1
|
Liu G, He M, Wu C, Lv P, Sun H, Wang H, Xin X, Liao H. Axonal injury mediated by neuronal p75NTR/TRAF6/JNK pathway contributes to cognitive impairment after repetitive mTBI. Exp Neurol 2024; 372:114618. [PMID: 38029807 DOI: 10.1016/j.expneurol.2023.114618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Repetitive mild traumatic brain injury (rmTBI) is one of the leading causes of cognitive disorders. The impairment of axonal integrity induced by rmTBI is speculated to underlie the progression of cognitive dysfunction. However, few studies have uncovered the cellular mechanism regulating axonal impairment. In this study, we showed that after rmTBI, the activation of neuronal p75NTR signaling contributes to abnormal axonal morphology and impaired axonal transport, which further leads to cognitive dysfunction in mice. By neuron-specific knockdown of p75NTR or treatment with p75NTR inhibitor LM11A-31, we observed better recovery of axonal integrity and cognitive function after brain trauma. Further analysis revealed that p75NTR relies on its adaptor protein TRAF6 to activate downstream signaling via TAK1 and JNK. Overall, our results provide novel insight into the role of neuronal p75NTR in axonal injury and suggest that p75NTR may be a promising target for cognitive function recovery after rmTBI.
Collapse
Affiliation(s)
- Gang Liu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Meijun He
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Chaoran Wu
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Pin Lv
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Hao Sun
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Heng Wang
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoyan Xin
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Hong Liao
- New drug screening center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing 210009, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China.
| |
Collapse
|
2
|
Dedoni S, Marras L, Olianas MC, Ingianni A, Onali P. Valproic acid upregulates the expression of the p75NTR/sortilin receptor complex to induce neuronal apoptosis. Apoptosis 2021; 25:697-714. [PMID: 32712736 PMCID: PMC7527367 DOI: 10.1007/s10495-020-01626-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The antiepileptic and mood stabilizer agent valproic acid (VPA) has been shown to exert anti-tumour effects and to cause neuronal damage in the developing brain through mechanisms not completely understood. In the present study we show that prolonged exposure of SH-SY5Y and LAN-1 human neuroblastoma cells to clinically relevant concentrations of VPA caused a marked induction of the protein and transcript levels of the common neurotrophin receptor p75NTR and its co-receptor sortilin, two promoters of apoptotic cell death in response to proneurotrophins. VPA induction of p75NTR and sortilin was associated with an increase in plasma membrane expression of the receptor proteins and was mimicked by cell treatment with several histone deacetylase (HDAC) inhibitors. VPA and HDAC1 knockdown decreased the level of EZH2, a core component of the polycomb repressive complex 2, and upregulated the transcription factor CASZ1, a positive regulator of p75NTR. CASZ1 knockdown attenuated VPA-induced p75NTR overexpression. Cell treatment with VPA favoured proNGF-induced p75NTR/sortilin interaction and the exposure to proNGF enhanced JNK activation and apoptotic cell death elicited by VPA. Depletion of p75NTR or addition of the sortilin agonist neurotensin to block proNGF/sortilin interaction reduced the apoptotic response to VPA and proNGF. Exposure of mouse cerebellar granule cells to VPA upregulated p75NTR and sortilin and induced apoptosis which was enhanced by proNGF. These results indicate that VPA upregulates p75NTR apoptotic cell signalling through an epigenetic mechanism involving HDAC inhibition and suggest that this effect may contribute to the anti-neuroblastoma and neurotoxic effects of VPA.
Collapse
Affiliation(s)
- Simona Dedoni
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Luisa Marras
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria C Olianas
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy
| | - Angela Ingianni
- Section of Microbiology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Pierluigi Onali
- Laboratory of Cellular and Molecular Pharmacology, Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, CA, Italy.
