1
|
Yamamura T, Tamura K, Kobayashi D, Inaji M, Toyama Y, Wakimoto H, Kiyokawa J, Hara S, Tanaka Y, Nariai T, Shimizu K, Ishii K, Maehara T. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma. J Neurooncol 2024; 168:355-365. [PMID: 38557927 DOI: 10.1007/s11060-024-04661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE The proximate localization of MTAP, which encodes methylthioadenosine phosphorylase, and CDKN2A/B on Chromosome 9q21 has allowed the loss of MTAP expression as a surrogate for homozygous deletion of CDKN2A/B. This study aimed to determine whether MTAP status correlates with clinical outcomes and 11C-methionine uptake in astrocytomas with IDH mutations. METHODS We conducted immunohistochemistry for MTAP in 30 patients with astrocytoma, IDH-mutant who underwent 11C-methionine positron emission tomography scans prior to surgical resection. The tumor-to-normal (T/N) ratio of 11C-methionine uptake was calculated using the mean standardized uptake value (SUV) for tumor and normal brain tissues. Cox regression analysis was used for multivariate survival analysis. RESULTS Among IDH-mutant astrocytomas, 26.7% (8/30) exhibited the loss of cytoplasmic MTAP expression, whereas 73.3% (22/30) tumors retained MTAP expression. The median progression-free survival (PFS) was significantly shorter in patients with MTAP loss than those with MTAP retention (1.88 years vs. 6.80 years, p = 0.003). The median overall survival (OS) was also shorter in patients with MTAP loss than in MTAP-retaining counterparts (5.23 years vs. 10.69 years, p = 0.019). Multivariate analysis identified MTAP status (hazard ratio (HR), 0.081) and extent of resection (HR, 0.104) as independent prognostic factors for PFS. Astrocytomas lacking cytoplasmic MTAP expression showed a significantly higher median T/N ratio for 11C-methionine uptake than tumors retaining MTAP (2.12 vs. 1.65, p = 0.012). CONCLUSION Our study revealed that the loss of MTAP expression correlates with poor prognosis and an elevated T/N ratio of 11C-methionine uptake in astrocytoma, IDH-mutant.
Collapse
Affiliation(s)
- Toshihiro Yamamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan.
| | - Daisuke Kobayashi
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yuka Toyama
- Department of Human Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, 185 Cambridge St, Boston, MA, 02114, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Kazuhide Shimizu
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, 35-2 Sakaecho, Itabashi-Ku, Tokyo, 173-0015, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-Ku, Tokyo, 113-8510, Japan
| |
Collapse
|
2
|
Ebiko Y, Tamura K, Hara S, Inaji M, Tanaka Y, Nariai T, Ishii K, Maehara T. T2-FLAIR mismatch sign correlates with 11C-methionine uptake in lower-grade diffuse gliomas. J Neurooncol 2023; 164:257-265. [PMID: 37589920 DOI: 10.1007/s11060-023-04417-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
PURPOSE The T2-FLAIR mismatch sign is recognized as an imaging finding highly suggestive of IDH-mutant astrocytomas. This study was designed to determine whether the T2-FLAIR mismatch sign correlates with uptake of 11C-methionine in lower-grade gliomas. METHODS We included 78 histopathologically verified lower-grade gliomas (grade 2: 31 cases, grade 3: 47 cases) in this study. 78 patients underwent 11C-methionine positron emission tomography (MET-PET) scans and magnetic resonance (MR) imaging scans prior to histological diagnosis. The tumor-to-normal ratio (T/N) of 11C-methionine uptake was calculated by dividing the maximum standardized uptake value (SUV) for the tumor by the mean SUV of the normal brain. MR imaging scans were evaluated for the presence of the T2-FLAIR mismatch sign by three independent reviewers. We compared molecular status, the T2-FLAIR mismatch sign and 11C-methionine uptake among patients with different lower-grade glioma molecular types. RESULTS The 78 lower-grade gliomas were assigned to one of three molecular groups: Group A (IDH-mutant and 1p/19q non-codeleted, n = 22), Group O (IDH-mutant and 1p/19q codeleted, n = 20), and Group W (IDH wildtype, n = 36). T2-FLAIR mismatch was found in 16 cases (20.5%) that were comprised of 8 (36.4%), 0 (0%), 8 (22.2%) cases in the molecular group A, O and W, respectively. The median T/N ratio of MET-PET in tumors with T2-FLAIR mismatch was 1.50, which was significantly lower than that of tumors without T2-FLAIR mismatch (1.83, p < 0.001, Mann-Whitney U test). In the Groups A and W (excluding Group O), the median T/N ratio on MET-PET in groups A and W (but not group O) with T2-FLAIR mismatch was 1.50, which was significantly lower than that of tumors without T2-FLAIR mismatch (1.81, p = 0.002, Mann-Whitney U test). CONCLUSION The T2-FLAIR mismatch sign correlated with lower 11C-methionine uptake in lower grade gliomas.
Collapse
Affiliation(s)
- Yusuke Ebiko
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
| | - Kaoru Tamura
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan.
| | - Shoko Hara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Motoki Inaji
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Yoji Tanaka
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
| | - Tadashi Nariai
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Kenji Ishii
- Research Team of Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Taketoshi Maehara
- Department of Neurosurgery, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo- ku, Tokyo, 113-8519, Japan
| |
Collapse
|
3
|
A Systematic Review of Amino Acid PET Imaging in Adult-Type High-Grade Glioma Surgery: A Neurosurgeon's Perspective. Cancers (Basel) 2022; 15:cancers15010090. [PMID: 36612085 PMCID: PMC9817716 DOI: 10.3390/cancers15010090] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Amino acid PET imaging has been used for a few years in the clinical and surgical management of gliomas with satisfactory results in diagnosis and grading for surgical and radiotherapy planning and to differentiate recurrences. Biological tumor volume (BTV) provides more meaningful information than standard MR imaging alone and often exceeds the boundary of the contrast-enhanced nodule seen in MRI. Since a gross total resection reflects the resection of the contrast-enhanced nodule and the majority of recurrences are at a tumor's margins, an integration of PET imaging during resection could increase PFS and OS. A systematic review of the literature searching for "PET" [All fields] AND "glioma" [All fields] AND "resection" [All fields] was performed in order to investigate the diffusion of integration of PET imaging in surgical practice. Integration in a neuronavigation system and intraoperative use of PET imaging in the primary diagnosis of adult high-grade gliomas were among the criteria for article selection. Only one study has satisfied the inclusion criteria, and a few more (13) have declared to use multimodal imaging techniques with the integration of PET imaging to intentionally perform a biopsy of the PET uptake area. Despite few pieces of evidence, targeting a biologically active area in addition to other tools, which can help intraoperatively the neurosurgeon to increase the amount of resected tumor, has the potential to provide incremental and complementary information in the management of brain gliomas. Since supramaximal resection based on the extent of MRI FLAIR hyperintensity resulted in an advantage in terms of PFS and OS, PET-based biological tumor volume, avoiding new neurological deficits, deserves further investigation.
