | - Brooke Carline
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
| | - Mani Kuchibhotla
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
| | - Paul G. Ekert
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Parkville 3052, Victoria, Australia
- Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Mark J. Cowley
- Children’s Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington 2033, Australia; (C.M.); (M.W.); (P.B.); (P.A.); (P.G.E.); (M.J.C.)
- School of Women’s and Children’s Health, UNSW Sydney, Kensington 2033, Australia
| | - Nicholas G. Gottardo
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands 6009, Australia
| | - Raelene Endersby
- Brain Tumour Research Program, Telethon Kids Institute, Nedlands 6009, Australia; (J.P.W.); (M.H.); (H.H.); (S.V.); (J.S.); (C.A.); (B.C.); (M.K.); (N.G.G.)
- Centre for Child Health Research, University of Western Australia, Nedlands 6009, Australia
- Correspondence:
| |
Collapse
|
3
|
Vairy S, Le Teuff G, Bautista F, De Carli E, Bertozzi AI, Pagnier A, Fouyssac F, Nysom K, Aerts I, Leblond P, Millot F, Berger C, Canale S, Paci A, Poinsignon V, Chevance A, Ezzalfani M, Vidaud D, Di Giannatale A, Hladun-Alvaro R, Petit FM, Vassal G, Geoerger B, Le Deley MC, Grill J. Phase I study of vinblastine in combination with nilotinib in children, adolescents, and young adults with refractory or recurrent low-grade glioma. Neurooncol Adv 2020; 2:vdaa075. [PMID: 32666050 PMCID: PMC7344116 DOI: 10.1093/noajnl/vdaa075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background New rescue regimens are needed for pediatric refractory/recurrent low-grade glioma. Nilotinib is a tyrosine kinase inhibitor that has potential synergistic effects with vinblastine on angiogenesis, tumor cell growth, and immunomodulation. Methods This phase I trial aimed to determine the recommended doses of this combination for phase II trials (RP2D) using the dual-agent Bayesian continual reassessment method. Nilotinib was given orally twice daily (BID) in combination with once-weekly vinblastine injections for a maximum of 12 cycles of 28 days (clinicaltrials.gov, NCT01884922). Results Thirty-five pediatric patients were enrolled across 4 dose levels. The median age was 7 years and 10 had neurofibromatosis type 1. Patients had received a median of 3 prior treatment lines and 25% had received more than 4 previous treatment lines. Dose-limiting toxicity (DLT) during cycle 1 was hematologic, dermatologic, and cardiovascular. The RP2D was identified at 3 mg/m2 weekly for vinblastine with 230 mg/m2 BID for nilotinib (estimated probability of DLT = 18%; 95% credibility interval, 7-29%). Fifteen patients completed the 12 cycles; 2 stopped therapy prematurely due to toxicity and 18 due to disease progression. Three patients achieved a partial response leading to an objective response rate of 8.8% (95% confidence interval [CI], 1.9-23.7), and the disease control rate was 85.3% (95% CI, 68.9-95.1). The 12-month progression-free survival was 37.1% (95% CI, 23.2-53.67). Conclusions Vinblastine and nilotinib combination was mostly limited by myelosuppression and dermatologic toxicity. The efficacy of the combination at the RP2D is currently evaluated in a randomized phase II trial comparing this regimen to vinblastine alone.