| |
Collapse
|
3
|
Maternal Subclinical Hypothyroidism in Rats Impairs Spatial Learning and Memory in Offspring by Disrupting Balance of the TrkA/p75 NTR Signal Pathway. Mol Neurobiol 2021; 58:4237-4250. [PMID: 33966253 PMCID: PMC8487421 DOI: 10.1007/s12035-021-02403-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Maternal subclinical hypothyroidism (SCH) during pregnancy can adversely affect the neurodevelopment of the offspring. The balance of nerve growth factor (NGF)-related tropomyosin receptor kinase A/p75 neurotrophin receptor (TrkA/p75NTR) signaling in the hippocampus is important in brain development, and whether it affects cognitive function in maternal SCH’s offspring is not clear. In this study, we found that compared with the control (CON) group, expression of proliferation-related proteins [NGF, p-TrkA, phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phospho-cAMP response element-binding protein (p-CREB)] decreased in the hippocampus of the offspring in the SCH group, overt hypothyroidism (OHT) group, and the group with levothyroxine (L-T4) treatment for SCH from gestational day 17 (E17). In contrast, expression of apoptosis-related proteins [pro-NGF, p75NTR, phospho-C-Jun N-terminal kinase (p-JNK), p53, Bax and cleaved caspase-3] was increased. The two groups with treatment with L-T4 for SCH from E10 and E13, respectively, showed no significant difference compared with the CON group. L-T4 treatment enhanced relative expression of NGF by increasing NGF/proNGF ratio in offspring from maternal SCH rats. In conclusion, L-T4 treatment for SCH from early pregnancy dramatically ameliorated cognitive impairment via TrkA/p75NTR signaling, which involved activation of the neuronal proliferation and inhibition of neuronal apoptosis in SCH rats’ offspring.
Collapse
|
4
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 0:/j/dmdi.ahead-of-print/dmdi-2020-0109/dmdi-2020-0109.xml. [PMID: 32887179 DOI: 10.1515/dmdi-2020-0109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 02/07/2023]
Abstract
Objectives Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. Methods The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. Results We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. Conclusions The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
5
|
Thomaz A, Jaeger M, Brunetto AL, Brunetto AT, Gregianin L, de Farias CB, Ramaswamy V, Nör C, Taylor MD, Roesler R. Neurotrophin Signaling in Medulloblastoma. Cancers (Basel) 2020; 12:E2542. [PMID: 32906676 PMCID: PMC7564905 DOI: 10.3390/cancers12092542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 12/11/2022] Open
Abstract
Neurotrophins are a family of secreted proteins that act by binding to tropomyosin receptor kinase (Trk) or p75NTR receptors to regulate nervous system development and plasticity. Increasing evidence indicates that neurotrophins and their receptors in cancer cells play a role in tumor growth and resistance to treatment. In this review, we summarize evidence indicating that neurotrophin signaling influences medulloblastoma (MB), the most common type of malignant brain cancer afflicting children. We discuss the potential of neurotrophin receptors as new therapeutic targets for the treatment of MB. Overall, activation of TrkA and TrkC types of receptors seem to promote cell death, whereas TrkB might stimulate MB growth, and TrkB inhibition displays antitumor effects. Importantly, we show analyses of the gene expression profile of neurotrophins and their receptors in MB primary tumors, which indicate, among other findings, that higher levels of NTRK1 or NTRK2 are associated with reduced overall survival (OS) of patients with SHH MB tumors.
Collapse
Affiliation(s)
- Amanda Thomaz
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Children’s Cancer Institute, Porto Alegre 90620-110, RS, Brazil
| | - Vijay Ramaswamy
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Carolina Nör
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Michael D. Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON 17-9702, Canada; (V.R.); (C.N.); (M.D.T.)
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Division of Neurosurgery, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, RS, Brazil; (A.T.); (M.J.); (A.L.B.); (A.T.B.); (L.G.); (C.B.d.F.)
