1
|
Gheorghiu A, Brunborg C, Johannesen TB, Helseth E, Zwart JA, Wiedmann MKH. Lifestyle and metabolic factors affect risk for meningioma in women: a prospective population-based study (The Cohort of Norway). Front Oncol 2024; 14:1428142. [PMID: 39188673 PMCID: PMC11345274 DOI: 10.3389/fonc.2024.1428142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2024] [Accepted: 07/24/2024] [Indexed: 08/28/2024] Open
Abstract
Background Meningioma is the most common primary brain tumor, with a clear preponderance in women. Obesity is considered a risk factor for the development of meningioma. Obesity is also the clinical hallmark of metabolic syndrome, characterized by glucose intolerance, dyslipidemia, and hypertension. Lifestyle and metabolic factors directly impact overweight and obesity and are therefore potential risk factors for meningioma development. The aim of this study is to assess lifestyle and metabolic factors for meningioma risk in women. Methods The Cohort of Norway (CONOR) is a nationwide health survey, conducted between 1994 and 2003, including anthropometric measures, blood tests, and health questionnaires. Linkage to the National Cancer Registry enabled the identification of intracranial meningioma during follow-up until December 2018. Results A total of 81,652 women were followed for a combined total of 1.5 million years, and 238 intracranial meningiomas were identified. Increasing levels of physical activity (HR 0.81; 95% CI 0.68-0.96; p trend <0.02) and parity (HR 0.83; 95% CI 0.71-0.97; p trend <0.03) were negatively associated with meningioma risk. Diabetes mellitus or glucose intolerance increased the risk for meningioma (HR 2.54; 95% CI 1.60-4.05). Overweight and obesity were not associated with meningioma risk, nor was metabolic syndrome. However, participants without metabolic dysfunction had a reduced meningioma risk, while participants with all five metabolic factors present had a 4-fold risk increase for meningioma (HR 4.28; 95% CI 1.34-13.68). Conclusion Lifestyle factors seem to significantly influence meningioma risk. However, disentangling the complex associations and interactions between factors for meningioma risk will be a challenging task for future studies.
Collapse
Affiliation(s)
- Anamaria Gheorghiu
- Department of Neurosurgery, Bagdasar-Arseni University Hospital, Bucharest, Romania
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Cathrine Brunborg
- Centre for Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Tom B. Johannesen
- Cancer Registry of Norway, Norwegian Institute of Public Health, Oslo, Norway
| | - Eirik Helseth
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - John-Anker Zwart
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
2
|
Liang R, Tan B, Lei K, Xu K, Liang J, Huang J, Liang Y, Huang J, Zhang L, Shi X, Lv Z, Lin H, Wang M. The FGF6 amplification mutation plays an important role in the progression and treatment of malignant meningioma. Transl Oncol 2024; 45:101974. [PMID: 38710133 PMCID: PMC11089407 DOI: 10.1016/j.tranon.2024.101974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/15/2023] [Revised: 03/30/2024] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Meningioma is a benign tumor with slow growth and long course. However, patients with recurrent malignant meningioma still face a lack of effective treatment. Here, we report a rare case of primary mediastinal malignant meningioma with lung and bone metastases, who benefited from the treatment of apatinib (≥33 months) and anlotinib (until the publication date). Retrospective molecular analysis revealed the frequent amplification of FGF6 in primary and metastatic lesions. Then we constructed the FGF6 over-expressed IOMM-LEE and CH157MN malignant meningioma cell lines, and in vitro and vivo experiments showed that overexpression of FGF6 can promote the proliferation, migration and invasion of malignant meningioma cells. Based on the Western analysis, we revealed that FGF6 can promote the phosphorylation of FGFR, AKT, and ERK1/2, which can be inhibited by anlotinib. Together, we were the first to verify that overexpression of FGF6 promotes the progression of malignant meningiomas by activating FGFR/AKT/ERK1/2 pathway and pointed out that anlotinib may effectively inhibit the disease progression of patients with FGF6 amplification.
Collapse
Affiliation(s)
- Ruihao Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | - Binhua Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | - Kai Lei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | - Ke Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | - Jialu Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | - Jing Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | - Yicheng Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China
| | | | | | | | - Zhiqiang Lv
- Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University.
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China.
| | - Minghui Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China; Department of Thoracic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Farheen S, PM MM, Rehman S, Hoda MF, Gupta Y, Ali A, Chosdol K, Shahi MH. Homeodomain Transcription Factors Nkx2.2 and Pax6 as Novel Biomarkers for Meningioma Tumor Treatment. Indian J Clin Biochem 2024; 39:47-59. [PMID: 38223000 PMCID: PMC10784245 DOI: 10.1007/s12291-022-01085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/04/2022] [Accepted: 08/13/2022] [Indexed: 10/14/2022]
Abstract
Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information The online version contains supplementary material available at 10.1007/s12291-022-01085-1.