Collapse
Affiliation(s)
- Stephanie Vairy
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Gwénaël Le Teuff
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Francisco Bautista
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Emilie De Carli
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Anne-Isabelle Bertozzi
- Département d'Hematologie et d'Oncologie Pediatrique, Hopital Purpan, Centre Hospitalier Universitaire de Toulouse, Toulouse, France
| | - Anne Pagnier
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Grenoble, La Tronche, France
| | - Fanny Fouyssac
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Nancy, Nancy, France
| | - Karsten Nysom
- Department of Pediatric Hematology and Oncology, Rigshospitalet, Copenhagen, Denmark
| | | | - Pierre Leblond
- Unité d'oncologie pédiatrique, Centre Oscar Lambret, Lille, France
| | - Frederic Millot
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Poitiers, Poitiers, France
| | - Claire Berger
- Département d'Hematologie et d'Oncologie Pediatrique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Priest-en-Jarez, France.,University Research Team EA, SNA-EPIS, Saint-Etienne, France
| | - Sandra Canale
- Department of Radiology, Gustave Roussy, Villejuif, France
| | - Angelo Paci
- Department of Pharmacology and Pharmacokinetics Unit School of Pharmacy, Université Paris-Saclay, Université Paris-Sud, Gustave Roussy, Villejuif, France
| | - Vianney Poinsignon
- Department of Pharmacology and Pharmacokinetics Unit School of Pharmacy, Université Paris-Saclay, Université Paris-Sud, Gustave Roussy, Villejuif, France
| | - Aurelie Chevance
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Monia Ezzalfani
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Dominique Vidaud
- Service de Génétique et Biologie Moléculaires, Hopital Cochin, Hopitaux Universitaires de Paris Centre, Assistance Publique-Hôpitaux de Paris, and EA7331, Faculte de Pharmacie de Paris, Universite Paris Descartes, Paris, France
| | - Angela Di Giannatale
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Raquel Hladun-Alvaro
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Francois M Petit
- Département de Génétique Moléculaire, Hopital Antoine Beclere, Clamart, France
| | - Gilles Vassal
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| | - Marie-Cécile Le Deley
- Université Paris-Saclay, Université Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France.,Service de Biostatistique et d'Epidémiologie, Gustave Roussy, Villejuif, France
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology, Gustave Roussy, Villejuif, France
| |
Collapse
|
4
|
Abstract
Great progress has been made in many areas of pediatric oncology. However, tumors of the central nervous system (CNS) remain a significant challenge. A recent explosion of data has led to an opportunity to understand better the molecular basis of these diseases and is already providing a foundation for the pursuit of rationally chosen therapeutics targeting relevant molecular pathways. The molecular biology of pediatric brain tumors is shifting from a singular focus on basic scientific discovery to a platform upon which insights are being translated into therapies.
Collapse
|
5
|
Oligodendroglioma: pathology, molecular mechanisms and markers. Acta Neuropathol 2015; 129:809-27. [PMID: 25943885 PMCID: PMC4436696 DOI: 10.1007/s00401-015-1424-1] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 02/07/2023]
Abstract
For nearly a century, the diagnosis and grading of oligodendrogliomas and oligoastrocytomas has been based on histopathology alone. Roughly 20 years ago, the first glioma-associated molecular signature was found with complete chromosome 1p and 19q codeletion being particularly common in histologically classic oligodendrogliomas. Subsequently, this codeletion appeared to not only carry diagnostic, but also prognostic and predictive information, the latter aspect only recently resolved after carefully constructed clinical trials with very long follow-up times. More recently described biomarkers, including the non-balanced translocation leading to 1p/19q codeletion, promoter hypermethylation of the MGMT gene, mutations of the IDH1 or IDH2 gene, and mutations of FUBP1 (on 1p) or CIC (on 19q), have greatly enhanced our understanding of oligodendroglioma biology, although their diagnostic, prognostic, and predictive roles are less clear. It has therefore been suggested that complete 1p/19q codeletion be required for the diagnosis of 'canonical oligodendroglioma'. This transition to an integrated morphological and molecular diagnosis may result in the disappearance of oligoastrocytoma as an entity, but brings new challenges as well. For instance it needs to be sorted out how (histopathological) criteria for grading of 'canonical oligodendrogliomas' should be adapted, how pediatric oligodendrogliomas (known to lack codeletions) should be defined, which platforms and cut-off levels should ideally be used for demonstration of particular molecular aberrations, and how the diagnosis of oligodendroglioma should be made in centers/countries where molecular diagnostics is not available. Meanwhile, smart integration of morphological and molecular information will lead to recognition of biologically much more uniform groups within the spectrum of diffuse gliomas and thereby facilitate tailored treatments for individual patients.
Collapse
|
6
|
Khatua S, Wang J, Rajaram V. Review of low-grade gliomas in children--evolving molecular era and therapeutic insights. Childs Nerv Syst 2015; 31:643-52. [PMID: 25722047 DOI: 10.1007/s00381-015-2653-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/10/2015] [Indexed: 11/29/2022]
Abstract
Low-grade gliomas are the commonest brain tumor in children comprising heterogeneous pathological entities. Though the overall prognosis is good, unresectable, and recurrent or progressive tumors in eloquent areas of the brain remain major therapeutic challenge even with advances in chemotherapeutic strategies. With the evolving surge of molecular data, improved understanding of the biology of these tumors is now perceivable that could provide insights into novel therapies. We hope the new era will enable us to profile comprehensive histopathological/molecular classification and prognostic molecular markers in these tumors and guide us to tailor optimal targeted therapy.