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90050-170, RS, Brazil
| |
Collapse
|
6
|
Chernov AN, Alaverdian DA, Glotov OS, Talabaev MV, Urazov SP, Shcherbak SG, Renieri A, Frullanti E, Shamova O. Related expression of TRKA and P75 receptors and the changing copy number of MYC-oncogenes determine the sensitivity of brain tumor cells to the treatment of the nerve growth factor in combination with cisplatin and temozolomide. Drug Metab Pers Ther 2020; 35:dmpt-2020-0109. [PMID: 34704697 DOI: 10.1515/dmpt-2020-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Oncological diseases are an urgent medical and social problem. The chemotherapy induces not only the death of the tumor cells but also contributes to the development of their multidrug resistance and death of the healthy cells and tissues. In this regard, the search for the new pharmacological substances with anticancer activity against drug-resistant tumors is of utmost importance. In the present study we primarily investigated the correlation between the expression of TrkA and p75 receptors with the nerve growth factor (NGF) and cisplatin or temozolomide sensitivity of anaplastic astrocytoma (AA), glioblastoma (GB) and medulloblastoma (MB) cell cultures. We then evaluated the changing of copy numbers of MYCC and MYCN and its correlation with cytotoxicity index (CI) in MB cells under NGF exposition. METHODS The primary cell cultures were obtained from the tumor biopsy samples of the patients with AA (n=5), GB (n=7) or MB (n=25) prior to radiotherapy and chemotherapy. The cytotoxicity effect of NGF and its combinations with cisplatin or temozolomide, the relative expression of TrkA and p75 receptors, its correlations with CI in AA, GB and MB primary cell cultures were studied by trypan blue cytotoxicity assay and immunofluorescence staining respectively. The effect of NGF on MYCC and MYCN copy numbers in MB cell cultures was studied by fluorescence in situ hybridization. RESULTS We found that the expression of TrkA and p75 receptors (p=0.03) and its ratio (p=0.0004) depends on the sensitivity of AA and GB cells to treatment with NGF and its combinations with cisplatin or temozolomide. NGF reduces (p<0.05) the quantity of MB cells with six or eight copies of MYCN and three or eight copies of MYCC. Besides, NGF increases (p<0.05) the quantity of MB cells containing two copies of both oncogenes. The negative correlation (r=-0.65, p<0.0001) is established between MYCC average copy numbers and CI of NGF in MB cells. CONCLUSIONS The relative expression of NGF receptors (TrkA/p75) and its correlation with CI of NGF and its combinations in AA and GB cells point to the mechanism involving a cell death signaling pathway. NGF downregulates (p<0.05) some increased copy numbers of MYCC and MYCN in the human MB cell cultures, and upregulates normal two copies of both oncogenes (p<0.05).
Collapse
Affiliation(s)
- Alexandr N Chernov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation.,Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| | - Diana A Alaverdian
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Oleg S Glotov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Michael V Talabaev
- Department of Pediatric Neurosurgery, Republican Center for Neurology and Neurosurgery, Minsk, The Republic of Belarus
| | - Stanislav P Urazov
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Sergei G Shcherbak
- Department of Clinics and Genetics Investigations, Saint Petersburg City Hospital No40 of Resort District, Saint Petersburg, Russian Federation
| | - Alessandra Renieri
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy.,Genetica Medica, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Frullanti
- Medical Genetics, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Olga Shamova
- Laboratory of Design and Synthesis of Biologically Active Peptides, Department of General Pathology and Pathophysiology, Institute of Experimental Medicine, Saint-Petersburg, Russian Federation
| |
Collapse
|
7
|
Abstract
As a useful biotechnology, flow cytometry has revolutionized the field of cell analysis through its dynamic system that employs fluidics, optics, and electronics. It was first used to analyze DNA, but is often used to determine biomarker expression, as well as to characterize and sort cells, in accordance with various parameters. A common application of flow cytometry is the identification and isolation of a distinct cancer cell population, known as cancer stem cells (CSCs). Various biomarkers have been used to elucidate this proportion of cells within the brain, termed brain tumor initiating cells (BTICs). Here, we discuss methodology to prepare BTICs for flow cytometric analysis that includes the expression of markers.
Collapse
|
8
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
9
|
Siegfried A, Bertozzi AI, Bourdeaut F, Sevely A, Loukh N, Grison C, Miquel C, Lafon D, Sevenet N, Pietsch T, Dufour C, Delisle MB. Clinical, pathological, and molecular data on desmoplastic/nodular medulloblastoma: case studies and a review of the literature. Clin Neuropathol 2016; 35:106-13. [PMID: 26857864 PMCID: PMC4910646 DOI: 10.5414/np300205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 05/06/2016] [Indexed: 01/06/2023] Open
Abstract
The aim of this study was to better define the clinical and biopathological features of patients with desmoplastic/nodular medulloblastoma (DNMB) and to further characterize this subgroup. 17 children aged < 5 years, with initial DNMB treated according to the HIT-SKK protocol, were evaluated. A retrospective central radiological review, a pathological and immunohistochemical study, and array-CGH and sequencing of germline SUFU and PTCH1 genes were performed. 15 histologically reviewed cases were confirmed as DNMB including three cases of medulloblastoma with extensive nodularity. Median age at diagnosis was 26 months. Radiology showed five cases with a vermis location and one with T2 hyperintensity. All cases showed a SHH immunoprofile. A 9q deletion was found in 6 cases, a MYCN-MYCL amplification in 1 case, and a SUFU germline mutation in 1 case (/9). The presence of SUFU and PTCH1 germline mutations agreed with previous reports. At 3 years, progression-free survival and overallsurvival rates were 72 ± 15% and 85 ± 10%, respectively. The rate of recurrence was relatively high (4 patients). This may have been because chemotherapy was delayed in two cases. Age > 3 years, and residual tumor may also have been an explanation for recurrence.
