1
|
Chen M, Zhao E, Li M, Xu M, Hao S, Gao Y, Wu X, Li X, Yu Y, Yu Z, Yin Y. Kaempferol inhibits non-homologous end joining repair via regulating Ku80 stability in glioma cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154876. [PMID: 37210962 DOI: 10.1016/j.phymed.2023.154876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Targeting DNA damage response and DNA repair proficiency of cancers is an important anticancer strategy. Kaempferol (Kae), a natural flavonoid, displays potent antitumor properties in some cancers. However, the precise underlying mechanism of Kae regulates DNA repair system are poorly understood. PURPOSE We aim to evaluate the efficacy of Kae in the treatment of human glioma as well as the molecular mechanism regarding DNA repair. STUDY DESIGN Effects of Kae on glioma cells were detected using CCK-8 and EdU labeling assays. The molecular mechanism of Kae on glioma was determined using RNAseq. The inhibition effects of Kae on DNA repair were verified using Immunoprecipitation, immunofluorescence, and pimEJ5-GFP report assays. For in vivo study, orthotopic xenograft models were established and treated with Kae or vehicle. Glioma development was monitored by bioluminescence imaging, Magnetic Resonance Imaging (MRI), and brain sections Hematoxylin/Eosin (HE) staining. Immunohistochemical (IHC) analysis was used to detect expression of Ku80, Ki67 and γH2AX in engrafted glioma tissue. RESULTS We found that Kae remarkably inhibits viability of glioma cells and decreases its proliferation. Mechanistically, Kae regulates multiple functional pathways associated with cancer, including non-homologous end joining (NHEJ) repair. Further studies revealed that Kae inhibits release of Ku80 from the double-strand breaks (DSBs) sites via reducing ubiquitylation and degradation of Ku80. Therefore, Kae significantly suppresses NHEJ repair and induces accumulation of DSBs in glioma cells. Moreover, Kae displays a dramatic inhibition effects on glioma growth in an orthotopic transplantation model. These data demonstrate that Kae can induce deubiquitination of Ku80, suppress NHEJ repair and inhibit glioma growth. CONCLUSION Our findings indicate that inhibiting release of Ku80 from the DSBs by Kae may be a potential effective approach for glioma treatment.
Collapse
Affiliation(s)
- Meiyang Chen
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Erdi Zhao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Minjing Li
- Institute of Integrated Medicine, Binzhou Medical University, Yantai 264003, China
| | - Ming Xu
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Shiyu Hao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Yingli Gao
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Xingli Wu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai 264003, China
| | - Xiang Li
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai 264003, China
| | - Yue Yu
- The Second School of Clinical Medicine, Binzhou Medical University, Yantai 264003, China
| | - Zhenhai Yu
- Department of Anatomy, School of Basic Medicine, Binzhou Medical University, Yantai 264003, China
| | - Yancun Yin
- Laboratory of Experimental Hematology, School of Basic Medical Sciences, Binzhou Medical University, No. 346 Guanhai Road, Yantai, Shandong 264003, China.
| |
Collapse
|
2
|
Kamran N, Calinescu A, Candolfi M, Chandran M, Mineharu Y, Asad AS, Koschmann C, Nunez FJ, Lowenstein PR, Castro MG. Recent advances and future of immunotherapy for glioblastoma. Expert Opin Biol Ther 2016; 16:1245-64. [PMID: 27411023 PMCID: PMC5014608 DOI: 10.1080/14712598.2016.1212012] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 07/08/2016] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Outcome for glioma (GBM) remains dismal despite advances in therapeutic interventions including chemotherapy, radiotherapy and surgical resection. The overall survival benefit observed with immunotherapies in cancers such as melanoma and prostate cancer has fuelled research into evaluating immunotherapies for GBM. AREAS COVERED Preclinical studies have brought a wealth of information for improving the prognosis of GBM and multiple clinical studies are evaluating a wide array of immunotherapies for GBM patients. This review highlights advances in the development of immunotherapeutic approaches. We discuss the strategies and outcomes of active and passive immunotherapies for GBM including vaccination strategies, gene therapy, check point blockade and adoptive T cell therapies. We also focus on immunoediting and tumor neoantigens that can impact the efficacy of immunotherapies. EXPERT OPINION Encouraging results have been observed with immunotherapeutic strategies; some clinical trials are reaching phase III. Significant progress has been made in unraveling the molecular and genetic heterogeneity of GBM and its implications to disease prognosis. There is now consensus related to the critical need to incorporate tumor heterogeneity into the design of therapeutic approaches. Recent data also indicates that an efficacious treatment strategy will need to be combinatorial and personalized to the tumor genetic signature.
