1
|
Hassan AMIA, Zhao Y, Chen X, He C. Blockage of Autophagy for Cancer Therapy: A Comprehensive Review. Int J Mol Sci 2024; 25:7459. [PMID: 39000565 PMCID: PMC11242824 DOI: 10.3390/ijms25137459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence and mortality of cancer are increasing, making it a leading cause of death worldwide. Conventional treatments such as surgery, radiotherapy, and chemotherapy face significant limitations due to therapeutic resistance. Autophagy, a cellular self-degradation mechanism, plays a crucial role in cancer development, drug resistance, and treatment. This review investigates the potential of autophagy inhibition as a therapeutic strategy for cancer. A systematic search was conducted on Embase, PubMed, and Google Scholar databases from 1967 to 2024 to identify studies on autophagy inhibitors and their mechanisms in cancer therapy. The review includes original articles utilizing in vitro and in vivo experimental methods, literature reviews, and clinical trials. Key terms used were "Autophagy", "Inhibitors", "Molecular mechanism", "Cancer therapy", and "Clinical trials". Autophagy inhibitors such as chloroquine (CQ) and hydroxychloroquine (HCQ) have shown promise in preclinical studies by inhibiting lysosomal acidification and preventing autophagosome degradation. Other inhibitors like wortmannin and SAR405 target specific components of the autophagy pathway. Combining these inhibitors with chemotherapy has demonstrated enhanced efficacy, making cancer cells more susceptible to cytotoxic agents. Clinical trials involving CQ and HCQ have shown encouraging results, although further investigation is needed to optimize their use in cancer therapy. Autophagy exhibits a dual role in cancer, functioning as both a survival mechanism and a cell death pathway. Targeting autophagy presents a viable strategy for cancer therapy, particularly when integrated with existing treatments. However, the complexity of autophagy regulation and the potential side effects necessitate further research to develop precise and context-specific therapeutic approaches.
Collapse
Affiliation(s)
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China (X.C.)
- Department of Pharmaceutical Science, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| |
Collapse
|
2
|
Revishchin AV, Pavlova GV. [Antidepressants as additional drugs for human brain gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:97-102. [PMID: 39670785 DOI: 10.17116/neiro20248806197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Glioblastoma (GB) is the most aggressive malignant brain tumor. To date, there is no optimal treatment approach for this disease. Antidepressants with antitumor effects are one of the new therapeutic directions. A distinctive feature of these drugs is their approval for clinical practice in the treatment of depressive disorders. OBJECTIVE To analyze available literature data on mechanisms of antitumor action and advisability of antidepressants for GB. MATERIAL AND METHODS We reviewed the databases using the keywords «glioma», «antidepressants», «drug repurposing». RESULTS According to numerous preclinical studies, activity of antidepressants at the cellular level is aimed at enhancing apoptosis and autophagy, inhibiting the cell cycle, differentiating and/or maintaining the stem cell status, as well as migrating tumor cells. CONCLUSION Available data can substantiate further experimental and clinical studies, as well as searching for therapeutic combinations using antidepressants for the treatment of human gliomas.
Collapse
Affiliation(s)
- A V Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
| | - G V Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Moscow, Russia
- Burdenko Neurosurgical Center, Moscow, Russia
| |
Collapse
|
3
|
Zhang S, Jiang R, Yang M, Wang T, Chen H, Shi Y, Liu W, Huang M. Identification of a novel eighteen-gene signature of recurrent metastasis neuroblastoma. J Mol Med (Berl) 2023; 101:403-417. [PMID: 36856811 DOI: 10.1007/s00109-023-02299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/26/2023] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
Neuroblastoma is the most common malignant tumor in childhood, and metastases occur in more than 30% patients. Recurrent metastasis is the main cause of poor prognosis and high mortality in neuroblastoma. In this regard, there is still a lack of sufficient biomarkers and effective therapies. Therefore, we performed a multi-omics analysis of neuroblastoma patients from Therapeutically Applicable Research To Generate Effective Treatments (TARGET). With clinical relapse site information, tumor samples derived from the primary site were divided into recurrent metastasis and primary tumor groups. The initial gene signature was obtained by comparing RNA-Seq and copy number variation differences. Survival data was used to further filter prognosis-related genes. This 18-gene signature consists of three clusters: tumor suppression, cell proliferation, and immunity. A super enhancer is involved in the enhanced expression of NCAPG in cluster2 together with IRF3. Based on the gene signature expression in primary neuroblastoma, it is possible to predict tumor metastasis before it occurs. According to the anticancer drug dataset of Genomics of Drug Sensitivity in Cancer (GDSC), vinorelbine and docetaxel were predicted to have high sensitivity against recurrent metastatic neuroblastoma. In conclusion, our study offers a novel metastasis biomarker and helps understand the mechanisms of tumor recurrent metastasis. KEY MESSAGES: We identified a novel eighteen-gene signature of recurrent metastasis neuroblastoma and build risk and classification models. We dissected the regulatory role of NCAPG in signatures. We found immune exhaustion and immunosuppression in recurrent metastasis neuroblastoma. Vinorelbine and docetaxel were predicted to have high sensitivity against recurrent metastatic neuroblastoma.
Collapse
Affiliation(s)
- Shufan Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Jiang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Manqiu Yang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Tao Wang
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, 215123, China
| | - Hui Chen
- Human Genetics, Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, 138672, Singapore
| | - Yifan Shi
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wei Liu
- The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Moli Huang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Zhou Q, Liu H, Liu J, Liu Z, Xu C, Zhang H, Xin C. Screening Key Pathogenic Genes and Small Molecule Compounds for PNET. J Pediatr Hematol Oncol 2023; 45:e180-e187. [PMID: 36524840 PMCID: PMC9949520 DOI: 10.1097/mph.0000000000002605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Primitive neuroectodermal tumors (PNET) are rare malignant tumors, but the mortality rate of the patients is extremely high. The aim of this study was to identify the hub genes and pathways involved in the pathogenesis of PNET and to screen the potential small molecule drugs for PNET. We extracted gene expression profiles from the Gene Expression Omnibus database and identified differentially expressed genes (DEGs) through Limma package in R. Two expression profiles (GSE14295 and GSE74195) were downloaded, including 33 and 5 cases separately. Four hundred sixty-eight DEGs (161 upregulated; 307 downregulated) were identified. Functional annotation and KEGG pathway enrichment of the DEGs were performed using DAVID and Kobas. Gene Ontology analysis showed the significantly enriched Gene Ontology terms included but not limited to mitosis, nuclear division, cytoskeleton, synaptic vesicle, syntaxin binding, and GABA A receptor activity. Cancer-related signaling pathways, such as DNA replication, cell cycle, and synaptic vesicle cycle, were found to be associated with these genes. Subsequently, the STRING database and Cytoscape were utilized to construct a protein-protein interaction and screen the hub genes, and we identified 5 hub genes (including CCNB1, CDC20, KIF11, KIF2C, and MAD2L1) as the key biomarkers for PNET. Finally, we identified potential small molecule drugs through CMap. Seven small molecule compounds, including trichostatin A, luteolin, repaglinide, clomipramine, lorglumide, vorinostat, and resveratrol may become potential candidates for PNET drugs.