Collapse
|
4
|
Correlation of Intraoperative 5-ALA-Induced Fluorescence Intensity and Preoperative 11C-Methionine PET Uptake in Glioma Surgery. Cancers (Basel) 2022; 14:cancers14061449. [PMID: 35326600 PMCID: PMC8946621 DOI: 10.3390/cancers14061449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In malignant brain tumor surgery, precise identification of the tumor is essential. 5-Aminolevulinic acid (5-ALA) labels tumor cells with red fluorescence to facilitate tumor resection. On the other hand, the nuclear medicine imaging technique, positron emission tomography with 11C-methionine (MET-PET), can delineate tumors precisely but is not widely available. This study aimed to determine the correlation between intraoperative 5-ALA-induced fluorescence and preoperative MET-PET signals of gliomas. We quantitatively measured the fluorescence intensity from tumor samples and calculated the MET-PET uptake by the tumor. Our study showed that strong tumor fluorescence correlated with high MET-PET uptake and cellular proliferation. Our findings might be valuable to rapidly provide information on tumor biology at the time of surgery in circumstances where MET-PET is inaccessible. Abstract Background: 5-Aminolevulinic acid (5-ALA) is widely employed to assist fluorescence-guided surgery for malignant brain tumors. Positron emission tomography with 11C-methionine (MET-PET) represents the activity of brain tumors with precise boundaries but is not readily available. We hypothesized that quantitative 5-ALA-induced fluorescence intensity might correlate with MET-PET uptake in gliomas. Methods: Adult patients with supratentorial astrocytic gliomas who underwent preoperative MET-PET and surgical tumor resection using 5-ALA were enrolled in this prospective study. The regional tumor uptake of MET-PET was expressed as the ratio of standardized uptake volume max to that of the normal contralateral frontal lobe. A spectrometric fluorescence detection system measured tumor specimens’ ex vivo fluorescence intensity at 635 nm. Ki-67 index and IDH mutation status were assessed by histopathological analysis. Use of an antiepileptic drug (AED) and contrast enhancement pattern on MRI were also investigated. Results: Thirty-two patients, mostly with Glioblastoma IDH wild type (46.9%) and anaplastic astrocytoma IDH mutant (21.9%), were analyzed. When the fluorescence intensity was ranked into four groups, the strongest fluorescence group exhibited the highest mean MET-PET uptake and Ki-67 index values. When rearranged into fluorescence Visible or Non-visible groups, the Visible group had significantly higher MET-PET uptake and Ki-67 index compared to the Non-visible group. Contrast enhancement on MRI and IDH wild type tumors were more frequent among the Visible group. AED use did not correlate with 5-ALA-induced fluorescence intensity. Conclusions: In astrocytic glioma surgery, visible 5-ALA-induced fluorescence correlated with high MET-PET uptake, along with a high Ki-67 index.
Collapse
|
5
|
Dynamic 11C-Methionine PET-CT: Prognostic Factors for Disease Progression and Survival in Patients with Suspected Glioma Recurrence. Cancers (Basel) 2021; 13:cancers13194777. [PMID: 34638262 PMCID: PMC8508090 DOI: 10.3390/cancers13194777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 09/10/2021] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Recurrence after initial treatments is an expected event in glioma patients, particularly for high-grade glioma, with a median progression-free survival of 8–11 weeks. The prognostic evaluation of disease is a crucial step in the planning of therapeutic strategies, in both the primary and recurrence stages of disease. The aim of our retrospective study was to assess the prognostic value of 11C-methionine PET-CT dynamic and semiquantitative parameters in patients with suspected glioma recurrence at MR, in terms of progression-free survival and overall survival. In a population of sixty-seven consecutive patients, both static and kinetic analyses provided parameters (i.e., tumour-to-background ratio and SUVmax associated with time-to-peak, respectively) able to predict both progression-free and overall survival in the whole population and in the high-grade glioma subgroup of patients. Dynamic 11C-methionine PET-CT can be a useful diagnostic tool, in patients with suspicion of glioma recurrence, able to produce significant prognostic indices. Abstract Purpose: The prognostic evaluation of glioma recurrence patients is important in the therapeutic management. We investigated the prognostic value of 11C-methionine PET-CT (MET-PET) dynamic and semiquantitative parameters in patients with suspected glioma recurrence. Methods: Sixty-seven consecutive patients who underwent MET-PET for suspected glioma recurrence at MR were retrospectively included. Twenty-one patients underwent static MET-PET; 46/67 underwent dynamic MET-PET. In all patients, SUVmax, SUVmean and tumour-to-background ratio (T/B) were calculated. From dynamic acquisition, the shape and slope of time-activity curves, time-to-peak and its SUVmax (SUVmaxTTP) were extrapolated. The prognostic value of PET parameters on progression-free (PFS) and overall survival (OS) was evaluated using Kaplan–Meier survival estimates and Cox regression. Results: The overall median follow-up was 19 months from MET-PET. Recurrence patients (38/67) had higher SUVmax (p = 0.001), SUVmean (p = 0.002) and T/B (p < 0.001); deceased patients (16/67) showed higher SUVmax (p = 0.03), SUVmean (p = 0.03) and T/B (p = 0.006). All static parameters were associated with PFS (all p < 0.001); T/B was associated with OS (p = 0.031). Regarding kinetic analyses, recurrence (27/46) and deceased (14/46) patients had higher SUVmaxTTP (p = 0.02, p = 0.01, respectively). SUVmaxTTP was the only dynamic parameter associated with PFS (p = 0.02) and OS (p = 0.006). At univariate analysis, SUVmax, SUVmean, T/B and SUVmaxTTP were predictive for PFS (all p < 0.05); SUVmaxTTP was predictive for OS (p = 0.02). At multivariate analysis, SUVmaxTTP remained significant for PFS (p = 0.03). Conclusion: Semiquantitative parameters and SUVmaxTTP were associated with clinical outcomes in patients with suspected glioma recurrence. Dynamic PET-CT acquisition, with static and kinetic parameters, can be a valuable non-invasive prognostic marker, identifying patients with worse prognosis who require personalised therapy.