Collapse
Affiliation(s)
- Soumen Khatua
- Pediatric Neuro-Oncology, Children's Cancer Hospital, MD Anderson Cancer Center, Unit 87, 1515 Holcombe Boulevard, Houston, TX, 77030, USA,
| | | | | |
Collapse
|
7
|
Bergthold G, Bandopadhayay P, Bi WL, Ramkissoon L, Stiles C, Segal RA, Beroukhim R, Ligon KL, Grill J, Kieran MW. Pediatric low-grade gliomas: how modern biology reshapes the clinical field. Biochim Biophys Acta Rev Cancer 2014; 1845:294-307. [PMID: 24589977 DOI: 10.1016/j.bbcan.2014.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 02/20/2014] [Indexed: 12/17/2022]
Abstract
Low-grade gliomas represent the most frequent brain tumors arising during childhood. They are characterized by a broad and heterogeneous group of tumors that are currently classified by the WHO according to their morphological appearance. Here we review the clinical features of these tumors, current therapeutic strategies and the recent discovery of genomic alterations characteristic to these tumors. We further explore how these recent biological findings stand to transform the treatment for these tumors and impact the diagnostic criteria for pediatric low-grade gliomas.
Collapse
Affiliation(s)
| | - Pratiti Bandopadhayay
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Division of Pediatric Hematology and Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Boston Children's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Lori Ramkissoon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Charles Stiles
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rosalind A Segal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacques Grill
- Departement de Cancerologie de l'enfant et de l'adolescent, Gustave Roussy and Unité Mixte de Recherche 8203 du Centre National de la Recherche Scientifique, Université Paris-Sud, Villejuif, France
| | - Mark W Kieran
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
8
|
A fourteen gene GBM prognostic signature identifies association of immune response pathway and mesenchymal subtype with high risk group. PLoS One 2013; 8:e62042. [PMID: 23646114 PMCID: PMC3639942 DOI: 10.1371/journal.pone.0062042] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 03/18/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent research on glioblastoma (GBM) has focused on deducing gene signatures predicting prognosis. The present study evaluated the mRNA expression of selected genes and correlated with outcome to arrive at a prognostic gene signature. METHODS Patients with GBM (n = 123) were prospectively recruited, treated with a uniform protocol and followed up. Expression of 175 genes in GBM tissue was determined using qRT-PCR. A supervised principal component analysis followed by derivation of gene signature was performed. Independent validation of the signature was done using TCGA data. Gene Ontology and KEGG pathway analysis was carried out among patients from TCGA cohort. RESULTS A 14 gene signature was identified that predicted outcome in GBM. A weighted gene (WG) score was found to be an independent predictor of survival in multivariate analysis in the present cohort (HR = 2.507; B = 0.919; p<0.001) and in TCGA cohort. Risk stratification by standardized WG score classified patients into low and high risk predicting survival both in our cohort (p = <0.001) and TCGA cohort (p = 0.001). Pathway analysis using the most differentially regulated genes (n = 76) between the low and high risk groups revealed association of activated inflammatory/immune response pathways and mesenchymal subtype in the high risk group. CONCLUSION We have identified a 14 gene expression signature that can predict survival in GBM patients. A network analysis revealed activation of inflammatory response pathway specifically in high risk group. These findings may have implications in understanding of gliomagenesis, development of targeted therapies and selection of high risk cancer patients for alternate adjuvant therapies.