Collapse
Affiliation(s)
- Qi Zhou
- Scientifific Research Management Office
| | - Hao Liu
- The second Hospital of Harbin, Harbin, Heilongjiang Proviance
| | - Junsi Liu
- Department of Neurosurgical laboratory
| | - Zhendong Liu
- Department of Orthopaedics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan, China
| | - Caixia Xu
- Department of Neurosurgical laboratory
| | - Haiyu Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin Heilongjiang Province
| | - Chen Xin
- Department of Neurosurgical laboratory
| |
Collapse
|
5
|
Asensi-Cantó A, López-Abellán MD, Castillo-Guardiola V, Hurtado AM, Martínez-Penella M, Luengo-Gil G, Conesa-Zamora P. Antitumoral Effects of Tricyclic Antidepressants: Beyond Neuropathic Pain Treatment. Cancers (Basel) 2022; 14:cancers14133248. [PMID: 35805019 PMCID: PMC9265090 DOI: 10.3390/cancers14133248] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/26/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Tricyclic antidepressants (TCAs) are old and known therapeutic agents whose good safety profile makes them good candidates for drug repurposing. As the relevance of nerves in cancer development and progression is being unveiled, attention now turns to the use of nerve-targeting drugs, such as TCAs, as an interesting approach to combat cancer. In this review, we discuss current evidence about the safety of TCAs, their application to treat neuropathic pain in cancer patients, and in vitro and in vivo demonstrations of the antitumoral effects of TCAs. Finally, the results of ongoing clinical trials and future directions are discussed. Abstract Growing evidence shows that nerves play an active role in cancer development and progression by altering crucial molecular pathways and cell functions. Conversely, the use of neurotropic drugs, such as tricyclic antidepressants (TCAs), may modulate these molecular signals with a therapeutic purpose based on a direct antitumoral effect and beyond the TCA use to treat neuropathic pain in oncology patients. In this review, we discuss the TCAs’ safety and their central effects against neuropathic pain in cancer, and the antitumoral effects of TCAs in in vitro and preclinical studies, as well as in the clinical setting. The current evidence points out that TCAs are safe and beneficial to treat neuropathic pain associated with cancer and chemotherapy, and they block different molecular pathways used by cancer cells from different locations for tumor growth and promotion. Likewise, ongoing clinical trials evaluating the antineoplastic effects of TCAs are discussed. TCAs are very biologically active compounds, and their repurposing as antitumoral drugs is a promising and straightforward approach to treat specific cancer subtypes and to further define their molecular targets, as well as an interesting starting point to design analogues with increased antitumoral activity.
Collapse
Affiliation(s)
- Antonio Asensi-Cantó
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - María Dolores López-Abellán
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Verónica Castillo-Guardiola
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
| | - Ana María Hurtado
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Grupo de Investigación en Inmunobiología para la Acuicultura, Departamento de Biología Celular e Histología, Facultad de Biología, Universidad de Murcia, 30100 Murcia, Spain
| | - Mónica Martínez-Penella
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Servicio de Farmacia Hospitalaria, Hospital Universitario Santa Lucía, 30202 Cartagena, Spain
| | - Ginés Luengo-Gil
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| | - Pablo Conesa-Zamora
- Facultad de Ciencias de la Salud, Universidad Católica de Murcia (UCAM), 30107 Guadalupe, Spain; (A.A.-C.); (M.D.L.-A.); (M.M.-P.)
- Grupo de Investigación en Patología Molecular y Farmacogenética, Servicios de Anatomía Patológica y Análisis Clínicos, Instituto Murciano de Investigación Biosanitaria (IMIB), Hospital Universitario Santa Lucía, 30202 Cartagena, Spain; (V.C.-G.); (A.M.H.)
- Correspondence: (G.L.-G.); (P.C.-Z.); Tel.: +34-968-128-600 (ext. 951615) (G.L.-G. & P.C.-Z.)
| |
Collapse
|
6
|
Bahmad HF, Elajami MK, El Zarif T, Bou-Gharios J, Abou-Antoun T, Abou-Kheir W. Drug repurposing towards targeting cancer stem cells in pediatric brain tumors. Cancer Metastasis Rev 2020; 39:127-148. [PMID: 31919619 DOI: 10.1007/s10555-019-09840-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the pediatric population, brain tumors represent the most commonly diagnosed solid neoplasms and the leading cause of cancer-related deaths globally. They include low-grade gliomas (LGGs), medulloblastomas (MBs), and other embryonal, ependymal, and neuroectodermal tumors. The mainstay of treatment for most brain tumors includes surgical intervention, radiation therapy, and chemotherapy. However, resistance to conventional therapy is widespread, which contributes to the high mortality rates reported and lack of improvement in patient survival despite advancement in therapeutic research. This has been attributed to the presence of a subpopulation of cells, known as cancer stem cells (CSCs), which reside within the tumor bulk and maintain self-renewal and recurrence potential of the tumor. An emerging promising approach that enables identifying novel therapeutic strategies to target CSCs and overcome therapy resistance is drug repurposing or repositioning. This is based on using previously approved drugs with known pharmacokinetic and pharmacodynamic characteristics for indications other than their traditional ones, like cancer. In this review, we provide a synopsis of the drug repurposing methodologies that have been used in pediatric brain tumors, and we argue how this selective compilation of approaches, with a focus on CSC targeting, could elevate drug repurposing to the next level.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Mohamad K Elajami
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Talal El Zarif
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Jolie Bou-Gharios
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon
| | - Tamara Abou-Antoun
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos Campus, CHSC 6101, Byblos, Lebanon.
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Bliss Street, DTS Bldg, Room 116-B, Beirut, Lebanon.
| |
Collapse
|
7
|
Emerging therapeutic potential of anti-psychotic drugs in the management of human glioma: A comprehensive review. Oncotarget 2019; 10:3952-3977. [PMID: 31231472 PMCID: PMC6570463 DOI: 10.18632/oncotarget.26994] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
Despite numerous advancements in the last decade, human gliomas such as astrocytoma and glioblastoma multiforme have the worst prognoses among all cancers. Anti-psychotic drugs are commonly prescribed to treat mental disorders among cancer patients, and growing empirical evidence has revealed their antitumor, anti-metastatic, anti-angiogenic, anti-proliferative, chemo-preventive, and neo-adjuvant efficacies in various in vitro, in vivo, and clinical glioma models. Anti-psychotic drugs have drawn the attention of physicians and researchers owing to their beneficial effects in the prevention and treatment of gliomas. This review highlights data on the therapeutic potential of various anti-psychotic drugs as anti-proliferative, chemopreventive, and anti-angiogenic agents in various glioma models via the modulation of upstream and downstream molecular targets involved in apoptosis, autophagy, oxidative stress, inflammation, and the cell cycle in in vitro and in vivo preclinical and clinical stages among glioma patients. The ability of anti-psychotic drugs to modulate various signaling pathways and multidrug resistance-conferring proteins that enhance the efficacy of chemotherapeutic drugs with low side-effects exemplifies their great potential as neo-adjuvants and potential chemotherapeutics in single or multimodal treatment approach. Moreover, anti-psychotic drugs confer the ability to induce glioma into oligodendrocyte-like cells and neuronal-like phenotype cells with reversal of epigenetic alterations through inhibition of histone deacetylase further rationalize their use in glioma treatment. The improved understanding of anti-psychotic drugs as potential chemotherapeutic drugs or as neo-adjuvants will provide better information for their use globally as affordable, well-tolerated, and effective anticancer agents for human glioma.