Collapse
Affiliation(s)
- Shirin Farheen
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Mubeena Mariyath PM
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Suhailur Rehman
- Department of Pathology, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Md. Fakhrul Hoda
- Department of Neurosurgery, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Asif Ali
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mehdi H. Shahi
- Interdisciplinary Brain Research Centre, J. N. Medical College, Faculty of Medicine, Aligarh Muslim University (A.M.U), Aligarh, 202002 Uttra Pradesh India
| |
Collapse
|
4
|
Li S, Wang C, Chen J, Lan Y, Zhang W, Kang Z, Zheng Y, Zhang R, Yu J, Li W. Signaling pathways in brain tumors and therapeutic interventions. Signal Transduct Target Ther 2023; 8:8. [PMID: 36596785 PMCID: PMC9810702 DOI: 10.1038/s41392-022-01260-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/01/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Brain tumors, although rare, contribute to distinct mortality and morbidity at all ages. Although there are few therapeutic options for brain tumors, enhanced biological understanding and unexampled innovations in targeted therapies and immunotherapies have considerably improved patients' prognoses. Nonetheless, the reduced response rates and unavoidable drug resistance of currently available treatment approaches have become a barrier to further improvement in brain tumor (glioma, meningioma, CNS germ cell tumors, and CNS lymphoma) treatment. Previous literature data revealed that several different signaling pathways are dysregulated in brain tumor. Importantly, a better understanding of targeting signaling pathways that influences malignant behavior of brain tumor cells might open the way for the development of novel targeted therapies. Thus, there is an urgent need for a more comprehensive understanding of the pathogenesis of these brain tumors, which might result in greater progress in therapeutic approaches. This paper began with a brief description of the epidemiology, incidence, risk factors, as well as survival of brain tumors. Next, the major signaling pathways underlying these brain tumors' pathogenesis and current progress in therapies, including clinical trials, targeted therapies, immunotherapies, and system therapies, have been systemically reviewed and discussed. Finally, future perspective and challenges of development of novel therapeutic strategies in brain tumor were emphasized.
Collapse
Affiliation(s)
- Shenglan Li
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Can Wang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jinyi Chen
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanjie Lan
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Weichunbai Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhuang Kang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Zheng
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Rong Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jianyu Yu
- grid.24696.3f0000 0004 0369 153XDepartment of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wenbin Li
- Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Patel B, Desai R, Pugazenthi S, Butt OH, Huang J, Kim AH. Identification and Management of Aggressive Meningiomas. Front Oncol 2022; 12:851758. [PMID: 35402234 PMCID: PMC8984123 DOI: 10.3389/fonc.2022.851758] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/10/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Meningiomas are common primary central nervous system tumors derived from the meninges, with management most frequently entailing serial monitoring or a combination of surgery and/or radiation therapy. Although often considered benign lesions, meningiomas can not only be surgically inaccessible but also exhibit aggressive growth and recurrence. In such cases, adjuvant radiation and systemic therapy may be required for tumor control. In this review, we briefly describe the current WHO grading scale for meningioma and provide demonstrative cases of treatment-resistant meningiomas. We also summarize frequently observed molecular abnormalities and their correlation with intracranial location and recurrence rate. We then describe how genetic and epigenetic features might supplement or even replace histopathologic features for improved identification of aggressive lesions. Finally, we describe the role of surgery, radiotherapy, and ongoing systemic therapy as well as precision medicine clinical trials for the treatment of recurrent meningioma.