Collapse
|
9
|
Rodriguez FJ, Lim KS, Bowers D, Eberhart CG. Pathological and molecular advances in pediatric low-grade astrocytoma. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 8:361-79. [PMID: 23121055 DOI: 10.1146/annurev-pathol-020712-164009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Pediatric low-grade astrocytomas are the most common brain tumors in children. They can have similar microscopic and clinical features, making accurate diagnosis difficult. For patients whose tumors are in locations that do not permit full resection, or those with an intrinsically aggressive biology, more effective therapies are required. Until recently, little was known about the molecular changes that drive the initiation and growth of pilocytic and other low-grade astrocytomas beyond the association of a minority of cases, primarily in the optic nerve, with neurofibromatosis type 1. Over the past several years, a wide range of studies have implicated the BRAF oncogene and other members of this signaling cascade in the pathobiology of pediatric low-grade astrocytoma. In this review, we attempt to summarize this rapidly developing field and discuss the potential for translating our growing molecular knowledge into improved diagnostic and prognostic biomarkers and new targeted therapies.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Pathology, Johns Hopkins UniversitySchool of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
10
|
Jones DTW, Gronych J, Lichter P, Witt O, Pfister SM. MAPK pathway activation in pilocytic astrocytoma. Cell Mol Life Sci 2012; 69:1799-811. [PMID: 22159586 PMCID: PMC3350769 DOI: 10.1007/s00018-011-0898-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/22/2011] [Accepted: 11/24/2011] [Indexed: 12/31/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common tumor of the pediatric central nervous system (CNS). A body of research over recent years has demonstrated a key role for mitogen-activated protein kinase (MAPK) pathway signaling in the development and behavior of PAs. Several mechanisms lead to activation of this pathway in PA, mostly in a mutually exclusive manner, with constitutive BRAF kinase activation subsequent to gene fusion being the most frequent. The high specificity of this fusion to PA when compared with other CNS tumors has diagnostic utility. In addition, the frequency of alteration of this key pathway provides an opportunity for molecularly targeted therapy in this tumor. Here, we review the current knowledge on mechanisms of MAPK activation in PA and some of the downstream consequences of this activation, which are now starting to be elucidated both in vitro and in vivo, as well as clinical considerations and possible future directions.
Collapse
Affiliation(s)
- David T. W. Jones
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jan Gronych
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Olaf Witt
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan M. Pfister
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany
| |
Collapse
|
11
|
OLIG2 is differentially expressed in pediatric astrocytic and in ependymal neoplasms. J Neurooncol 2010; 104:423-38. [PMID: 21193945 PMCID: PMC3161192 DOI: 10.1007/s11060-010-0509-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 12/15/2010] [Indexed: 12/28/2022]
Abstract
The bHLH transcription factor, OLIG2, is universally expressed in adult human gliomas and, as a major factor in the development of oligodendrocytes, is expressed at the highest levels in low-grade oligodendroglial tumors. In addition, it is functionally required for the formation of high-grade astrocytomas in a genetically relevant murine model. The pediatric gliomas have genomic profiles that are different from the corresponding adult tumors and accordingly, the expression of OLIG2 in non-oligodendroglial pediatric gliomas is not well documented within specific tumor types. In the current study, the pattern of OLIG2 expression in a spectrum of 90 non-oligodendroglial pediatric gliomas varied from very low levels in the ependymomas (cellular and tanycytic) to high levels in pilocytic astrocytoma, and in the diffuse-type astrocytic tumors (WHO grades II–IV). With dual-labeling, glioblastoma had the highest percentage of OLIG2 expressing cells that were also Ki-67 positive (mean = 16.3%) whereas pilocytic astrocytoma WHO grade I and astrocytoma WHO grade II had the lowest (0.9 and 1%, respectively); most of the Ki-67 positive cells in the diffuse-type astrocytomas (WHO grade II–III) were also OLIG2 positive (92–94%). In contrast to the various types of pediatric astrocytic tumors, all ependymomas WHO grade II, regardless of site of origin, showed at most minimal OLIG2 expression, suggesting that OLIG2 function in pediatric gliomas is cell lineage dependent.
Collapse
|
12
|
Lee DY, Yeh TH, Emnett RJ, White CR, Gutmann DH. Neurofibromatosis-1 regulates neuroglial progenitor proliferation and glial differentiation in a brain region-specific manner. Genes Dev 2010; 24:2317-29. [PMID: 20876733 DOI: 10.1101/gad.1957110] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have shown that neuroglial progenitor/stem cells (NSCs) from different brain regions exhibit varying capacities for self-renewal and differentiation. In this study, we used neurofibromatosis-1 (NF1) as a model system to elucidate a novel molecular mechanism underlying brain region-specific NSC functional heterogeneity. We demonstrate that Nf1 loss leads to increased NSC proliferation and gliogenesis in the brainstem, but not in the cortex. Using Nf1 genetically engineered mice and derivative NSC neurosphere cultures, we show that this brain region-specific increase in NSC proliferation and gliogenesis results from selective Akt hyperactivation. The molecular basis for the increased brainstem-specific Akt activation in brainstem NSCs is the consequence of differential rictor expression, leading to region-specific mammalian target of rapamycin (mTOR)/rictor-mediated Akt phosphorylation and Akt-regulated p27 phosphorylation. Collectively, these findings establish mTOR/rictor-mediated Akt activation as a key driver of NSC proliferation and gliogenesis, and identify a unique mechanism for conferring brain region-specific responses to cancer-causing genetic changes.