Collapse
|
8
|
Bahmad HF, Chamaa F, Assi S, Chalhoub RM, Abou-Antoun T, Abou-Kheir W. Cancer Stem Cells in Neuroblastoma: Expanding the Therapeutic Frontier. Front Mol Neurosci 2019; 12:131. [PMID: 31191243 PMCID: PMC6546065 DOI: 10.3389/fnmol.2019.00131] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor often diagnosed in childhood. Despite intense efforts to develop a successful treatment, current available therapies are still challenged by high rates of resistance, recurrence and progression, most notably in advanced cases and highly malignant tumors. Emerging evidence proposes that this might be due to a subpopulation of cancer stem cells (CSCs) or tumor-initiating cells (TICs) found in the bulk of the tumor. Therefore, the development of more targeted therapy is highly dependent on the identification of the molecular signatures and genetic aberrations characteristic to this subpopulation of cells. This review aims at providing an overview of the key molecular players involved in NB CSCs and focuses on the experimental evidence from NB cell lines, patient-derived xenografts and primary tumors. It also provides some novel approaches of targeting multiple drivers governing the stemness of CSCs to achieve better anti-tumor effects than the currently used therapeutic agents.
Collapse
Affiliation(s)
- Hisham F Bahmad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Chamaa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Sahar Assi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Reda M Chalhoub
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Tamara Abou-Antoun
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Biber A, Durusu İZ, Özen C. In vitro anticancer effect of tricyclic antidepressant nortriptyline on multiple myeloma. Turk J Biol 2018; 42:414-421. [PMID: 30930625 PMCID: PMC6438120 DOI: 10.3906/biy-1802-11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Drug repurposing has been proved to be an effective strategy to meet the urgent need for novel anticancer agents for multiple myeloma (MM) treatment. In this work, we aimed to investigate the anticancer effect and mechanism of tricyclic antidepressant nortriptyline (NTP) on the U266 MM cell line. The in vitro inhibitory effect of NTP at various doses and time points was studied. The combination potential of cisplatin-NTP was also investigated. Cell cycle analysis and three flow cytometric apoptosis assays were performed. NTP showed dose- and time-dependent inhibitory effects on the U266 MM cell line. NTP had greater inhibitory effect than cisplatin (IC50 26 µM vs. 40 µM). The cisplatin-NTP combination is antagonistic. In addition to G2/M phase cell cycle arrest, NTP induced apoptosis as indicated by mitochondrial membrane potential and caspase-3 and annexin V assays. NTP has inhibitory and apoptotic effects on U266 MM cells. The cisplatin-NTP combination indicated strong antagonism, which may have significant clinical relevance since antidepressants are commonly employed in adjuvant therapy for cancer patients. Based on these findings, the therapeutic potential of NTP for MM treatment should be investigated with in-depth mechanistic studies and in vivo experiments.
Collapse
Affiliation(s)
- Ayşenur Biber
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| | - İpek Z Durusu
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| | - Can Özen
- Biotechnology Graduate Program, Central Laboratory, Center of Excellence for Biomaterials and Tissue Engineering, Middle East Technical University , Ankara , Turkey
| |
Collapse
|
10
|
Razmi M, Rabbani-Chadegani A, Hashemi-Niasari F, Ghadam P. Lithium chloride attenuates mitomycin C induced necrotic cell death in MDA-MB-231 breast cancer cells via HMGB1 and Bax signaling. J Trace Elem Med Biol 2018; 48:87-96. [PMID: 29773200 DOI: 10.1016/j.jtemb.2018.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/19/2018] [Accepted: 03/12/2018] [Indexed: 12/14/2022]
Abstract
The clinical use of potent anticancer drug mitomycin C (MMC) has limited due to side effects and resistance of cancer cells. The aim of this study was to investigate whether lithium chloride (LiCl), as a mood stabilizer, can affect the sensitivity of MDA-MB-231 breast cancer cells to mitomycin C. The cells were exposed to various concentrations of mitomycin C alone and combined with LiCl and the viability determined by trypan blue and MTT assays. Proteins were analyzed by western blot and mRNA expression of HMGB1 MMP9 and Bcl-2 were analyzed by RT-PCR. Flow cytometry was used to determine the cell cycle arrest and percent of apoptotic and necrotic cells. Concentration of Bax assessed by ELISA. Exposure of the cells to mitomycin C revealed IC50 value of 20 μM, whereas pretreatment of the cells with LiCl induced synergistic cytotoxicity and IC50 value declined to 5 μM. LiCl combined with mitomycin C significantly down-regulated HMGB1, MMP9 and Bcl-2 gene expression but significantly increased the level of Bax protein. In addition, the content of HMGB1 in the nuclei decreased and pretreatment with LiCl reduced the content of HMGB1 release induced by MMC. LiCl increased mitomycin C-induced cell shrinkage and PARP fragmentation suggesting induction of apoptosis in these cells. LiCl prevented mitomycin C-induced necrosis and changed the cell death arrest at G2/M-phase. Taking all together, it is suggested that LiCl efficiently enhances mitomycin C-induced apoptosis and HMGB1, Bax and Bcl-2 expression may play a major role in this process, the findings that provide a new therapeutic strategy for LiCl in combination with mitomycin C.
Collapse
Affiliation(s)
- Mahdieh Razmi
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Azra Rabbani-Chadegani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - Fatemeh Hashemi-Niasari
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Parinaz Ghadam
- Department of Biotechnology, Faculty of Biological Science, University of Alzahra, Tehran, Iran
| |
Collapse
|
11
|
Becker J, Wilting J. WNT signaling, the development of the sympathoadrenal-paraganglionic system and neuroblastoma. Cell Mol Life Sci 2018; 75:1057-1070. [PMID: 29058015 PMCID: PMC5814469 DOI: 10.1007/s00018-017-2685-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/22/2017] [Accepted: 10/11/2017] [Indexed: 12/04/2022]
Abstract
Neuroblastoma (NB) is a tumor of the sympathoadrenal system arising in children under 15 years of age. In Germany, NB accounts for 7% of childhood cancer cases, but 11% of cancer deaths. It originates from highly migratory progenitor cells that leave the dorsal neural tube and contribute neurons and glial cells to sympathetic ganglia, and chromaffin and supportive cells to the adrenal medulla and paraganglia. Clinically, histologically and molecularly, NBs present as extremely heterogeneous, ranging from very good to very poor prognosis. The etiology of NB still remains unclear and needs to be elucidated, however, aberrant auto- and paracrine embryonic cell communications seem to be likely candidates to initiate or facilitate the emergence, progression and regression of NB. The wingless-type MMTV integration site (WNT) family of proteins represents an evolutionary highly conserved signaling system that orchestrates embryogenesis. At least 19 ligands in the human, numerous receptors and co-receptors are known, which control not only proliferation, but also cell polarity, migration and differentiation. Here we seek to interconnect aspects of WNT signaling with sympathoadrenal and paraganglionic development to define new WNT signaling cues in the etiology and progression of NB.