Collapse
|
6
|
Nakajo K, Uda T, Kawashima T, Terakawa Y, Ishibashi K, Tsuyuguchi N, Tanoue Y, Nagahama A, Uda H, Koh S, Sasaki T, Ohata K, Kanemura Y, Goto T. Diagnostic Performance of [ 11C]Methionine Positron Emission Tomography in Newly Diagnosed and Untreated Glioma Based on the Revised World Health Organization 2016 Classification. World Neurosurg 2021; 148:e471-e481. [PMID: 33444827 DOI: 10.1016/j.wneu.2021.01.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND The relationship between uptake of amino acid tracer with positron emission tomography (PET) and glioma subtypes/gene status is still unclear. OBJECTIVE To assess the relationship between uptake of [11C]methionine using PET and pathology, IDH (isocitrate dehydrogenase) mutation, 1p/19q codeletion, and TERT (telomerase reverse transcriptase) promoter status in gliomas. METHODS The participants were 68 patients with newly diagnosed and untreated glioma who underwent surgical excision and preoperative [11C]methionine PET examination at Osaka City University Hospital between July 2011 and March 2018. Clinical and imaging studies were reviewed retrospectively based on the medical records at our institution. RESULTS The mean lesion/contralateral normal brain tissue (L/N) ratio of diffuse astrocytomas was significantly lower than that of anaplastic astrocytomas (P = 0.00155), glioblastoma (P < 0.001), and oligodendrogliomas (P = 0.0157). The mean L/N ratio of IDH mutant gliomas was significantly lower than that of IDH wild-type gliomas (median 1.75 vs. 2.61; P = 0.00162). A mean L/N ratio of 2.05 provided the best sensitivity and specificity for distinguishing between IDH mutant and IDH wild-type gliomas (69.2% and 76.2%, respectively). The mean L/N ratio of TERT promoter mutant gliomas was significantly higher than that of TERT promoter wild-type gliomas (P = 0.0147). Multiple regression analysis showed that pathologic diagnosis was the only influential factor on L/N ratio. CONCLUSIONS Distinguishing glioma subtypes based on the revised 2016 World Health Organization classification of the central nervous system tumors on the basis of [11C]methionine PET alone seems to be difficult. However, [11C]methionine PET might be useful for predicting the IDH mutation status in newly diagnosed and untreated gliomas noninvasively before tumor resection.
Collapse
Affiliation(s)
- Kosuke Nakajo
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Takehiro Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Toshiyuki Kawashima
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yuzo Terakawa
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Neurosurgery, Hokkaido Ono Memorial Hospital, Hokkaido, Japan
| | - Kenichi Ishibashi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Neurosurgery, Osaka City General Hospital, Osaka, Japan
| | - Naohiro Tsuyuguchi
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan; Department of Neurosurgery, Kinki University Graduate School of Medicine, Osaka, Japan
| | - Yuta Tanoue
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Atsufumi Nagahama
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Uda
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Saya Koh
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Tsuyoshi Sasaki
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Kenji Ohata
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, Osaka, Japan; Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Takeo Goto
- Department of Neurosurgery, Osaka City University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
John F, Robinette NL, Amit-Yousif AJ, Bosnyák E, Barger GR, Shah KD, Mittal S, Juhász C. Multimodal Imaging of Nonenhancing Glioblastoma Regions. Mol Imaging 2020; 18:1536012119885222. [PMID: 31736437 PMCID: PMC6862774 DOI: 10.1177/1536012119885222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Clinical glioblastoma treatment mostly focuses on the contrast-enhancing tumor mass. Amino acid positron emission tomography (PET) can detect additional, nonenhancing glioblastoma-infiltrated brain regions that are difficult to distinguish on conventional magnetic resonance imaging (MRI). We combined MRI with perfusion imaging and amino acid PET to evaluate such nonenhancing glioblastoma regions. METHODS Structural MRI, relative cerebral blood volume (rCBV) maps from perfusion MRI, and α-[11C]-methyl-l-tryptophan (AMT)-PET images were analyzed in 20 patients with glioblastoma. The AMT uptake and rCBV (expressed as tumor to normal [T/N] ratios) were compared in nonenhancing tumor portions showing increased signal on T2/fluid-attenuated inversion recovery (T2/FLAIR) images. RESULTS Thirteen (65%) tumors showed robust heterogeneity in nonenhancing T2/FLAIR hyperintense areas on AMT-PET, whereas the nonenhancing regions in the remaining 7 cases had homogeneous AMT uptake (low in 6, high in 1). AMT and rCBV T/N ratios showed only a moderate correlation in the nonenhancing regions (r = 0.41, P = .017), but regions with very low rCBV (<0.79 T/N ratio) had invariably low AMT uptake. CONCLUSIONS The findings demonstrate the metabolic and perfusion heterogeneity of nonenhancing T2/FLAIR hyperintense glioblastoma regions. Amino acid PET imaging of such regions can detect glioma-infiltrated brain for treatment targeting; however, very low rCBV values outside the contrast-enhancing tumor mass make increased AMT uptake in nonenhancing glioblastoma regions unlikely.