Collapse
|
10
|
Liang L, Aiken C, McClelland R, Morrison LC, Tatari N, Remke M, Ramaswamy V, Issaivanan M, Ryken T, Del Bigio MR, Taylor MD, Werbowetski-Ogilvie TE. Characterization of novel biomarkers in selecting for subtype specific medulloblastoma phenotypes. Oncotarget 2015; 6:38881-900. [PMID: 26497209 PMCID: PMC4770744 DOI: 10.18632/oncotarget.6195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 10/14/2015] [Indexed: 11/29/2022] Open
Abstract
Major research efforts have focused on defining cell surface marker profiles for characterization and selection of brain tumor stem/progenitor cells. Medulloblastoma is the most common primary malignant pediatric brain cancer and consists of 4 molecular subgroups: WNT, SHH, Group 3 and Group 4. Given the heterogeneity within and between medulloblastoma variants, surface marker profiles may be subtype-specific. Here, we employed a high throughput flow cytometry screen to identify differentially expressed cell surface markers in self-renewing vs. non-self-renewing SHH medulloblastoma cells. The top 25 markers were reduced to 4, CD271/p75NTR/NGFR, CD106/VCAM1, EGFR and CD171/NCAM-L1, by evaluating transcript levels in SHH tumors relative to samples representing the other variants. However, only CD271/p75NTR/NGFR and CD171/NCAM-L1 maintain differential expression between variants at the protein level. Functional characterization of CD271, a low affinity neurotrophin receptor, in cell lines and primary cultures suggested that CD271 selects for lower self-renewing progenitors or stem cells. Moreover, CD271 levels were negatively correlated with expression of SHH pathway genes. Our study reveals a novel role for CD271 in SHH medulloblastoma and suggests that targeting CD271 pathways could lead to the design of more selective therapies that lessen the broad impact of current treatments on developing nervous systems.
Collapse
Affiliation(s)
- Lisa Liang
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Christopher Aiken
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Robyn McClelland
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ludivine Coudière Morrison
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nazanin Tatari
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Marc Remke
- Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Timothy Ryken
- Department of Neurosurgery, University of Kansas, Kansas City, Kansas, USA
| | - Marc R. Del Bigio
- Department of Pathology, University of Manitoba and Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Michael D. Taylor
- Arthur and Sonia Labatt Brain Tumour Research Centre and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tamra E. Werbowetski-Ogilvie
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
11
|
Lotta LT, Conrad K, Cory-Slechta D, Schor NF. Cerebellar Purkinje cell p75 neurotrophin receptor and autistic behavior. Transl Psychiatry 2014; 4:e416. [PMID: 25072321 PMCID: PMC4119222 DOI: 10.1038/tp.2014.55] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 01/19/2023] Open
Abstract
The p75 neurotrophin receptor (p75NTR) is normally expressed in cerebellar Purkinje cells throughout the lifespan. Children with autism spectrum behavior exhibit apparent cerebellar Purkinje cell loss. Cerebellar transcriptome changes seen in the murine prenatal valproate exposure model of autism include all of the proteins known to constitute the p75NTR interactome. p75NTR is a modulator of cytoplasmic and mitochondrial redox potential, and others have suggested that aberrant response to oxidant stress has a major role in the pathogenesis of autism. We have created Purkinje cell-selective p75NTR knockout mice that are the progeny of hemizygous Cre-Purkinje cell protein 2 C57Bl mice and p75NTR floxed C57Bl mice. These Cre-loxP mice exhibit complete knockout of p75NTR in ~50% of the cerebellar Purkinje cells. Relative to Cre-only mice and wild-type C57Bl mice, this results in a behavioral phenotype characterized by less allogrooming of (P<0.05; one-way analysis of variance) and socialization or fighting with (each P<0.05) other mice; less (1.2-fold) non-ambulatory exploration of their environment than wild-type (P<0.01) or Cre only (P<0.01) mice; and almost twofold more stereotyped jumping behavior than wild-type (P<0.05) or Cre (P<0.02) mice of the same strain. Wild-type mice have more complex dendritic arborization than Cre-loxP mice, with more neurites per unit area (P<0.025, Student's t-test), more perpendicular branches per unit area (P<0.025) and more short branches/long neurite (P<0.0005). Aberrant developmental regulation of expression of p75NTR in cerebellar Purkinje cells may contribute to the pathogenesis of autism.