Collapse
Affiliation(s)
- Jürgen Becker
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany.
| | - Jörg Wilting
- Institute of Anatomy and Cell Biology, University Medical School Göttingen, 37075, Göttingen, Germany
| |
Collapse
|
12
|
Duffy DJ, Krstic A, Schwarzl T, Halasz M, Iljin K, Fey D, Haley B, Whilde J, Haapa-Paananen S, Fey V, Fischer M, Westermann F, Henrich KO, Bannert S, Higgins DG, Kolch W. Wnt signalling is a bi-directional vulnerability of cancer cells. Oncotarget 2018; 7:60310-60331. [PMID: 27531891 PMCID: PMC5312386 DOI: 10.18632/oncotarget.11203] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 07/26/2016] [Indexed: 12/30/2022] Open
Abstract
Wnt signalling is involved in the formation, metastasis and relapse of a wide array of cancers. However, there is ongoing debate as to whether activation or inhibition of the pathway holds the most promise as a therapeutic treatment for cancer, with conflicting evidence from a variety of tumour types. We show that Wnt/β-catenin signalling is a bi-directional vulnerability of neuroblastoma, malignant melanoma and colorectal cancer, with hyper-activation or repression of the pathway both representing a promising therapeutic strategy, even within the same cancer type. Hyper-activation directs cancer cells to undergo apoptosis, even in cells oncogenically driven by β-catenin. Wnt inhibition blocks proliferation of cancer cells and promotes neuroblastoma differentiation. Wnt and retinoic acid co-treatments synergise, representing a promising combination treatment for MYCN-amplified neuroblastoma. Additionally, we report novel cross-talks between MYCN and β-catenin signalling, which repress normal β-catenin mediated transcriptional regulation. A β-catenin target gene signature could predict patient outcome, as could the expression level of its DNA binding partners, the TCF/LEFs. This β-catenin signature provides a tool to identify neuroblastoma patients likely to benefit from Wnt-directed therapy. Taken together, we show that Wnt/β-catenin signalling is a bi-directional vulnerability of a number of cancer entities, and potentially a more broadly conserved feature of malignant cells.
Collapse
Affiliation(s)
- David J Duffy
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, Florida, USA
| | - Aleksandar Krstic
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Thomas Schwarzl
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Current address: European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Melinda Halasz
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Dirk Fey
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Bridget Haley
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | - Jenny Whilde
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland
| | | | - Vidal Fey
- VTT Technical Research Centre of Finland, Espoo, Finland
| | - Matthias Fischer
- Department of Paediatric Haematology and Oncology and Center for Molecular Medicine Cologne (CMMC), University Hospital Cologne, Cologne, Germany
| | - Frank Westermann
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai-Oliver Henrich
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Steffen Bannert
- Division of NB Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Desmond G Higgins
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin, Ireland.,Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, Ireland.,School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
13
|
Aras Y, Erguven M, Aktas E, Yazihan N, Bilir A. Antagonist activity of the antipsychotic drug lithium chloride and the antileukemic drug imatinib mesylate during glioblastoma treatment in vitro. Neurol Res 2016; 38:766-74. [PMID: 27367429 DOI: 10.1080/01616412.2016.1203096] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Glioblastoma (GBM), the most common primary tumour of the central nervous system, is characterised by a high malignancy and poor prognosis. The aims of this study were to investigate whether the combination of imatinib mesylate (IM) and lithium chloride (LiCl) exhibited a synergistic effect in treatment and to determine whether midkine (MK) affected the fate of this treatment in vitro. METHODS Monolayer and spheroid cultures of the T98G human GBM cell line were treated with an IM and LiCl combination for 72 h. The cell proliferation index, apoptotic index, cell cycle distribution, apoptotic and anti-apoptotic protein levels, and cAMP level as well as the cellular morphology and ultrastructure were evaluated. RESULTS All applications inhibited cell proliferation and induced apoptosis. The most substantial decreases in cell proliferation and the caspase-3, epidermal growth factor receptor (EGFR), platelet derived growth factor receptor-alpha (PDGFR-α), multidrug resistance protein-1 (MRP-1), aquaporin-4 (AQP-4) and cAMP levels were induced by the LiCl treatment, which exhibited more pronounced effects compared with the combination treatment. LiCl was less effective in decreasing the MK and B cell lymphoma-2 (Bcl-2) levels compared with the combination treatment. The most substantial decrease in the p170 levels was identified following the combination treatment, whereas IM induced the second greatest decrease. LiCl alone had no effect on the p170 levels. IM induced the most substantial decrease in the phospho-glycogen synthase kinase 3-beta (p-GSK-3β)/glycogen synthase kinase 3-beta (GSK-3β) ratio, and LiCl induced the second most substantial decrease. Both LiCl and the combination treatment induced G2 + M arrest, whereas IM induced G0 + G1 arrest after 72 h of exposure. An apoptotic appearance and autophagic vacuoles were commonly identified in the LiCl, combination and IM groups, respectively. CONCLUSIONS The combination of IM and LiCl exhibited an antagonist effect, and MK had a role at this antagonism.