Collapse
Affiliation(s)
- Flóra John
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Natasha L Robinette
- Department of Radiology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Alit J Amit-Yousif
- Department of Radiology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Edit Bosnyák
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA
| | - Geoffrey R Barger
- Department of Neurology, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Keval D Shah
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Sandeep Mittal
- Department of Neurosurgery, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.,Virginia Tech School of Neuroscience, Blacksburg, VA, USA
| | - Csaba Juhász
- Department of Pediatrics, Wayne State University and PET Center and Translational Imaging Laboratory, Children's Hospital of Michigan, Detroit, MI, USA.,Department of Neurology, Wayne State University, Detroit, MI, USA.,Department of Neurosurgery, Wayne State University, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
8
|
Kudulaiti N, Zhang H, Qiu T, Lu J, Aibaidula A, Zhang Z, Guan Y, Zhuang D. The Relationship Between IDH1 Mutation Status and Metabolic Imaging in Nonenhancing Supratentorial Diffuse Gliomas: A 11C-MET PET Study. Mol Imaging 2020; 18:1536012119894087. [PMID: 31889470 PMCID: PMC6997723 DOI: 10.1177/1536012119894087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Purpose: We evaluated the relationship between isocitrate dehydrogenase 1 (IDH1) mutation status and metabolic imaging in patients with nonenhancing supratentorial diffuse gliomas using 11C-methionine positron emission tomography (11C-MET PET). Materials and Methods: Between June 2012 and November 2017, we enrolled 86 (38 women and 48 men; mean age, 41.9 ± 13.1 years [range, 8-67 years]) patients with newly diagnosed supratentorial diffuse gliomas. All patients underwent preoperative 11C-MET PET. Tumor samples were obtained and immunohistochemically analyzed for IDH1 mutation status. Results: The mutant and wild-type IDH1 diffuse gliomas had significantly different mean maximum standardized uptake value values (2.73 [95% confidence interval, CI: 2.32-3.16] vs 3.85 [95% CI: 3.22-4.51], respectively; P = .004) and mean tumor-to-background ratio (1.90 [95% CI: 1.65-2.16] vs 2.59 [95% CI: 2.17-3.04], respectively; P = .007). Conclusions: 11C-methionine PET can noninvasively evaluate the IDH1 mutation status of patients with nonenhancing supratentorial diffuse gliomas.
Collapse
Affiliation(s)
- Nijiati Kudulaiti
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Huiwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Abudumijiti Aibaidula
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| | - Zhengwei Zhang
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yihui Guan
- PET Center, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Institute of Neurosurgery, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
9
|
Abstract
Delineating the gross tumor volume (GTV) is a core task within radiation treatment planning. GTVs must be precisely defined irrespective of the region involved, but even more so in a sensitive area such as the brain. As precision medicine cannot exist without precision imaging, the current article aims to discuss the various imaging modalities employed in the radiation treatment planning of brain tumors.Gliomas, meningiomas, and paragangliomas are some of the most challenging tumors and the advancement in diagnostic imaging can significantly contribute to their delineation. For gliomas, irradiation based on multiparametric magnetic resonance imaging (MRI) and amino-acid positron emission tomography (PET)/computed tomography (CT) may have a higher sensitivity and specificity, which could lead to a better sparing of organs at risk and help distinguish between tumor, edema, and radiogenic alterations. Meningiomas and paragangliomas are often associated with a good prognosis. Therefore, GTV delineation according to MRI and somatostatin receptor ligand-PET/CT plays an essential role in sparing sensitive structures and maintaining a good quality of life for these patients.The combination of multiparametric MRI and PET/CT (possibly in the form of PET/MRI) presently appears to be the optimal approach for target volume delineation. The comparative efficacy of these imaging modalities has to be further evaluated in prospective trials.
Collapse
|
10
|
|
11
|
Abstract
PET holds potential to provide additional information about tumour metabolic processes, which could aid brain tumour differential diagnosis, grading, molecular subtyping and/or the distinction of therapy effects from disease recurrence. This review discusses PET techniques currently in use for untreated and treated glioma characterization and aims to critically assess the evidence for different tracers ([F]Fluorodeoxyglucose, choline and amino acid tracers) in this context.
Collapse
|
12
|
Yano H, Shinoda J, Iwama T. Clinical Utility of Positron Emission Tomography in Patients with Malignant Glioma. Neurol Med Chir (Tokyo) 2017; 57:312-320. [PMID: 28458384 PMCID: PMC5566704 DOI: 10.2176/nmc.ra.2016-0312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positron emission tomography (PET) is being increasingly utilized for the management of brain tumors. Herein, we primarily review our previous studies on the use of PET in glioma that utilize three types of tracers: 11C-methionine (MET), 11C-choline, and 18F-fluorodeoxyglucose. These studies included aspects such as tumor behavior, diagnosis, grade of malignancy, spread and invasion, viability, and genetic deletions; moreover, they also evaluated PET as a tool for planning radiation therapy (RT) and determining its outcome. MET-PET in particular is considered to be the most informative for diagnosis and therapeutic decision-making for glioma patients; it is therefore considered crucial for brain tumor therapy. MET-PET is expected to be widely used for brain tumor patients going forward.
Collapse
Affiliation(s)
- Hirohito Yano
- Department of Neurosurgery, Gifu University Graduate School of Medicine
| | - Jun Shinoda
- Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Kizawa Memorial Hospital
| | - Toru Iwama
- Department of Neurosurgery, Gifu University Graduate School of Medicine
| |
Collapse
|
13
|
ATRX status correlates with 11 C-methionine uptake in WHO grade II and III gliomas with IDH1 mutations. Brain Tumor Pathol 2017; 34:20-27. [DOI: 10.1007/s10014-017-0280-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/15/2017] [Indexed: 12/13/2022]
|
14
|
Deuschl C, Goericke S, Grueneisen J, Sawicki LM, Goebel J, El Hindy N, Wrede K, Binse I, Poeppel T, Quick H, Forsting M, Hense J, Umutlu L, Schlamann M. Simultaneous 11C-Methionine Positron Emission Tomography/Magnetic Resonance Imaging of Suspected Primary Brain Tumors. PLoS One 2016; 11:e0167596. [PMID: 27907162 PMCID: PMC5132315 DOI: 10.1371/journal.pone.0167596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/16/2016] [Indexed: 11/22/2022] Open
Abstract
Introduction The objective of this study was to assess the diagnostic value of integrated 11C- methionine PET/MRI for suspected primary brain tumors, in comparison to MRI alone. Material and Methods Forty-eight consecutive patients with suspected primary brain tumor were prospectively enrolled for an integrated 11C-methionine PET/MRI. Two neuro-radiologists separately evaluated the MRI alone and the integrated PET/MRI data sets regarding most likely diagnosis and diagnostic confidence on a 5-point scale. Reference standard was histopathology or follow-up imaging. Results Fifty-one suspicious lesions were detected: 16 high-grade glioma and 25 low-grade glioma. Ten non-malignant cerebral lesions were described by the reference standard. MRI alone and integrated PET/MRI each correctly classified 42 of the 51 lesions (82.4%) as neoplastic lesions (WHO grade II, III and IV) or non-malignant lesions (infectious and neoplastic lesions). Diagnostic confidence for all lesions, low-grade astrocytoma and high-grade astrocytoma (3.7 vs. 4.2, 3,1 vs. 3.8, 4.0 vs. 4,7) were significantly (p < 0.05) better with integrated PET/MRI than in MRI alone. Conclusions The present study demonstrates the high potential of integrated 11C-methionine-PET/MRI for the assessment of suspected primary brain tumors. Although integrated methionine PET/MRI does not lead to an improvement of correct diagnoses, diagnostic confidence is significantly improved.