Collapse
Affiliation(s)
- L T Lotta
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - K Conrad
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - D Cory-Slechta
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - N F Schor
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
12
|
Deconstruction of medulloblastoma cellular heterogeneity reveals differences between the most highly invasive and self-renewing phenotypes. Neoplasia 2013; 15:384-98. [PMID: 23555184 DOI: 10.1593/neo.13148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/05/2013] [Accepted: 02/06/2013] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant primary pediatric brain tumor. Major research efforts have focused on characterizing and targeting putative brain tumor stem or propagating cell populations from the tumor mass. However, less is known about the relationship between these cells and highly invasive MB cells that evade current therapies. Here, we dissected MB cellular heterogeneity and directly compared invasion and self-renewal. Analysis of higher versus lower self-renewing tumor spheres and stationary versus migrating adherent MB cells revealed differential expression of the cell surface markers CD271 [p75 neurotrophin receptor (p75NTR)] and CD133. Cell sorting demonstrated that CD271 selects for subpopulations with a higher capacity for self-renewal, whereas CD133 selects for cells exhibiting increased invasion in vitro. CD271 expression is higher in human fetal cerebellum and primary samples of the Shh MB molecular variant and lower in the more aggressive, invasive group 3 and 4 subgroups. Global gene expression analysis of higher versus lower self-renewing MB tumor spheres revealed down-regulation of a cell movement transcription program in the higher self-renewing state and a novel potential role for axon guidance signaling in MB-propagating cells. We have identified a cell surface signature based on CD133/CD271 expression that selects for MB cells with a higher self-renewal potential or invasive capacity in vitro. Our study underscores a previously unappreciated role for CD271 in selecting for MB cell phenotypes and suggests that successful treatment of pediatric brain tumors requires concomitant targeting of a spectrum of transitioning self-renewing and highly infiltrative cell subpopulations.
Collapse
|
13
|
Zakrzewska M, Grešner SM, Zakrzewski K, Zalewska-Szewczyk B, Liberski PP. Novel gene expression model for outcome prediction in paediatric medulloblastoma. J Mol Neurosci 2013; 51:371-9. [PMID: 23649504 DOI: 10.1007/s12031-013-0016-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/18/2013] [Indexed: 01/24/2023]
Abstract
Medulloblastoma is the most frequent type of embryonal tumour in the paediatric population. The disease progression in patients with this tumour may be connected with the presence of stem/tumour-initiating cells, but the precise source and characteristics of such cells is still a subject of debate. Thus, we tried to analyse biomarkers for which a connection with the presence of stem/tumour-initiating cells was suggested. We evaluated the transcriptional level of the ATOH1, FUT4, NGFR, OTX1, OTX2, PROM1 and SOX1 genes in 48 samples of medulloblastoma and analysed their usefulness in the prediction of disease outcome. The analyses showed a strong correlation of PROM1, ATOH1 and OTX1 gene expression levels with the outcome (p ≤ 0.2). On the basis of the multivariate Cox regression analysis, we propose a three-gene model predicting risk of the disease, calculated as follows: RS(risk score) =( 0:81 x PROM1) + (0:18 x OTX1) + (0:02 x ATOH1). Survival analysis revealed a better outcome among standard-risk patients, with a 5-year survival rate of 65 %, compared to the 40 % rate observed among high-risk patients. The most promising advantage of such molecular analysis consists in the identification of molecular markers influencing clinical behaviour, which may in turn be useful in therapy optimization.