Collapse
Affiliation(s)
- Yavuz Aras
- a İstanbul Faculty of Medicine, Departmentof Neurosurgery , İstanbul University , İstanbul , Turkey
| | - Mine Erguven
- b Faculty of Engineering and Vocational School of Health Sciences , İstanbul Aydın University , İstanbul , Turkey
| | - Esin Aktas
- c Department of Immunology , Prof. Dr. Aziz Sancar Institute of Experimental Medicine, İstanbul University , İstanbul , Turkey
| | - Nuray Yazihan
- d Faculty of Medicine, Department of Pathophysiology , Ankara University , Ankara , Turkey
| | - Ayhan Bilir
- e Emine-Bahaeddin Nakıboğlu Faculty of Medicine, Department of Histology and Embryology , Zirve University , Gaziantep , Turkey
| |
Collapse
|
14
|
Mahdavi SR, Yahyapour R, Nikoofar A. Cytotoxic effects of hyperthermia, chemotherapy (Navelbine) and radiation on glioma spheroids. Radiat Phys Chem Oxf Engl 1993 2016. [DOI: 10.1016/j.radphyschem.2016.01.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Kalathur M, Toso A, Chen J, Revandkar A, Danzer-Baltzer C, Guccini I, Alajati A, Sarti M, Pinton S, Brambilla L, Di Mitri D, Carbone G, Garcia-Escudero R, Padova A, Magnoni L, Tarditi A, Maccari L, Malusa F, Kalathur RKR, A. Pinna L, Cozza G, Ruzzene M, Delaleu N, Catapano CV, Frew IJ, Alimonti A. A chemogenomic screening identifies CK2 as a target for pro-senescence therapy in PTEN-deficient tumours. Nat Commun 2015; 6:7227. [DOI: 10.1038/ncomms8227] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/21/2015] [Indexed: 12/16/2022] Open
|
16
|
Inhibiting phosphorylation of the oncogenic PAX3-FOXO1 reduces alveolar rhabdomyosarcoma phenotypes identifying novel therapy options. Oncogenesis 2015; 4:e145. [PMID: 25821947 PMCID: PMC4491609 DOI: 10.1038/oncsis.2015.2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 12/15/2022] Open
Abstract
Patients with translocation-positive alveolar rhabdomyosarcoma (ARMS), an aggressive childhood tumor primarily characterized by the PAX3-FOXO1 oncogenic fusion protein, have a poor prognosis because of lack of therapies that specifically target ARMS tumors. This fact highlights the need for novel pharmaceutical interventions. Posttranslational modifications such as phosphorylation are becoming attractive biological targets for the development of such interventions. Along these lines, we demonstrated that PAX3-FOXO1 is phosphorylated at three specific sites and that its pattern of phosphorylation is altered relative to wild-type Pax3 throughout early myogenesis and in ARMS tumor cells. However, little work has been performed examining the effect of directly inhibiting phosphorylation at these sites on ARMS development. To address this gap in knowledge, we used small molecule inhibitors or mutational analysis to specifically inhibit phosphorylation of PAX3-FOXO1 to investigate how altering phosphorylation of the oncogenic fusion protein affects ARMS phenotypes. We found that inhibiting the phosphorylation of PAX3-FOXO1 at Ser201 significantly reduced migration, invasion and proliferation in two independent ARMS tumor cell lines. Further, we found that inhibition of phosphorylation at Ser205 also decreased proliferation and anchorage-independent growth. Consistent with these in vitro results, we demonstrate for the first time that PAX3-FOXO1 is phosphorylated at Ser201 and Ser205 in a primary tumor sample and in tumor cells actively invading the surrounding normal tissue. This report is the first to demonstrate that the direct inhibition of PAX3-FOXO1 phosphorylation reduces ARMS tumor phenotypes in vitro and that these phosphorylation events are present in primary human ARMS tumors and invading tumor cells. These results identify phosphorylation of PAX3-FOXO1, especially at Ser201, as a novel biological target that can be explored as a promising avenue for ARMS therapies.
Collapse
|
17
|
Sabancι PA, Ergüven M, Yazιhan N, Aktaş E, Aras Y, Civelek E, Aydoseli A, Imer M, Gürtekin M, Bilir A. Sorafenib and lithium chloride combination treatment shows promising synergistic effects in human glioblastoma multiforme cells in vitro but midkine is not implicated. Neurol Res 2014; 36:189-97. [PMID: 24512012 DOI: 10.1179/1743132813y.0000000283] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES The objectives of this study were to test the effects of the new combination treatment modality, sorafenib (SOR) and lithium chloride (LiCl) and to assess whether midkine (MK) protein has a role in any potential effects. METHODS Monolayer and spheroid cultures of T98G human glioblastoma multiforme (GBM) cells were treated with LiCl and SOR (inhibition concentration 50 value = 100 μM), or their combination, or were left untreated (control). Cell proliferation and apoptotic indices, the mechanism of action, and the levels of apoptotic and anti-apoptotic proteins were evaluated in monolayer cultures and ultrastructure was evaluated by transmission electron microscopy (TEM) in spheroid cultures after for 72 hours. RESULTS All drug applications decreased cell numbers and increased the apoptotic index. The combination shows a synergistic effect. In the combination group, the decrease in cell numbers and the increase in the apoptotic index were significantly greater than with the individual drugs (P < 0.01). The combination treatment led to the greatest decreases in MRP-1 and p170 levels; but the greatest decreases in p-STAT-3, p-ERK (P < 0.05), p-AKT, p-GSK-3-beta (P < 0.01), EGFR (P < 0.01), NF-kappa-β levels were with SOR alone, followed by the combination. The decreases in MK levels in the SOR and combination groups were similar (P = 0.06). Severe ultrastructural damage was more frequently observed in the combination group compared with the other groups. CONCLUSIONS These results suggest the possibility that the addition of LiCl to SOR could improve the prognosis in at least some patients who need both cancer and psychotherapy and indicate the need for further studies.
Collapse
|
18
|
Rabbani-Chadegani A, Paydar P, Amirshenava M, Aramvash A. An in vitro study on the effect of vinca alkaloid, vinorelbine, on chromatin histone, HMGB proteins and induction of apoptosis in mice non-adherent bone marrow cells. Drug Chem Toxicol 2014; 38:220-6. [PMID: 25004144 DOI: 10.3109/01480545.2014.933347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Vinoreline is a vinca alkaloid anticancer drug widely used in cancer therapy. Drugs are not target specific, therefore might affect normal tissues/cells, in which bone marrow is the important one. OBJECTIVE To elucidate the cytotoxic and genotoxic effect of vinca alkaloid anti cancer drug, vinorelbine, on mice non-adherent bone marrow cells in vitro. MATERIALS AND METHODS Non-adherent bone marrow cells were isolated and exposed to various concentrations (0-160 µg/ml) for 4 h at 23 °C. The chromatin proteins were analyzed by SDS PAGE and western blot. Fluorescent dye staining of the cells, anion superoxide and DNA fragmentations assays were also employed. RESULT The results from MTT and trypan blue exclusion assays represented reduction of the cells viability. Extractability of histones and HMG proteins contrasted with difficulty as their content was decreased on SDS-gel upon increasing drug concentration as western blots confirmed it. The amount of degradation form of PARP (89 KD) increased significantly in a dose dependent manner. Increase in anion superoxide production and DNA fragmentation together with cytological detection of chromatin condensation and cellular damage upon exposure of the cells to vinorelbine were indicative of apoptosis induction in these normal cells. CONCLUSION Vinorelbine is genotoxic in non-adherent bone marrow cells as affects chromatin components, DNA, histone and HMGB1 proteins and induces apoptosis.
Collapse
Affiliation(s)
- Azra Rabbani-Chadegani
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | | | |
Collapse
|
19
|
Lithium chloride suppresses colorectal cancer cell survival and proliferation through ROS/GSK-3β/NF-κB signaling pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:241864. [PMID: 25002914 PMCID: PMC4070474 DOI: 10.1155/2014/241864] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/30/2014] [Accepted: 05/04/2014] [Indexed: 11/18/2022]
Abstract
Glycogen synthase kinase-3β (GSK-3β), a serine/threonine protein kinase, has been regarded as a potential therapeutic target for multiple human cancers. In addition, oxidative stress is closely related to all aspects of cancer. We sought to determine the biological function of lithium, one kind of GSK-3β inhibitors, in the process of reactive oxygen species (ROS) production in colorectal cancer. In this study, we analyzed the cell apoptosis and proliferation by cell viability, EdU, and flow cytometry assays through administration of LiCl. We used polymerase chain reaction and Western blotting to establish the effect of GSK-3β inhibition on the nuclear factor-κB (NF-κB) pathway. Results showed administration of LiCl increased apoptosis and the level of ROS in colorectal cancer cells. Furthermore, the underlying mechanisms could be mediated by the reduction of NF-κB expression and NF-κB-mediated transcription. Taken together, our results demonstrated that therapeutic targeting of ROS/GSK-3β/NF-κB pathways may be an effective way for colorectal cancer intervention, although further preclinical and clinical testing are desirable.