Collapse
Affiliation(s)
- Cornelius Deuschl
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Sophia Goericke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Johannes Grueneisen
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Lino Morris Sawicki
- Institute of Diagnostic and Interventional Radiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Juliane Goebel
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Nicolai El Hindy
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, Essen, Germany
| | - Ina Binse
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Thorsten Poeppel
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Harald Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Joerg Hense
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, Essen, Germany
| | - Lale Umutlu
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Marc Schlamann
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
- Department of Neuroradiology, University Hospital Giessen, Gießen, Germany
| |
Collapse
|
15
|
Oligodendroglial component complicates the prediction of tumour grading with metabolic imaging. Eur J Nucl Med Mol Imaging 2015; 42:896-904. [DOI: 10.1007/s00259-015-2996-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/14/2015] [Indexed: 11/27/2022]
|
16
|
Takahashi Y, Akahane T, Yamamoto D, Nakamura H, Sawa H, Nitta K, Ide W, Hashimoto I, Kamada H. Correlation between positron emission tomography findings and glucose transporter 1, 3 and L-type amino acid transporter 1 mRNA expression in primary central nervous system lymphomas. Mol Clin Oncol 2014; 2:525-529. [PMID: 24940488 DOI: 10.3892/mco.2014.287] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 04/30/2014] [Indexed: 12/30/2022] Open
Abstract
Primary central nervous system lymphoma (PCNSL) is an aggressive form of non-Hodgkin lymphoma with a poor prognosis. [18F] 2-fluoro-2-deoxy-D-glucose (FDG) and L-(methyl-11C)-methionine (MET) are the most widely used tracers in oncological positron emission tomography studies for PCNSL and commonly identify hypermetabolic lesions through increased uptake of FDG and MET. However, the mechanisms underlying the uptake of FDG and MET in PCNSL have not been clearly determined. The present study aimed to investigate the mRNA expression levels of glucose transporter (GLUT)1, GLUT3 and L-type amino acid transporter 1 (LAT1) in resected PCNSL specimens, in order to identify whether these transporters are associated with the increased uptake of FDG and MET. A total of 7 patients diagnosed with PCNSL were investigated. The uptake of FDG and MET by the tumors was evaluated based on the maximum standardized uptake value (SUVmax). The quantity of GLUT1, GLUT3 and LAT1 mRNA in the PCNSL specimens was measured to determine whether GLUT1, GLUT3 and/or LAT1 are involved in the increased uptake of FDG and MET in PCNSL. Furthermore, microvessel density (MVD) and cell density (CD) were measured in all the cases. Our results indicated that the expression of GLUT3, but not GLUT1, was significantly correlated with FDG SUVmax and the expression of LAT1 was significantly correlated with MET SUVmax. However, neither MVD nor CD were found to be significantly associated with the uptake of FDG and MET. GLUT3 was identified as a key determinant of FDG accumulation, whereas LAT1 was a key determinant of MET accumulation in PCNSL. Therefore, GLUT3 and LAT1 may represent potential targets for the future development of novel therapeutic agents for PCNSL.
Collapse
Affiliation(s)
- Yoshinobu Takahashi
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Toshiaki Akahane
- Oncology Research Center, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Daisuke Yamamoto
- Department of Radiology, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Hideo Nakamura
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Hiroki Sawa
- Oncology Research Center, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Kazumi Nitta
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Wataru Ide
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Ikuo Hashimoto
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| | - Hajime Kamada
- Department of Neurosurgery, Hokuto Hospital, Obihiro, Hokkaido 080-0039, Japan
| |
Collapse
|
17
|
Nariai T, Inaji M, Sakata M, Toyohara J. Use of 11C-4DST-PET for Imaging of Human Brain Tumors. TUMORS OF THE CENTRAL NERVOUS SYSTEM, VOLUME 11 2014. [DOI: 10.1007/978-94-007-7037-9_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
18
|
Kobayashi H, Hirata K, Yamaguchi S, Terasaka S, Shiga T, Houkin K. Usefulness of FMISO-PET for glioma analysis. Neurol Med Chir (Tokyo) 2013; 53:773-8. [PMID: 24172591 PMCID: PMC4508718 DOI: 10.2176/nmc.ra2013-0256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glioma is one of the most common brain tumors in adults. Its diagnosis and management have been determined by histological classifications. It is difficult to establish new paradigms because the pathology has matured and a great deal of knowledge has accumulated. On the other hand, we understand that there are limitations to this gold-standard because of the heterogeneity of glioma. Thus, it is necessary to find new criteria independent of conventional morphological diagnosis. Molecular imaging such as positron emission tomography (PET) is one of the most promising approaches to this challenge. PET provides live information of metabolism through the behavior of single molecules. The advantage of PET is that its noninvasive analysis does not require tissue sample, therefore examination can be performed repeatedly. This is very useful for capturing changes in the biological nature of tumor without biopsy. In the present clinical practice for glioma, 18F-fluorodeoxyglucose (FDG) PET is the most common tracer for predicting prognosis and differentiating other malignant brain tumors. Amino acid tracers such as 11C-methionine (MET) are the most useful for detecting distribution of glioma, including low-grade. Tracers to image hypoxia are under investigation for potential clinical use, and recently, 18F-fluoromisonidazole (FMISO) has been suggested as an effective tracer to distinguish glioblastoma multiforme from others.