Collapse
Affiliation(s)
- Da Yong Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
13
|
Solis OE, Mehta RI, Lai A, Mehta RI, Farchoukh LO, Green RM, Cheng JC, Natarajan S, Vinters HV, Cloughesy T, Yong WH. Rosette-forming glioneuronal tumor: a pineal region case with IDH1 and IDH2 mutation analyses and literature review of 43 cases. J Neurooncol 2010; 102:477-84. [PMID: 20872044 PMCID: PMC3089723 DOI: 10.1007/s11060-010-0335-1] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 07/26/2010] [Indexed: 12/22/2022]
Abstract
Rosette-forming glioneuronal tumor (RGNT) of the fourth ventricle is a mixed glio-neuronal neoplasm recently codified by the World Health Organization WHO Classification of Central Nervous System (CNS) Tumors (2007). To date, 43 cases have been described in the literature; most occurring in the fourth ventricle region. We report the fourth case involving the pineal region in a 16-year-old female with signs of increased intracranial pressure (ICP). A stereotactic biopsy of the mass was followed by a debulking procedure. Both specimens revealed classic RGNT histology. The patient had stable scans 7 months post-resection. The clinical, radiological and histopathologic features of the previously described 43 cases are reviewed along with our illustrative case. Mean age of patients was 30 ± 12.8 years with 1.9:1 female to male ratio. The most common presenting signs related to increased ICP and posterior fossa involvement, including: headache (62.8%), ataxia (39.5%) and vomiting and vertigo (both 16.3%). This tumor usually presents with cystic changes (54.5%) with focal enhancement (60.9%) and hydrocephalus (43.2%). Microcalcifications and satellite lesions were common radiographic observations. All reported cases had the classic biphasic pattern. Rosenthal fibers and eosinophilic granular bodies are each present in approximately two thirds of cases. Ki-67 labeling index is consistently low (mean (%): 1.8 ± 0.75 SD). The isocitrate dehydrogenase 1 or 2 mutation found in low grade diffuse gliomas is not identified in this RGNT case. Reported outcome is nearly uniformly excellent after complete or subtotal resection. A solitary report of recurrence after 10 years and the limited experience with this entity suggest that long term follow up is advisable.
Collapse
Affiliation(s)
- Orestes E Solis
- Department of Pathology and Laboratory Medicine, Section of Neuropathology, University of California, Los Angeles, Los Angeles, CA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Warrington NM, Gianino SM, Jackson E, Goldhoff P, Garbow JR, Piwnica-Worms D, Gutmann DH, Rubin JB. Cyclic AMP suppression is sufficient to induce gliomagenesis in a mouse model of neurofibromatosis-1. Cancer Res 2010; 70:5717-27. [PMID: 20551058 PMCID: PMC2905483 DOI: 10.1158/0008-5472.can-09-3769] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Current models of oncogenesis incorporate the contributions of chronic inflammation and aging to the patterns of tumor formation. These oncogenic pathways, involving leukocytes and fibroblasts, are not readily applicable to brain tumors (glioma), and other mechanisms must account for microenvironmental influences on central nervous system tumorigenesis. Previous studies from our laboratories have used neurofibromatosis-1 (NF1) genetically engineered mouse (GEM) models to understand the spatial restriction of glioma formation to the optic pathway of young children. Based on our initial findings, we hypothesize that brain region-specific differences in cAMP levels account for the pattern of NF1 gliomagenesis. To provide evidence that low levels of cAMP promote glioma formation in NF1, we generated foci of decreased cAMP in brain regions where gliomas rarely form in children with NF1. Focal cAMP reduction was achieved by forced expression of phosphodiesterase 4A1 (PDE4A1) in the cortex of Nf1 GEM strains. Ectopic PDE4A1 expression produced hypercellular lesions with features of human NF1-associated glioma. Conversely, pharmacologic elevation of cAMP with the PDE4 inhibitor rolipram dramatically inhibited optic glioma growth and tumor size in Nf1 GEM in vivo. Together, these results indicate that low levels of cAMP in a susceptible Nf1 mouse strain are sufficient to promote gliomagenesis, and justify the implementation of cAMP-based stroma-targeted therapies for glioma.