Collapse
|
20
|
Tian X, Hou W, Bai S, Fan J, Tong H, Xu H. XAV939 inhibits the stemness and migration of neuroblastoma cancer stem cells via repression of tankyrase 1. Int J Oncol 2014; 45:121-8. [PMID: 24789807 DOI: 10.3892/ijo.2014.2406] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 03/13/2014] [Indexed: 11/05/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. One fundamental issue regarding NB recurrence and metastasis is the maintenance of cancer stem cells (CSCs) stemness. Tankyrase 1 (TNKS1) is overexpressed in several types of cancers and in NB cell lines. XAV939 is a small molecule inhibitor of TNKS1 and can induce apoptosis of NB cells. In this study, we showed that the surface marker CD133 method was more suitable for isolating NB CSCs than the side-population method, and 60 µM etoposide was optimal for enriching NB CSCs. The NB CSCs were demonstrated in juvenescence or stemness state by electron microscopy, which was in line with the characteristics of CSCs. Furthermore, we demonstrated that the expression of the CSCs marker CD133 and migration ability of CSCs decreased after XAV939 treatment or by RNAi‑mediated knockdown of the TNKS1 gene. These findings suggest that XAV939 treatment or RNAi-TNKS1 inhibits the stemness and migration of NB CSCs via the repression of TNKS1, and TNKS1 may be a potential molecular target for eliminating NB CSCs by small molecule drugs.
Collapse
Affiliation(s)
- Xiaohong Tian
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Weijian Hou
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Shuling Bai
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Jun Fan
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - Hao Tong
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| | - He Xu
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, P.R. China
| |
Collapse
|
21
|
Tian XH, Hou WJ, Fang Y, Fan J, Tong H, Bai SL, Chen Q, Xu H, Li Y. XAV939, a tankyrase 1 inhibitior, promotes cell apoptosis in neuroblastoma cell lines by inhibiting Wnt/β-catenin signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:100. [PMID: 24308762 PMCID: PMC3866601 DOI: 10.1186/1756-9966-32-100] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Abstract
Background Neuroblastoma (NB) is the most common extracranial solid tumor in childhood. The present treatment including surgery, chemotherapy and radiation, which have only 40% long-term cure rates, and usually cause tumor recurrence. Thus, looking for new effective and less toxic therapies has important significance. XAV939 is a small molecule inhibitor of tankyrase 1(TNKS1). The objective of this study is to investigate the effect of XAV939 on the proliferation and apoptosis of NB cell lines, and the related mechanism. Methods In the present study, we used both XAV939 treatment and RNAi method to demonstrate that TNKS1 inhibition may be a potential mechanism to cure NB. MTT method was used for determining the cell viability and the appropriate concerntration for follow-up assays. The colony formation assay, Annexin V staining and cell cycle analysis were used for detecting colony forming ability, cell apoptosis and the percentage of different cell cycle. The Western blot was used for detecting the expression of key proteins of Wnt/ beta-catenin (Wnt/β-catenin) signaling pathway. Results The results showed that TNKS1 inhibition decreased the viability of SH-SY5Y, SK-N-SH and IMR-32 cells, induced apoptosis in SH-SY5Y as well as SK-N-SH cells, and led to the accumulation of NB cells in the S and G2/M phase of the cell cycle. Moreover, we demonstrated TNKS1 inhibition may in part blocked Wnt/β-catenin signaling and reduced the expression of anti-apoptosis protein. Finally, we also demonstrated that TNKS1 inhibition decreased colony formation in vitro. Conclusions These findings suggested that TNKS1 may be a potential molecule target for the treatment of NB.
Collapse
Affiliation(s)
| | | | | | | | | | - Shu-Ling Bai
- Department of Tissue Engineering, College of Basic Medical Sciences, China Medical University, Shenyang 110001, PR China.
| | | | | | | |
Collapse
|
22
|
Jung GS, Lee KM, Park JK, Choi SK, Jeon WB. Morphogenetic and neuronal characterization of human neuroblastoma multicellular spheroids cultured under undifferentiated and all-trans-retinoic acid-differentiated conditions. BMB Rep 2013; 46:276-81. [PMID: 23710639 PMCID: PMC4133894 DOI: 10.5483/bmbrep.2013.46.5.196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In this study, we aimed to compare the morphogenetic and neuronal characteristics between monolayer cells and spheroids. For this purpose, we established spheroid formation by growing SH-SY5Y cells on the hydrophobic surfaces of thermally-collapsed elastin-like polypeptide. After 4 days of culture, the relative proliferation of the cells within spheroids was approximately 92% of the values for monolayer cultures. As measured by quantitative assays for mRNA and protein expressions, the production of synaptophysin and neuronspecific enolase (NSE) as well as the contents of cell adhesion molecules (CAMs) and extracellular matrix (ECM) proteins are much higher in spheroids than in monolayer cells. Under the all-trans-retinoic acid (RA)-induced differentiation condition, spheroids extended neurites and further up-regulated the expression of synaptophysin, NSE, CAMs, and ECM proteins. Our data indicate that RA-differentiated SH-SY5Y neurospheroids are functionally matured neuronal architectures. [BMB Reports 2013; 46(5): 276-281]
Collapse
Affiliation(s)
- Gwon-Soo Jung
- Laboratory of Biochemistry and Cellular Engineering, Division of NanoBio Technology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Korea
| | | | | | | | | |
Collapse
|
23
|
Zhao H, Cai W, Li S, Da Z, Sun H, Ma L, Lin Y, Zhi D. Characterization of neuroblastoma bone invasion/metastasis in established bone metastatic model of SY5Y and KCNR cell lines. Childs Nerv Syst 2013; 29:1097-105. [PMID: 23559392 DOI: 10.1007/s00381-013-2086-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 03/18/2013] [Indexed: 02/02/2023]
Abstract
OBJECTS To determine the mechanism of neuroblastoma (NB) bone invasion/metastasis, it is necessary to investigate the bone invasion/metastasis-related factors in the bone invasion/metastasis process. Some evidence has suggested that various proteins were involved in bone osteolytic response. The invasion/metastasis property and gene expression of NB, however, are still unknown. METHODS Single-cell suspensions of SY5Y and KCNR cells were injected directly into the femur of nude mice. Radiological and histological analyses, immunohistochemistry analyses, and western blot assay were performed to characterize bone metastasis mechanism in these bone metastasis models. RESULTS SY5Y and KCNR NB cells result in osteolytic responses in bone metastasis model. Osteoprotegerin (OPG), receptor activator of NF-kappaB ligand (RANKL), parathyroid hormone-related peptide (PTHrP), endothelin 1 (ET-1), and CXCR4 were examined and compared among in vitro, in vivo, and normal bone, respectively. PTHrP, OPG, RANKL, and ET-1 except CXCR4 in SY5Y and KCNR NB cells xenografts were strikingly upregulated compared with normal bone and NB cells. However, significantly stronger expression of PTHrP and RANKL was presented than ET-1 and OPG; furthermore, the ratios of expression of PTHrP, RANKL to OPG, and ET-1 were also markedly increased in vivo versus in vitro. CONCLUSIONS Our study provided evidence that NB cell may enhance bone invasion through PTHrP, OPG, RANKL, and ET-1, especially PTHrP and RANKL which may display stronger effects. CXCR4 appeared not participating in bone invasion, but in tumor growth, and homing to bone. Targeting PTHrP, OPG, ET-1, and RANKL may provide a new insight and method for patient therapy by inhibiting NB bone metastasis and invasiveness.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.