Collapse
Affiliation(s)
- Hiroyuki Kobayashi
- Department of Neurosurgery, Graduate School of Medicine, Hokkaido University
| | | | | | | | | | | |
Collapse
|
19
|
Jansen NL, Schwartz C, Graute V, Eigenbrod S, Lutz J, Egensperger R, Pöpperl G, Kretzschmar HA, Cumming P, Bartenstein P, Tonn JC, Kreth FW, la Fougère C, Thon N. Prediction of oligodendroglial histology and LOH 1p/19q using dynamic [(18)F]FET-PET imaging in intracranial WHO grade II and III gliomas. Neuro Oncol 2012; 14:1473-80. [PMID: 23090986 DOI: 10.1093/neuonc/nos259] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Oligodendroglial components (OC) and loss of heterozygosity on chromosomes 1p and 19q (LOH 1p/19q) are associated with better outcome in patients with glioma. We aimed to assess the fitness of [(18)F]fluoroethyltyrosine positron-emission-tomography (FET-PET) for noninvasively identifying these important prognostic/predictive factors. One hundred forty-four patients with MRI-suspected WHO grade II and III glioma underwent FET-PET scans prior to histological diagnosis. FET-PET analyses included maximal tumoral uptake (SUV(max)/BG), biological tumor volume (BTV), mean tumoral uptake (SUV(mean)/BG), total tumoral uptake (SUV(total)/BG), and kinetic analysis. Suspicion of OC was based on static and dynamic FET-uptake parameters. PET results were correlated with histology and 1p/19q status. OC tumors exhibited significantly higher uptake values, compared with astrocytomas (AC) (SUV(max)/BG 3.1 vs 2.3, BTV 15.5 mL vs 7.2 mL, SUV(total)/BG 38.5 vs 17.4, P < .01 each; SUV(mean)/BG 2.2 vs 2.1, P < .05). These differences were more pronounced in WHO grade II gliomas. Comparable results were found with respect to 1p/19q status. Kinetic analysis misclassified 18 of 34 low-grade OC tumors as high-grade glioma but misclassified only 5 of 45 of the low-grade ACs. FET-based suspicion of OC resulted in concordance rates of both 76% for the prediction of OC and LOH 1p/19q. FET-uptake was significantly higher in gliomas with OC, compared with AC, and likewise in 1p/19q codeleted, compared with noncodeleted tumors. However, FET-PET analysis did not reliably predict the presence of OC/LOH 1p/19q in the individual patient, mostly because of an overlap in PET characteristics of OC tumors and high-grade AC. Histological examination is still required for an accurate diagnosis.
Collapse
Affiliation(s)
- Nathalie L Jansen
- Department of Nuclear Medicine, University of Munich, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Saito T, Maruyama T, Muragaki Y, Tanaka M, Nitta M, Shinoda J, Aki T, Iseki H, Kurisu K, Okada Y. 11C-methionine uptake correlates with combined 1p and 19q loss of heterozygosity in oligodendroglial tumors. AJNR Am J Neuroradiol 2012; 34:85-91. [PMID: 22766670 DOI: 10.3174/ajnr.a3173] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND AND PURPOSE Oligodendroglial tumors with 1p/19q LOH are known to show longer patient survival than those without 1p/19q LOH, but the reason for this clinical difference has not been elucidated, to our knowledge. This study was designed to clarify whether uptake of MET correlates with 1p/19q LOH of oligodendroglial tumors. MATERIALS AND METHODS This study included 102 consecutive patients with supratentorial WHO grade II and III oligodendroglial tumors (39 oligoastrocytic and 63 oligodendroglial tumors) that were resected and diagnosed between January 2008 and August 2011 at Tokyo Women's Medical University Hospital. These patients underwent MET PET T/N ratio measurement before treatment. T/N ratios were calculated by dividing the maximum SUV for the tumor by the mean SUV of the contralateral normal frontal cortex. After surgery, FISH for resected tissues was used to determine 1p/19q LOH. RESULTS The mean T/N ratio of tumors with 1p/19q LOH was significantly greater than that of tumors without 1p/19q LOH (P = .0166). The threshold T/N ratio value of 2.46 was found to correlate significantly with 1p/19q LOH by univariate (P = .0011) and multivariate analyses (P = .0209) in all tumors. CONCLUSIONS The T/N ratio on MET PET might be a useful aid to the diagnosis of 1p/19q LOH. Our data add new information on the biology and imaging characteristics of oligodendroglial tumors with 1p/19q LOH.
Collapse
Affiliation(s)
- T Saito
- Department of Neurosurgery and Faculty of Advanced Techno-Surgery, Tokyo Women's Medical University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Evaluation of brain tumors using dynamic 11C-methionine-PET. J Neurooncol 2012; 109:115-22. [PMID: 22528799 DOI: 10.1007/s11060-012-0873-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 03/31/2012] [Indexed: 10/28/2022]
Abstract
The aim of this study is to assess whether dynamic imaging of (11)C-methionine (MET) uptake on positron emission tomography (PET) is useful for the differential diagnosis of brain tumor histology. Regional MET uptake in static brain PET scans from three consecutive phases (5-15, 15-25, and 25-35 min) after intravenous injection were measured in 144 patients with brain tumors. Regions of interest (ROI) were placed in the pituitary gland, confluence, choroid plexus, coronal radiation, brainstem, frontal cortex, parietal cortex, cerebellum, and brain tumors. The standard uptake value (SUV) of the ROIs in the normal brain structures and brain tumors were measured, and the mean MET SUV region/normal frontal lobe cortex uptake ratio (R/N ratio) of the normal brain structures and the maximum MET SUV tumor/normal frontal cortex uptake ratio (T/N ratio) were evaluated semi-quantitatively. There were significant dynamic declines of the mean MET R/N ratio in the normal pituitary gland and confluence; however, there were significant dynamic increases in white matter. Significant dynamic decrease of the maximum MET T/N ratio was seen in meningiomas and oligodendrocytic tumors, whereas significant dynamic increase was seen in glioblastomas and malignant lymphomas. Dynamic changes of MET uptake vary significantly with the normal brain structures and brain tumor histology. These results suggest that MET-PET may be useful in the differential diagnosis of brain tumors.
Collapse
|
22
|
MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 2012; 39:1021-9. [PMID: 22491781 DOI: 10.1007/s00259-012-2109-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
PURPOSE Since differentiation between low-grade glioma (LGG) and high-grade glioma (HGG) remains challenging according to MRI criteria alone, we investigated the discriminative value of additional dynamic FET PET in patients with MRI-suspected LGG. METHODS Included in this retrospective study were 127 patients with newly diagnosed MRI-suspected LGG and dynamic FET PET prior to histopathological assessment. FET PET lesions were visually classified as having reduced, normal, or increased tracer uptake. Maximal tumour uptake scaled to the mean background uptake (SUV(max)/BG), mean tumour uptake (SUV(mean)/BG), biological tumour volume and kinetics were evaluated and correlated with individual histopathological findings. RESULTS Histopathological analysis revealed 71 patients with LGG, 47 patients with HGG (including 5 glioblastoma multiforme), 2 patients with low-grade ganglioglioma and 7 patients with non-neoplastic lesions. Of the 127 patients, 97 had lesions with increased FET uptake, of which 93 were neoplastic. Increased uptake was found in 49/71 LGG (69 %) and 42/47 HGG (89 %). None of the conventional uptake parameters differed significantly between the HGG and LGG groups. Kinetic analysis reliably identified HGG (sensitivity 95 %, specificity 72 %, PPV 74 %, NPV 95 %). Normal tracer uptake was observed in 19 patients (15 with LGG, 1 with HGG and 3 with non-neoplastic lesions) and reduced uptake in 11 patients (7 with LGG and 4 with HGG). CONCLUSION Among the MRI-suspected LGG, kinetic but not conventional analysis of FET uptake enabled remarkably high sensitivity for detection of HGG. This held true even for lesions with low or diffuse tracer uptake. Lesions with reduced tracer uptake must be interpreted with caution, as they can also harbour HGG tissue.