Collapse
Affiliation(s)
- Nicole M. Warrington
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Scott M. Gianino
- Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Erin Jackson
- Department of Molecular Imaging Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Patricia Goldhoff
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Joel R. Garbow
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - David Piwnica-Worms
- Department of Molecular Imaging Center, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Mallinckrodt Institute of Radiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Developmental Biology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - David H. Gutmann
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| | - Joshua B. Rubin
- Department of Pediatrics, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Neurology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
- Department of Anatomy and Neurobiology, Washington University School of Medicine and St. Louis Children's Hospital, St. Louis, Missouri 63110
| |
Collapse
|
15
|
Wang Y, Xiong J, Chu SG, Liu Y, Cheng HX, Wang YF, Zhao Y, Mao Y. Rosette-forming glioneuronal tumor: report of an unusual case with intraventricular dissemination. Acta Neuropathol 2009; 118:813-9. [PMID: 19585134 DOI: 10.1007/s00401-009-0569-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/01/2009] [Accepted: 07/01/2009] [Indexed: 12/21/2022]
Abstract
A rosette-forming glioneuronal tumor (RGNT) was encountered in a 16-year-old Chinese girl. She experienced seizures with loss of consciousness for 1 month prior to diagnosis. A brain MRI revealed multifocal masses occupying all of the ventricular system associated with marked hydrocephalus. A biopsy was performed on the right lateral ventricle using a neuroendoscope and the patient was given postoperative radiotherapy. She was followed for 7 months, and there was no radiological or clinical evidence of tumor progression. Histological examination demonstrated two regions characterized by predominant neurocytic rosettes and scant low grade astrocytoma. No histological anaplasia was present. Immunohistological studies showed that the small round tumor cells forming rosettes were strongly positive for Olig2. A chromosome 1p/19q co-deletion was not detected by FISH analysis. While the pathological features of our case closely resembled those reported in the original description, the diffuse intraventricular growth pattern of the tumor was different from previous examples. Further long-term follow-up studies are required to assess the biological behavior and clinical outcome of the RGNT entity.
Collapse
Affiliation(s)
- Yin Wang
- Department of Neuropathology, Institute of Neurology, Huashan Hospital, Fudan University, 12 Wu Lu Mu Qi Zhong Road, 200040 Shanghai, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Martinho O, Longatto-Filho A, Lambros MBK, Martins A, Pinheiro C, Silva A, Pardal F, Amorim J, Mackay A, Milanezi F, Tamber N, Fenwick K, Ashworth A, Reis-Filho JS, Lopes JM, Reis RM. Expression, mutation and copy number analysis of platelet-derived growth factor receptor A (PDGFRA) and its ligand PDGFA in gliomas. Br J Cancer 2009; 101:973-82. [PMID: 19707201 PMCID: PMC2743351 DOI: 10.1038/sj.bjc.6605225] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/21/2009] [Accepted: 07/08/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Malignant gliomas are the most prevalent type of primary brain tumours but the therapeutic armamentarium for these tumours is limited. Platelet-derived growth factor (PDGF) signalling has been shown to be a key regulator of glioma development. Clinical trials evaluating the efficacy of anti-PDGFRA therapies on gliomas are ongoing. In this study, we intended to analyse the expression of PDGFA and its receptor PDGFRA, as well as the underlying genetic (mutations and amplification) mechanisms driving their expression in a large series of human gliomas. METHODS PDGFA and PDGFRA expression was evaluated by immunohistochemistry in a series of 160 gliomas of distinct World Health Organization (WHO) malignancy grade. PDGFRA-activating gene mutations (exons 12, 18 and 23) were assessed in a subset of 86 cases by PCR-single-strand conformational polymorphism (PCR-SSCP), followed by direct sequencing. PDGFRA gene amplification analysis was performed in 57 cases by quantitative real-time PCR (QPCR) and further validated in a subset of cases by chromogenic in situ hybridisation (CISH) and microarray-based comparative genomic hybridisation (aCGH). RESULTS PDGFA and PDGFRA expression was found in 81.2% (130 out of 160) and 29.6% (48 out of 160) of gliomas, respectively. Its expression was significantly correlated with histological type of the tumours; however, no significant association between the expression of the ligand and its receptor was observed. The absence of PDGFA expression was significantly associated with the age of patients and with poor prognosis. Although PDGFRA gene-activating mutations were not found, PDGFRA gene amplification was observed in 21.1% (12 out of 57) of gliomas. No association was found between the presence of PDGFRA gene amplification and expression, excepting for grade II diffuse astrocytomas. CONCLUSION The concurrent expression of PDGFA and PDGFRA in different subtypes of gliomas, reinforce the recognised significance of this signalling pathway in gliomas. PDGFRA gene amplification rather than gene mutation may be the underlying genetic mechanism driving PDGFRA overexpression in a portion of gliomas. Taken together, our results could provide in the future a molecular basis for PDGFRA-targeted therapies in gliomas.