| | - Weisong Cai
- Department of Oncology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Shuai Li
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Zuke Da
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Hanxue Sun
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Liang Ma
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Yaoxin Lin
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Debao Zhi
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
24
|
Zhao H, Cai W, Li S, Da Z, Sun H, Ma L, Lin Y, Zhi D. Establishment and characterization of xenograft models of human neuroblastoma bone metastasis. Childs Nerv Syst 2012; 28:2047-54. [PMID: 22983667 DOI: 10.1007/s00381-012-1909-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
OBJECTS To improve the therapy of advanced neuroblastoma (NB), it is critical to develop animal models that mimic NB bone metastases. Unlike the human disease, NB xenograft models rarely metastasize spontaneously to bone from the orthotopic site of primary tumor growth. METHODS Single-cell suspensions of SY5Y, KCNR NB cells were injected directly into the femur of nude mice. Radiological and histological analyses and immunohistochemistry analyses were performed to characterize these osseous NB models. SY5Y and KCNR result in osteolytic responses. RESULTS We have detected osteoprotegerin, receptor activator of nuclear factor kappa B ligand, parathyroid hormone-related protein, and endothelin-1, proteins associated with bone growth and osteolysis, and C-X-C chemokine receptor type 4 (CXCR4) involved in tumor growth and tumor cell migration in the NB cells grown in the bone. CONCLUSIONS These animal models can be used to study biological interactions, pathways, and potential therapeutic targets and also to evaluate new agents for treatment and prevention of NB bone metastasis.
Collapse
Affiliation(s)
- Hongyu Zhao
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Hua Y, Gorshkov K, Yang Y, Wang W, Zhang N, Hughes DPM. Slow down to stay alive: HER4 protects against cellular stress and confers chemoresistance in neuroblastoma. Cancer 2012; 118:5140-54. [PMID: 22415601 DOI: 10.1002/cncr.27496] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 12/22/2022]
Abstract
BACKGROUND Neuroblastoma (NBL) is a common pediatric solid tumor, and outcomes for patients with advanced neuroblastoma remain poor despite extremely aggressive treatment. Chemotherapy resistance at relapse contributes heavily to treatment failure. The poor survival of patients with high-risk NBL prompted this investigation into novel treatment options with the objective of gaining a better understanding of resistance mechanisms. On the basis of previous work and on data from publicly available studies, the authors hypothesized that human epidermal growth factor receptor 4 (Her4) contributes to resistance. METHODS Her4 expression was reduced with small-hairpin RNA (shRNA) to over express intracellular HER4, and the authors tested its impact on tumor cell survival under various culture conditions. The resulting changes in gene expression after HER4 knockdown were measured by using a messenger RNA (mRNA) array. RESULTS HER4 expression was up-regulated in tumor spheres compared with the expression in monolayer culture. With HER4 knockdown, NBL cells became less resistant to anoikis and serum starvation. Moreover, HER4 knockdown increased the chemosensitivity of NBL cells to cisplatin, doxorubicin, etoposide, and activated ifosfamide. In mRNA array analysis, HER4 knockdown predominately altered genes related to cell cycle regulation. In NBL spheres compared with monolayers, cell proliferation was decreased, and cyclin D expression was reduced. HER4 knockdown reversed cyclin D suppression. Overexpressed intracellular HER4 slowed the cell cycle and induced chemoresistance. CONCLUSIONS The current results indicated that HER4 protects NBL cells from multiple exogenous apoptotic stimuli, including anoikis, nutrient deficiency, and cytotoxic chemotherapy. The intracellular fragment of HER4 was sufficient to confer this phenotype. HER4 functions as a cell cycle suppressor, maintaining resistance to cellular stress. The current findings indicate that HER4 overexpression may be associated with refractory disease, and HER4 may be an important therapeutic target.
Collapse
Affiliation(s)
- Yingqi Hua
- Department of Pediatrics Research, Children's Cancer Hospital, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
26
|
Bilir A, Erguven M, Ermis E, Sencan M, Yazihan N. Combination of imatinib mesylate with lithium chloride and medroxyprogesterone acetate is highly active in Ishikawa endometrial carcinoma in vitro. J Gynecol Oncol 2011; 22:225-32. [PMID: 22247798 PMCID: PMC3254840 DOI: 10.3802/jgo.2011.22.4.225] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 05/11/2011] [Accepted: 06/17/2011] [Indexed: 01/22/2023] Open
Abstract
Objective The aim of the study was to investigate whether lithium chloride and medroxyprogesterone acetate can potentiate the cytotoxicity of imatinib mesylate in human endometrial cancer in vitro and the effect of midkine in these therapies. Methods Imatinib mesylate (50 µM), lithium chloride (100 µM), medroxyprogesterone acetate (200 µM) and their combination were applied to monolayer and three dimensional cultures of human Ishikawa endometrial cancer for 72 hours. The cell proliferation index, apoptotic index, caspase-3 and midkine levels, cell cycle distributions in monolayer cultures and cell ultrastructure in spheroid cultures were evaluated. Results were statistically analyzed using the Student's t-test. Results All drug applications inhibited cell proliferation (p<0.05), however the combination were the effective groups for 72 hours (p<0.05). Interestingly, although the loss of efficiency was seen higly seen every 24 hours at single applications, the inhibition rates of the combination groups were almost same for 72 hours. In concordance with these results, the apoptotic index, caspase-3 levels (p<0.05), cell morphology and ultrastructure damages were much higher in the combination groups. Imatinib mesylate induced S-phase arrest, however other groups induced G0+G1-phase arrest at 24 hours and all groups induced G0+G1 arrest at 72 hours (p<0.05). Imatinib mesylate and imatinib mesylate with medroxyprogesterone acetate induced highest decrease in midkine levels, respectively (p<0.05). Conclusion The present study showed that the combination of imatinib mesylate with lithium chloride and medroxyprogesterone acetate is highly active in Ishikawa endometrial carcinoma in vitro and the inhibition of midkine involved in their mechanism of action against endometrium defense.