Collapse
|
23
|
Colavolpe C, Metellus P, Mancini J, Barrie M, Béquet-Boucard C, Figarella-Branger D, Mundler O, Chinot O, Guedj E. Independent prognostic value of pre-treatment 18-FDG-PET in high-grade gliomas. J Neurooncol 2011; 107:527-35. [PMID: 22169956 DOI: 10.1007/s11060-011-0771-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 11/16/2011] [Indexed: 11/29/2022]
Abstract
The prognostic value of PET with (18F)-fluoro-2-deoxy-D: -glucose (FDG) has been shown in high-grade gliomas (HGG), but not compared with consensual prognostic factors. We sought to evaluate the independent predictive value of pre-treatment FDG-PET on overall (OS) and event-free survival (EFS). We retrospectively analyzed 41 patients with histologically-confirmed HGG (31 glioblastomas and 10 anaplastic gliomas). The pre-treatment uptake of FDG was assessed qualitatively by five-step visual metabolic grading, and quantitatively by the ratio between the tumor and contralateral maximal standardized uptake value (T/CL). EFS and OS following PET were compared with FDG uptake by univariate analysis, and by two multivariate analyses: one including main consensual prognostic factors (age, KPS, extent of surgery and histological grade), and the other including the classification system of the Radiation Therapy Oncology Group (Recursive Partitioning Analysis, RPA). Median OS and EFS were 13.8 and 7.4 months, respectively, for glioblastomas, and over 25.8 and 12 months, respectively, for anaplastic gliomas (P = 0.040 and P = 0.027). The T/CL ratio predicted OS in the entire group [P = 0.003; Hazard Ratio (HR) = 2.3] and in the glioblastoma subgroup (P = 0.018; HR = 2), independently of age, Karnofsky performance status, histological grade, and surgery, and independently of RPA classification. T/CL ratio tended to predict EFS in the whole group (P = 0.052). The prognostic value of visual metabolic grade on OS was less significant than T/CL ratio, both in the entire group and in the glioblastoma subgroup (P = 0.077 and P = 0.059). Quantitative evaluation of the ratio between the maximal tumor and contralateral uptake in pre-treatment FDG-PET provides significant additional prognostic information in newly-diagnosed HGG, independently of consensual prognostic factors.
Collapse
Affiliation(s)
- Cécile Colavolpe
- APHM, Hôpital de la Timone, Service Central de Biophysique et Médecine Nucléaire, 13005 Marseille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Arita H, Kinoshita M, Kagawa N, Fujimoto Y, Kishima H, Hashimoto N, Yoshimine T. ¹¹C-methionine uptake and intraoperative 5-aminolevulinic acid-induced fluorescence as separate index markers of cell density in glioma: a stereotactic image-histological analysis. Cancer 2011; 118:1619-27. [PMID: 21837671 DOI: 10.1002/cncr.26445] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/13/2011] [Accepted: 06/27/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND The extent of tumor resection is acknowledged as 1 of the prognostic factors for glioma. 5-Aminolevulinic acid (5-ALA)-induced fluorescence guidance and neuronavigation integrated with (11) C-methionine positron emission tomography (PET) are widely utilized under the expectation of improving the extent of resection. These 2 novel approaches are beneficial for glioma resections, and the combination of these approaches appears rational. However, biological characteristics reflecting 5-ALA-induced fluorescence and (11) C-methionine uptake have not been clearly elucidated, and studies about the relationship between 5-ALA-induced fluorescence and (11) C-methionine uptake have been limited. The present study aimed to clarify this issue. METHODS Data from 11 consecutive patients harboring astrocytic tumors were analyzed: 2 grade II and 2 grade III, and 7 grade IV tumors were included. Thirty samples from these patients were obtained from the relative periphery of each tumor. Relationships among histology, 5-ALA-induced fluorescence and (11) C-methionine uptake were analyzed by stereotactic sampling and image analysis. RESULTS Uptake of (11) C-methionine correlated with cell density (R(2) = 0.322, P = .0059). Cell density was higher in fluorescence-positive areas than in negative areas (2760 ± 1080 vs 1450 ± 1380/mm(2) , P = .0132). Although both (11) C-methionine uptake and fluorescence seemed to correlate with cell density, no significant difference in (11) C-methionine uptake was seen between fluorescence-positive and -negative areas (P = .367). Multiple linear regression analysis revealed (11) C-methionine uptake and 5-ALA-induced fluorescence as independent indices for tumor cell density. CONCLUSIONS These results indicate that 5-ALA fluorescence and (11) C-methionine PET image are separate index markers for cytoreduction surgery of gliomas.
Collapse
Affiliation(s)
- Hideyuki Arita
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
For tumors of the central nervous system (CNS), the ability to accurately delineate the extent of tumor has implications for diagnosis, prognosis, and treatment. PET, mainly with (18)F-fluorodeoxyglucose (FDG), has become commonplace in the work-up of many extracranial tumors. However, the relative high background of FDG-PET activity of normal brain tissue has limited the applicability of this modality in CNS tumors to date. More recently, novel PET tracers for imaging of CNS tumors have been developed. This article outlines recent advances in PET as a complementary imaging modality with implications for diagnosis, prognosis, surgical and radiation treatment planning, and post-therapy surveillance in malignancies of the CNS. Pharmacokinetic properties of the radiotracers and the influence of blood-brain-barrier integrity are also incorporated into the discussion.