Collapse
Affiliation(s)
- Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Rupen Desai
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Sangami Pugazenthi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Omar H. Butt
- Department of Medicine, Division of Medical Oncology, Washington University School of Medicine, St. Louis, MO, United States,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Jiayi Huang
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States,Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States,*Correspondence: Albert H. Kim,
| |
Collapse
|
6
|
Slavik H, Balik V, Vrbkova J, Rehulkova A, Vaverka M, Hrabalek L, Ehrmann J, Vidlarova M, Gurska S, Hajduch M, Srovnal J. Identification of Meningioma Patients at High Risk of Tumor Recurrence Using MicroRNA Profiling. Neurosurgery 2021; 87:1055-1063. [PMID: 32125436 PMCID: PMC7566524 DOI: 10.1093/neuros/nyaa009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2019] [Accepted: 12/15/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Meningioma growth rates are highly variable, even within benign subgroups, with some remaining stable, whereas others grow rapidly. OBJECTIVE To identify molecular-genetic markers for more accurate prediction of meningioma recurrence and better-targeted therapy. METHODS Microarrays identified microRNA (miRNA) expression in primary and recurrent meningiomas of all World Health Organization (WHO) grades. Those found to be deregulated were further validated by quantitative real-time polymerase chain reaction in a cohort of 172 patients. Statistical analysis of the resulting dataset revealed predictors of meningioma recurrence. RESULTS Adjusted and nonadjusted models of time to relapse identified the most significant prognosticators to be miR-15a-5p, miR-146a-5p, and miR-331-3p. The final validation phase proved the crucial significance of miR-146a-5p and miR-331-3p, and clinical factors such as type of resection (total or partial) and WHO grade in some selected models. Following stepwise selection in a multivariate model on an expanded cohort, the most predictive model was identified to be that which included lower miR-331-3p expression (hazard ratio [HR] 1.44; P < .001) and partial tumor resection (HR 3.90; P < .001). Moreover, in the subgroup of total resections, both miRNAs remained prognosticators in univariate models adjusted to the clinical factors. CONCLUSION The proposed models might enable more accurate prediction of time to meningioma recurrence and thus determine optimal postoperative management. Moreover, combining this model with current knowledge of molecular processes underpinning recurrence could permit the identification of distinct meningioma subtypes and enable better-targeted therapies.
Collapse
Affiliation(s)
- Hanus Slavik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Vladimir Balik
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Jana Vrbkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Alona Rehulkova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Miroslav Vaverka
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Lumir Hrabalek
- Department of Neurosurgery, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Jiri Ehrmann
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic.,Institute of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic, Czech Republic
| | - Monika Vidlarova
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Sona Gurska
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Marian Hajduch
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| | - Josef Srovnal
- Laboratory of Experimental Medicine, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University and University Hospital Olomouc, Czech Republic
| |
Collapse
|
7
|
Zhao L, Zhao W, Hou Y, Wen C, Wang J, Wu P, Guo Z. An Overview of Managements in Meningiomas. Front Oncol 2020; 10:1523. [PMID: 32974188 PMCID: PMC7473392 DOI: 10.3389/fonc.2020.01523] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Meningioma is the most frequent primary tumor of the central nervous system. Important advances have been achieved in the treatment of meningioma in recent decades. Although most meningiomas are benign and have a good prognosis after surgery, clinicians often face challenges when the morphology of the tumor is complicated or the tumor is close to vital brain structures. At present, the longstanding treatment strategies of meningioma are mainly surgery and radiotherapy. The effectiveness of systemic therapy, such as chemotherapy or targeted therapy, has not been confirmed by big data series, and some clinical trials are still in progress. In this review, we summarize current treatment strategies and future research directions for meningiomas.
Collapse
Affiliation(s)
- Lianhua Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Wei Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Yanwei Hou
- Department of Neurosurgery, Tianjin TEDA Hospital, Tianjin, China
| | - Cuixia Wen
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, China
| | - Jing Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zaiyu Guo
- Department of Neurosurgery, Tianjin TEDA Hospital, Tianjin, China
| |
Collapse
|
8
|
Patel KS, Kejriwal S, Sun MM, Thammachantha S, Duong C, Chan A, Cherian N, Romiyo P, Gordon LK, Yong W, Wadehra M, Yang I. Identification of epithelial membrane protein 2 (EMP2) as a molecular marker and correlate for angiogenesis in meningioma. J Neurooncol 2020; 147:15-24. [PMID: 31981014 DOI: 10.1007/s11060-020-03401-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/05/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Although intracranial meningiomas are the most common primary brain tumor in adults, treatment options are few and have traditionally been limited to surgical resection and radiotherapy. Additional targeted therapies and biomarkers are needed, especially as complete surgical resection is frequently not feasible in many patients. METHODS Non-pathologic brain tissue from 3 patients undergoing routine autopsies and tumor specimens from 16 patients requiring surgical resection for meningioma were collected. EMP2 protein expression was evaluated by immunohistochemistry and western blot analysis. EMP2 mRNA expression was also investigated using surgical specimens and validated by analysis of several independent NCBI GEO databases. RESULTS EMP2 mRNA expression levels were found to be higher in meningioma relative to non-pathologic meninges (P = 0.0013) and brain (P = 0.0011). Concordantly, strong EMP2 protein expression was demonstrated in 100% of meningioma specimens from all 16 patients, with no observable protein expression in normal brain tissue samples from 3 subjects (P < 0.001). EMP2 expression was confirmed by western blot analysis in five samples, with EMP2 protein intensity positively correlating with histologic staining score (R2 = 0.780; P = 0.047). No association was found between EMP2 mRNA or protein levels and WHO grade or markers of proliferation. However, EMP2 expression was positively associated with an angiomatous pattern on histologic evaluation (P = 0.0597), VEGF-A mRNA expression (P < 0.001), and clinical markers of tumor vascularity such as operative blood loss (P = 0.037). CONCLUSIONS EMP2 is not found in normal brain tissue, yet has shown consistently high mRNA and protein expression in meningiomas, and may serve as a useful molecular marker for these tumors.