Collapse
Affiliation(s)
- Ayhan Bilir
- Department of Histology and Embryology, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
27
|
Erguven M, Bilir A, Yazihan N, Korkmaz S, Aktas E, Ovalioglu C, Dundar T, Seyithanoglu H. Imatinib mesylate decreases the cytotoxic effect of roscovitine on human glioblastoma cells in vitro and the role of midkine. Oncol Lett 2011; 3:200-208. [PMID: 22740881 DOI: 10.3892/ol.2011.434] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/31/2011] [Indexed: 01/16/2023] Open
Abstract
The purpose of the present study was to overcome resistance to imatinib (IM) by combining it with roscovitine (ROSC) and to investigate whether or not midkine (MK) had an effect on this combination in the treatment of glioblastoma (GBL). Human T98 GBL cells were used to evaluate the effects of IM (10 μM), ROSC (200 μM) and their combination on the cell proliferation index, apoptotic index, the apoptotic protein and anti-apoptotic protein levels, and ultrastructure. All applications decreased the cell proliferation index and increased the apoptotic index, but ROSC was the most efficient drug and the second most efficient drug was IM. Notably, ROSC increased anti-apoptotic proteins levels (PDGFR-α, AQP-4, hTERT), COX-1 activity and ribosome numbers. The effects of ROSC on hTERT, MK, AQP-4 and MRP-1 levels and COX-1 activity were reported for the first time. ROSC induced the highest increase in caspase-3 levels. Autophagy was not involved in the activity of ROSC in GBL spheroids. The combination of IM with ROSC showed an antagonist effect in the treatment of human GBL cells. The combination group decreased certain anti-apoptotic protein levels (PDGFR-α, EGFR, p-gp, MRP-1 and MK), cAMP levels, COX-1 activity and apoptotic protein levels (caspase-3). However, it induced the highest increase in hTERT levels and COX-2 activity. Ribosome numbers were much lower than those in the ROSC group and no autophagic vacuole was observed. In conclusion, more investigations are required to identify the key regulatory components that are responsible for this antagonism; however, the determination of this combination therapy as a failure therapy may be precautionary for oncologists in the treatment of GBL patients and potentially may contribute to the efficacy of new therapeutic regimens.
Collapse
Affiliation(s)
- Mine Erguven
- Faculty of Medicine, Department of Biochemistry, Yeni Yüzyıl University, Istanbul
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Erguven M, Bilir A, Yazihan N, Ermis E, Sabanci A, Aktas E, Aras Y, Alpman V. Decreased therapeutic effects of noscapine combined with imatinib mesylate on human glioblastoma in vitro and the effect of midkine. Cancer Cell Int 2011; 11:18. [PMID: 21651812 PMCID: PMC3135492 DOI: 10.1186/1475-2867-11-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 06/08/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) develops resistance to the advances in chemotherapy leading to poor prognosis and life quality. Consequently, new treatment modalities are needed. Our aims were to investigate the effects of combined noscapine (NOS) and imatinib mesylate (IM) on human GBM in vitro and the role of midkine (MK) in this new combination treatment. METHODS Monolayer and spheroid cultures of T98G human GBM cell line were used to evaluate the effects of IM (10 μM), Nos (10 μM) and their combination on cell proliferation and apoptotic indexes, cell cycle, the levels of antiapoptotic MK, MRP-1, p170, PFGFR-α, EGFR, bcl-2 proteins, apoptotic caspase-3 levels, morphology (SEM) and ultrastructure (TEM) for 72 hrs. Results were statistically analyzed using the Student's t-test. RESULTS The combination group induced highest decrease in cell proliferation and apoptotic indexes, caspase-3 levels, MRP-1 and PDGFR-α levels. The decrease in p170 levels were lower than IM but higher that NOS. The highest increases were in EGFR, MK, bcl-2 and cAMP levels in the combination group. The G0+G1 cell cycle arrest at the end of 72nd hr was the lowest in the combination group. Apoptotic appearence was observed rarely both in the morphologic and ultrastructural evaluation of the combination group. In addition, autophagic vacuoles which were frequently observed in the IM group were observed rarely. CONCLUSIONS The combination of Nos with IM showed antagonist effect in T98G human GBM cells in vitro. This antagonist effect was correlated highly with MK levels. The effects of NOS on MRP-1, MK and receptor tyrosine kinase levels were firstly demonstrated in our report. In addition, we proposed that MK is one of the modulator in the switch of autophagy to cell death or survival/resistance.
Collapse
Affiliation(s)
- Mine Erguven
- Yeni Yüzyıl University, Faculty of Medicine, Department of Biochemistry, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Noël A, Barrier L, Rinaldi F, Hubert C, Fauconneau B, Ingrand S. Lithium chloride and staurosporine potentiate the accumulation of phosphorylated glycogen synthase kinase 3β/Tyr216, resulting in glycogen synthase kinase 3β activation in SH-SY5Y human neuroblastoma cell lines. J Neurosci Res 2011; 89:755-63. [PMID: 21360572 DOI: 10.1002/jnr.22587] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/26/2010] [Accepted: 11/29/2010] [Indexed: 12/27/2022]
Abstract
Glycogen synthase kinase 3β (GSK3β) activity is regulated by phosphorylation processes and regulates in turn through phosphorylation several proteins, including eukaryotic initiation factor 2B (eIF2B). Serine 9 phosphorylation of GSK3β (pGSK3βSer9), usually promoted by activation of the PI3K/Akt survival pathway, triggers GSK3β inhibition. By contrast, tyrosine 216 phosphorylation of GSK3β (pGSK3βTyr216) increases under apoptotic conditions, leading to GSK3β activation. Lithium chloride (LiCl) is usually described to increase pGSK3βSer9 through the PI3K/Akt pathway, resulting in GSK3β inhibition. The purpose of this study is to demonstrate that in some cases LiCl is also able to increase pGSK3βTyr216, resulting in GSK3β activation. For this, we used SH-SY5Y cells and primary neuronal cultures and investigated the effects of LiCl on the two phosphorylated forms of GSK3β under staurosporine (STS)-intoxicated conditions. The ratios between the phosphorylated and total forms of GSK3β and eIF2B were determined by Western blotting. Our results revealed that, besides its ability to increase pGSK3βSer9, LiCl is also able to increase pGSK3βTyr216 greatly in STS-intoxicated SH-SY5Y cells but not in STS-intoxicated primary neuronal cultures. This accumulation of both Ser9 and Tyr216 phosphorylation results in GSK3β activation in STS-intoxicated SH-SY5Y cells in spite of the presence of LiCl. These findings indicate that LiCl treatment is not necessarily correlated with GSK3β inhibition even though it generates Ser9 phosphorylation. Consequently, the ratio pGSK3βSer9/pGSK3βTyr216, which takes into account the balance between the two inactive (Ser9) and active (Tyr216) forms of GSK3β, could be more useful for predicting GSK3β inhibition.
Collapse
|