Collapse
Affiliation(s)
- Magdalena Zakrzewska
- Department of Molecular Pathology and Neuropathology, Chair of Oncology, Medical University of Lodz, Czechoslowacka 8/10 str, 92-216, Lodz, Poland,
| | | | | | | | | |
Collapse
|
14
|
Matsuda K, Sakurada K, Sato S, Nakazato Y, Kayama T. Gliomatosis cerebelli, an infantile cerebellar neoplasm that exhibited diffuse infiltration without forming a mass. Brain Tumor Pathol 2012; 30:180-4. [PMID: 23142847 DOI: 10.1007/s10014-012-0121-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 10/03/2012] [Indexed: 02/03/2023]
Affiliation(s)
- Kenichiro Matsuda
- Department of Neurosurgery, Yamagata University School of Medicine, Yamagata, Yamagata, Japan.
| | | | | | | | | |
Collapse
|
15
|
WNT/β-catenin pathway activation in Myc immortalised cerebellar progenitor cells inhibits neuronal differentiation and generates tumours resembling medulloblastoma. Br J Cancer 2012; 107:1144-52. [PMID: 22929883 PMCID: PMC3461168 DOI: 10.1038/bjc.2012.377] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background: Medulloblastoma is the most common malignant childhood brain tumour. Aberrant activation of the WNT/β-catenin pathway occurs in approximately 25% of medulloblastomas. However, its role in medulloblastoma pathogenesis is not understood. Methods: We have developed a model of WNT/β-catenin pathway-activated medulloblastoma. Pathway activation was induced in a Myc immortalised cerebellar progenitor cell line through stable expression of Wnt1. In vitro and in vivo analysis was undertaken to understand the effect of pathway activation and identify the potential cell of origin. Results: Tumours that histologically resembled classical medulloblastoma formed in vivo using cells overexpressing Wnt1, but not with the control cell line. Wnt1 overexpression inhibited neuronal differentiation in vitro, suggesting WNT/β-catenin pathway activation prevents cells terminally differentiating, maintaining them in a more ‘stem-like’ state. Analysis of cerebellar progenitor cell markers demonstrated the cell line resembled cells from the cerebellar ventricular zone. Conclusion: We have developed a cell line with the means of orthotopically modelling WNT/β-catenin pathway-activated medulloblastoma. We provide evidence of the role pathway activation is playing in tumour pathogenesis and suggest medulloblastomas can arise from cells other than granule cell progenitors. This cell line is a valuable resource to further understand the role of pathway activation in tumorigenesis and for investigation of targeted therapies.
Collapse
|
16
|
Li K, Long H, Wang JL, Wu QM, Wu YX, Cheng J. Molybdenum increases chemosensitivity of ECA-109 cells to cisplatin and cisplatin-induced inhibition of p75 NTR expression in esophageal stem cells. Shijie Huaren Xiaohua Zazhi 2012; 20:959-963. [DOI: 10.11569/wcjd.v20.i11.959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of molybdenum on the chemosensitivity of esophageal cancer ECA-109 cells to cisplatin and expression of p75NTR in esophageal stem cells.
METHODS: ECA-109 cells were divided into four groups: blank control group, cisplatin group, molybdenum group, cisplatin plus molybdenum group. Cell proliferation was measured by methyl thiazolyl tetrazolium (MTT) assay. The expression of p75NTR in human esophageal stem cells was examined by flow cytometry.
RESULTS: Cisplatin reduced the percentage of p75NTR-positive cells and the proliferation of ECA-109 cells in a dose-dependent manner. Treatment with molybdenum alone had no significant influence on the proliferation of ECA-109 cells and the percentage of p75NTR-positive cells. However, treatment with molybdenum significantly enhanced the chemosensitivity of esophageal cancer ECA-109 cells to cisplatin and cisplatin-induced inhibition of p75NTR expression in esophageal stem cells when compared to cells incubated with cisplatin alone or blank control cells (all P < 0.05).
CONCLUSION: Molybdenum can increase the inhibitory effect of cisplatin on the proliferation of ECA-109 cells, which provides an experimental basis for the use of molybdenum as adjuvant chemotherapeutic agent for esophageal cancer.
Collapse
|