Collapse
Affiliation(s)
- Donald M Cannon
- Department of Human Oncology and Radiation Oncology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, K4/B100, Madison, WI 53792, USA
| | | | | |
Collapse
|
26
|
Ishiwata K, Kimura Y, Oda K, Ishii K, Sakata M, Kawasaki K, Nariai T, Suzuki Y, Ishibashi K, Mishina M, Hashimoto M, Ishikawa M, Toyohara J. Development of PET radiopharmaceuticals and their clinical applications at the Positron Medical Center. Geriatr Gerontol Int 2010; 10 Suppl 1:S180-96. [PMID: 20590833 DOI: 10.1111/j.1447-0594.2010.00594.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Positron Medical Center has developed a large number of radiopharmaceuticals and 36 radiopharmaceuticals have been approved for clinical use for studying aging and geriatric diseases, especially brain functions. Positron emission tomography (PET) has been used to provide a highly advanced PET-based diagnosis. The current status of the development of radiopharmaceuticals, and representative clinical and methodological results are reviewed.
Collapse
Affiliation(s)
- Kiichi Ishiwata
- Positron Medical Center, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Oku N, Yamashita M, Katayama Y, Urakami T, Hatanaka K, Shimizu K, Asai T, Tsukada H, Akai S, Kanazawa H. PET imaging of brain cancer with positron emitter-labeled liposomes. Int J Pharm 2010; 403:170-7. [PMID: 20934495 DOI: 10.1016/j.ijpharm.2010.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 09/30/2010] [Accepted: 10/02/2010] [Indexed: 10/19/2022]
Abstract
Since nanocarriers such as liposomes are known to accumulate in tumors of tumor-bearing animals, and those that have entrapped a positron emitter can be used to image a tumor by PET, we applied (18)F-labeled 100-nm-sized liposomes for the imaging of brain tumors. Polyethylene glycol (PEG)-modified liposomes, which are known to accumulate in tumors by passive targeting and those modified with Ala-Pro-Arg-Pro-Gly, which are known to home into angiogenic sites were used. Those liposomes labeled with DiI fluorescence accumulated in a glioma implanted in a rat brain 1h after the injection, although they did not accumulate in the normal brain tissues due to the protection afforded by the blood-brain barrier. Preformed liposomes were easily labeled with 1-[(18)F]fluoro-3,6-dioxatetracosane, and enabled the imaging of gliomas by PET with higher contrast than that obtained with [(18)F]deoxyfluoroglucose. In addition, the smallest tumor among those tested, having a diameter of 1mm was successfully imaged by the liposomal (18)F. Therefore, nanocarrier-based imaging of brain tumors is promising for the diagnosis of brain cancer and possible drug delivery-based therapy.
Collapse
Affiliation(s)
- Naoto Oku
- Department of Medical Biochemistry, University of Shizuoka, Yada, Shizuoka 422-8526, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with 18F-FDG and 11C-methionine: report of two cases. J Neurooncol 2010; 101:335-41. [DOI: 10.1007/s11060-010-0262-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Accepted: 05/30/2010] [Indexed: 11/25/2022]
|
29
|
Okita Y, Kinoshita M, Goto T, Kagawa N, Kishima H, Shimosegawa E, Hatazawa J, Hashimoto N, Yoshimine T. (11)C-methionine uptake correlates with tumor cell density rather than with microvessel density in glioma: A stereotactic image-histology comparison. Neuroimage 2009; 49:2977-82. [PMID: 19931401 DOI: 10.1016/j.neuroimage.2009.11.024] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 11/01/2009] [Accepted: 11/11/2009] [Indexed: 11/19/2022] Open
Abstract
(11)C-methionine positron emission tomography ((11)C-methionine PET) provides accurate detection of brain tumors. Several reports have analyzed the correlation between uptake of (11)C-methionine and Ki-67 index or microvessel density non-stereotactically and suggested that (11)C-methionine uptake reflects both proliferation potential and angiogenic capability in gliomas. As gliomas possess heterogeneous histological architecture, non-stereotactic comparison of the histology and (11)C-methionine PET image may not be accurate. In the present study, the correlation between (11)C-methionine uptake and cell or microvessel density was analyzed using histological specimens obtained by stereotactic biopsy, and an exact local comparison of (11)C-methionine PET image and histological specimens was conducted. The tumor/normal tissue (T/N) ratio of (11)C-methionine positron emission tomography was found to correlate better with cell density (R=0.747, p=0.000042) and Ki-67 index (R=0.675, p=0.00041) than with microvessel density (R=0.467, p=0.025) in a histological comparison using a stereotactic image. Furthermore, multiple linear regression analysis revealed that cell density was the key determinant for predicting (11)C-methionine level while microvessel density was not. These results suggest that cell density contributes more to (11)C-methionine uptake than microvessel density in glioma tissues and that the previously reported correlation of (11)C-methionine uptake and microvessel density in glioma patients requires reevaluation.
Collapse
Affiliation(s)
- Yoshiko Okita
- Department of Neurosurgery, Osaka University Gradate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 2009; 37:685-90. [PMID: 19915838 DOI: 10.1007/s00259-009-1302-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Accepted: 10/09/2009] [Indexed: 12/22/2022]
Abstract
PURPOSE We retrospectively examined the clinical efficacy of (11)C-methionine positron emission tomography ((11)C-MET PET) in patients with brain neoplasm, especially whether the (11)C-MET PET changed the clinical management and whether the change was beneficial or detrimental. METHODS This study reviewed 89 (11)C-MET PET scans for 80 patients (20 scans for initial diagnosis of brain tumor and 69 scans for differentiating tumor recurrence from radiation necrosis). Final diagnosis and the effect on the intended management were obtained from the questionnaire to the referring physicians or directly from the medical records. The diagnostic sensitivity, specificity, and accuracy for the (11)C-MET PET were evaluated. Regarding the management impact, the rate of scans that caused changes in intended management was also evaluated. Moreover, the occurrence of scans having detrimental diagnostic impact (DDI) and beneficial diagnostic impact (BDI) were evaluated. RESULTS Sensitivity, specificity, and accuracy of (11)C-MET PET was 87.8, 80.0, and 85.9%. The intended management was changed in 50.0% of the scans. DDI and BDI were observed in 4.3 and 36.2% of the total relevant scans, respectively. CONCLUSION (11)C-MET PET can provide useful information in initial diagnosis and differentiating tumor recurrence from radiation necrosis. The intended management was changed in half of the scans. Since a few cases did not receive the requisite treatment due to false-negative results of (11)C-MET PET, management decision should be made carefully, especially in the case of a negative scan.
Collapse
|
31
|
Piepmeier JM. The future of neuro-oncology. Acta Neurochir (Wien) 2009; 151:1343-8. [PMID: 19639245 DOI: 10.1007/s00701-009-0471-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 11/25/2022]
|