Collapse
Affiliation(s)
- Neha Kamran
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Alexandra Calinescu
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Marianela Candolfi
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Mayuri Chandran
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Yohei Mineharu
- d Department of Neurosurgery , Kyoto University Graduate School of Medicine , Kyoto , Japan
| | - Antonela S Asad
- c Instituto de Investigaciones Biomédicas (CONICET-UBA), Facultad de Medicina , Universidad de Buenos Aires , Buenos Aires , Argentina
| | - Carl Koschmann
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Felipe J Nunez
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Pedro R Lowenstein
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| | - Maria G Castro
- a Department of Neurosurgery , The University of Michigan School of Medicine , Ann Arbor , MI , USA
- b Department of Cell and Developmental Biology , The University of Michigan School of Medicine , Ann Arbor , MI , USA
| |
Collapse
|
3
|
Aptekar S, Arora M, Lawrence CL, Lea RW, Ashton K, Dawson T, Alder JE, Shaw L. Selective Targeting to Glioma with Nucleic Acid Aptamers. PLoS One 2015; 10:e0134957. [PMID: 26252900 PMCID: PMC4529171 DOI: 10.1371/journal.pone.0134957] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/16/2015] [Indexed: 12/11/2022] Open
Abstract
Malignant glioma is characterised by a rapid growth rate and high capacity for invasive infiltration to surrounding brain tissue; hence, diagnosis and treatment is difficult and patient survival is poor. Aptamers contribute a promising and unique technology for the in vitro imaging of live cells and tissues, with a potentially bright future in clinical diagnostics and therapeutics for malignant glioma. The binding selectivity, uptake capacity and binding target of two DNA aptamers, SA43 and SA44, were investigated in glioma cells and patient tissues. The binding assay showed that SA43 and SA44 bound with strong affinity (Kd, 21.56 ± 4.60 nM and Kd, 21.11 ± 3.30 nM respectively) to the target U87MG cells. Quantitative analysis by flow cytometry showed that the aptamers were able to actively internalise in U87MG and 1321N1 glioma cells compared to the non-cancerous and non-glioma cell types. Confocal microscopy confirmed staining in the cytoplasm, and co-localisation studies with endoplasmic reticulum, Golgi apparatus and lysosomal markers suggested internalisation and compartmentalisation within the endomembrane system. Both aptamers selectively bound to Ku 70 and Ku 80 DNA repair proteins as determined by aptoprecipitation (AP) followed by mass spectrometry analysis and confirmation by Western blot. In addition, aptohistochemical (AHC) staining on paraffin embedded, formalin fixed patient tissues revealed that the binding selectivity was significantly higher for SA43 aptamer in glioma tissues (grade I, II, III and IV) compared to the non-cancerous tissues, whereas SA44 did not show selectivity towards glioma tissues. The results indicate that SA43 aptamer can differentiate between glioma and non-cancerous cells and tissues and therefore, shows promise for histological diagnosis of glioma.
Collapse
Affiliation(s)
- Shraddha Aptekar
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Mohit Arora
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Clare Louise Lawrence
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Robert William Lea
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Katherine Ashton
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Tim Dawson
- Department of Neuropathology, Lancashire Teaching Hospitals (NHS trust), Preston, PR2 9HT, United Kingdom
| | - Jane Elizabeth Alder
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| | - Lisa Shaw
- School of Pharmacy and Biomedical Sciences, College of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, Lancashire, PR1 2HE, United Kingdom
| |
Collapse
|
4
|
DNA-PKcs and Ku70 are predictive markers for poor prognosis of patients with gall bladder malignancies. Appl Immunohistochem Mol Morphol 2015; 22:741-7. [PMID: 25046228 DOI: 10.1097/pai.0000000000000017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Gall bladder cancers (GBCs) are highly resistant to radiotherapy and chemotherapy. Unfortunately, the key molecular mechanisms responsible for therapeutic resistance have not been identified. In this study, the expression of DNA-PKcs and Ku70 in 46 squamous cell/adenosquamous carcinomas (SC/ASCs) and 80 adenocarcinomas (ACs) were examined by immunohistochemical analysis. Positive DNA-PKcs and Ku70 expression were significantly associated with less lymph node metastasis, invasion, and low TNM stage of SC/ASCs and ACs. Univariate Kaplan-Meier analysis showed that loss of DNA-PKcs and Ku70 expression significantly correlated with decreased survival in both SC/ASC and AC patients. Multivariate Cox regression analysis showed that loss of DNA-PKcs and Ku70 expression was an independent poor prognostic predictor in both SC/ASC and AC patients. Our study suggested that DNA-PKcs and Ku70 are tumor suppressors, and loss of DNA-PKcs and Ku70 expression is an important biological marker for metastasis, invasion, and prognosis of GBC. Currently, there is no implication of DNA-PKcs and Ku70 expression in chemoresistance or radioresistance in GBC.
Collapse
|
5
|
O’Sullivan D, Henry M, Joyce H, Walsh N, Auley EM, Dowling P, Swan N, Moriarty M, Barnham P, Clynes M, Larkin A. 7B7: a novel antibody directed against the Ku70/Ku80 heterodimer blocks invasion in pancreatic and lung cancer cells. Tumour Biol 2014; 35:6983-97. [DOI: 10.1007/s13277-014-1857-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/17/2014] [Indexed: 02/06/2023] Open
|
6
|
Cellular-based immunotherapies for patients with glioblastoma multiforme. Clin Dev Immunol 2012; 2012:764213. [PMID: 22474481 PMCID: PMC3299309 DOI: 10.1155/2012/764213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/08/2011] [Indexed: 12/30/2022]
Abstract
Treatment of patients with glioblastoma multiforme (GBM) remains to be a challenge with a median survival of 14.6 months following diagnosis. Standard treatment options include surgery, radiation therapy, and systemic chemotherapy with temozolomide. Despite the fact that the brain constitutes an immunoprivileged site, recent observations after immunotherapies with lysate from autologous tumor cells pulsed on dendritic cells (DCs), peptides, protein, messenger RNA, and cytokines suggest an immunological and even clinical response from immunotherapies. Given this plethora of immunomodulatory therapies, this paper gives a structure overview of the state-of-the art in the field. Particular emphasis was also put on immunogenic antigens as potential targets for a more specific stimulation of the immune system against GBM.
Collapse
|