Collapse
Affiliation(s)
- O Martinho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| | - A Longatto-Filho
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
- Instituto Adolfo Lutz, 355-01246-902 São Paulo, Brazil
| | - M B K Lambros
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - A Martins
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| | - C Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| | - A Silva
- Department of Pathology, S. Marcos Hospital, 4710 Braga, Portugal
| | - F Pardal
- Department of Pathology, S. Marcos Hospital, 4710 Braga, Portugal
| | - J Amorim
- Department of Oncology, S. Marcos Hospital, 4710 Braga, Portugal
| | - A Mackay
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - F Milanezi
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
- IPATIMUP, 4200 Porto, Portugal
| | - N Tamber
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - K Fenwick
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - A Ashworth
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - J S Reis-Filho
- The Breakthrough Breast Cancer Research Centre, Institute of Cancer Research, London SW3 6JB, UK
| | - J M Lopes
- IPATIMUP, 4200 Porto, Portugal
- Medical Faculties of Porto University, 4200 Porto, Portugal
| | - R M Reis
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4710 Braga, Portugal
| |
Collapse
|
17
|
Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 2009; 117:657-65. [PMID: 19271226 DOI: 10.1007/s00401-009-0506-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/21/2009] [Accepted: 02/22/2009] [Indexed: 12/22/2022]
Abstract
Pilocytic astrocytoma (PA) is the most common pediatric brain tumor. Most arise in the cerebellum, but they also can develop in the brainstem and optic nerve, where gross total resection (GTR) is not possible. In the absence of GTR, significant variability in both clinical behavior and histology exists. To identify potential markers associated with poor clinical outcome, we retrospectively assessed pathological features in 107 patients with PAs. We identified four pathological features (necrosis, oligodendroglioma-like features, vascular hyalinization, and calcification) that showed a significant correlation with decreased event-free survival (EFS). Similar to previous reports, we also found that PAs involving the optic pathway were associated with worse EFS compared with those arising in other locations. In contrast, mitotic index, p53 immunoreactivity and hyperactivation of several mitogenic signaling pathways (MAPK, CREB, mTOR) did not demonstrate a statistically significant relationship with EFS. Lastly, we did find a statistical trend between EFS and the number of CD68+ cells, suggesting that non-neoplastic elements of the tumor microenvironment may influence subsequent growth and clinical recurrence. Collectively, the identification of specific histopathologic features associated with clinical outcome may improve our ability to determine which PAs are more likely to exhibit clinical progression and require more vigilant observation.
Collapse
|
18
|
Rodriguez FJ, Giannini C, Asmann YW, Sharma MK, Perry A, Tibbetts KM, Jenkins RB, Scheithauer BW, Anant S, Jenkins S, Eberhart CG, Sarkaria JN, Gutmann DH. Gene expression profiling of NF-1-associated and sporadic pilocytic astrocytoma identifies aldehyde dehydrogenase 1 family member L1 (ALDH1L1) as an underexpressed candidate biomarker in aggressive subtypes. J Neuropathol Exp Neurol 2008; 67:1194-204. [PMID: 19018242 PMCID: PMC2730602 DOI: 10.1097/nen.0b013e31818fbe1e] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Pilocytic astrocytomas (PAs) are World Health Organization Grade I gliomas; they most often affect children and young adults and occur in patients with neurofibromatosis type 1 (NF1). To identify genes that are differentially expressed in sporadic (S-PA) versus NF1-associated PAs (NF1-PAs) and those that might reflect differences in clinical behavior, we performed gene expression profiling using Affymetrix U133 Plus2.0 GeneChip arrays in 36 S-PAs and 11 NF1-PAs. Thirteen genes were overexpressed, and another 13 genes were underexpressed in NF1-PAs relative to S-PAs. Immunohistochemical studies performed on 103 tumors, representing 2 independently generated tissue microarrays, confirmed the differential expression of CUGBP2 (p = 0.0014), RANBP9 (p = 0.0075), ITGAV1 (p = 0.0001), and INFGR1 (p = 0.024) proteins. One of the underexpressed genes, aldehyde dehydrogenase 1 family member L1 (ALDH1L1), was also reduced in clinically aggressive compared with typical PAs (p = 0.01) and in PAs with increased cellularity and necrosis. Furthermore, in an additional independent set of tumors, weak to absent ALDH1L1 expression was found in 13 (72%) of 18 clinically aggressive PAs, in 8 (89%) of 9 PAs with pilomyxoid features, in 7 (70%) of 10 PAs with anaplastic transformation, and in 16 (76%) of 21 diffusely infiltrating astrocytomas of various grades. In summary, we have identified a molecular signature that distinguishes NF1-PA from S-PA and found that ALDH1L1 underexpression is associated with aggressive histology and/or biologic behavior.
Collapse
Affiliation(s)
- Fausto J Rodriguez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Tanaka Y, Sasaki A, Ishiuchi S, Nakazato Y. Diversity of glial cell components in pilocytic astrocytoma. Neuropathology 2008; 28:399-407. [PMID: 18312545 DOI: 10.1111/j.1440-1789.2008.00896.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To characterize the cellular density and proliferative activity of GFAP-negative cells in pilocytic astrocytoma (PA), surgically excised tissues of PAs (n=37) and diffuse astrocytomas (DAs) (n=11) were examined morphologically and immunohistochemically using antibodies against GFAP, Olig2, Iba1 and Ki-67 (MIB-1). In PA, Olig2 immunoreactivity was significantly expressed in protoplasmic astrocytes in microcystic, loose areas and cells in oligodendroglioma-like areas. Iba1-positive, activated microglia/macrophages were also commonly observed in microcystic areas. In compact areas, a prominent reaction for GFAP was observed, but for Olig2 and Iba1 to a lesser degree. On semiquantitative analysis, the number of Olig2-positive cells was significantly higher in PAs (mean labeling index (LI) +/- standard deviation (SD): 46.8+/-15.4%) than in DAs (13.3+/-7.8%) (P<0.001). Many Iba1-positive, microglia/macrophages were observed in PAs (19.9+/-6.5%), similarly to DAs (20.9+/-9.9%). Re-immunostaining of PA demonstrated that most Ki-67-positive, proliferating cells expressed Olig2, whereas GFAP or Iba1 expression in Ki-67-positive cells was less frequent (14.7+/-13.7%, and 8.8+/-13.6%) in a double immunostaining study. Conversely, the percentage of Olig2-positive, proliferating cells in total Olig2-positive cells (7.2+/-3.9%) was higher than that of Iba1-positive, proliferating cells in total Iba1-positive cells (0.9+/-0.6%). In conclusion, the present study found that PA consisted of numerous GFAP-negative cells, including Olig2-positive cells with high proliferation. Semiquantitative analysis of Olig2 immunohistochemistry in microcystic areas might therefore be useful for the differential diagnosis of PA and DA.
Collapse
Affiliation(s)
- Yuko Tanaka
- Department of Human Pathology, Gumma University Graduate School of Medicine, Maebashi, Gumma, Japan
| | | | | | | |
Collapse
|
20
|
Delineation of the intimate details of the backbone conformation of pyridine nucleotide coenzymes in aqueous solution. Biochem Biophys Res Commun 1976; 5:35-44. [PMID: 2 DOI: 10.1017/s1740925x09990342] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cells that express the NG2 chondroitin sulfate proteoglycan and platelet-derived growth factor receptor alpha (NG2 glia) are widespread in the adult human cerebral cortex and white matter and represent 10–15% of non-neuronal cells. The morphology and distribution of NG2 glia are similar to, but distinct from, both microglia and astrocytes. They are present as early as 17 weeks gestation and persist throughout life. NG2 glia can be detected in a variety of human central nervous system (CNS) diseases, of which multiple sclerosis is the best studied. NG2 glia show morphological changes in the presence of pathology and can show expression of the Ki-67 proliferation antigen. The antigenic profile and morphology of NG2 glia in human tissues are consistent with an oligodendrocyte progenitor function that has been well established in rodent models. Most antibodies to NG2 do not stain formalin-fixed paraffin-embedded tissues. Advances in our understanding of NG2 glia in human tissues will require the development of more robust markers for their detection in routinely processed human specimens.
Collapse
|