Collapse
Affiliation(s)
- Kunal S Patel
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Sameer Kejriwal
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Michel M Sun
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Samasuk Thammachantha
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Courtney Duong
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Ann Chan
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - Nina Cherian
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Prasanth Romiyo
- Department of Neurosurgery, University of California, Los Angeles, CA, USA
| | - Lynn K Gordon
- Department of Ophthalmology, University of California, Los Angeles, CA, USA
| | - William Yong
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
| | - Madhuri Wadehra
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA
| | - Isaac Yang
- Department of Neurosurgery, University of California, Los Angeles, CA, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA. .,Ronald Reagan UCLA Medical Center, David Geffen School of Medicine at UCLA, UCLA Jonsson Comprehensive Cancer Center, 300 Stein Plaza, Ste. 562, 5th Floor Wasserman Bldg., Los Angeles, CA, 90095-6901, USA.
| |
Collapse
|
9
|
Abstract
Meningioma is the most common primary intracranial tumor in adults. The grading of meningioma is based on World Health Organization criteria, which rely on histopathological features alone. This grading system is unable to conclusively predict the clinical behavior of these tumors (i.e., recurrence or prognosis in benign or atypical grades). Advances in molecular techniques over the last decade that include genomic and epigenomic data associated with meningiomas have been used to identify genetic biomarkers that can predict tumor behavior. This review summarizes the molecular characteristics of meningioma using genetic and epigenetic biomarkers. Molecular alterations that can predict meningioma behavior may be integrated into the upcoming World Health Organization grading system.
Collapse
Affiliation(s)
- Young Suk Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Youn Soo Lee
- Department of Hospital Pathology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
10
|
Burnett BA, Womeldorff MR, Jensen R. Meningioma: Signaling pathways and tumor growth. HANDBOOK OF CLINICAL NEUROLOGY 2020; 169:137-150. [PMID: 32553285 DOI: 10.1016/b978-0-12-804280-9.00009-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/24/2022]
Abstract
Meningiomas are the most common primary intracranial brain tumor in adult humans; however, our understanding of meningioma tumorigenesis is relatively limited in comparison with the body of research available for other intracranial tumors such as gliomas. Here we briefly describe the current understanding of aberrant signaling pathways and tumor growth mechanisms responsible for meningioma differentiation, cellular growth, development, inhibition, and death. Numerous cellular functions impacted by these signaling pathways are critical for angiogenesis, proliferation, and apoptosis. Ultimately, a further understanding of the signaling pathways involved in meningioma tumorigenesis will lead to better treatment modalities in the future.
Collapse
Affiliation(s)
- Brian Andrew Burnett
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States
| | | | - Randy Jensen
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
11
|
Bender L, Somme F, Ruhland E, Cicek AE, Bund C, Namer IJ. Metabolomic Profile of Aggressive Meningiomas by Using High-Resolution Magic Angle Spinning Nuclear Magnetic Resonance. J Proteome Res 2019; 19:292-299. [PMID: 31679342 DOI: 10.1021/acs.jproteome.9b00521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/06/2023]
Abstract
Meningiomas are in most cases benign brain tumors. The WHO 2016 classification defines three grades of meningiomas. This classification had a prognosis value because grade III meningiomas have a worse prognosis value compared to grades I and II meningiomas. However, some benign or atypical meningiomas can have a clinical aggressive behavior. There are currently no reliable markers which allow distinguishing between the meningiomas with a good prognosis and those which may recur. High-resolution magic angle spinning (HRMAS) spectrometry is a noninvasive method able to determine the metabolite profile of a tissue sample. We retrospectively analyzed 62 meningioma samples by using HRMAS spectrometry (43 metabolites). We described a metabolic profile defined by a high concentration for acetate, threonine, N-acetyl-lysine, hydroxybutyrate, myoinositol, ascorbate, scylloinositol, and total choline and a low concentration for aspartate, glucose, isoleucine, valine, adenosine, arginine, and alanine. This metabolomic signature was associated with poor prognosis histological markers [Ki-67 ≥ 40%, high histological grade and negative progesterone receptor (PR) expression]. We also described a similar metabolomic spectrum between grade III and grade I meningiomas. Moreover, all grade I meningiomas with a low Ki-67 expression and a positive PR expression did not have the same metabolomic profile. Metabolomic analysis could be used to determine an aggressive meningioma in order to discuss a personalized treatment. Further studies are needed to confirm these results and to correlate this metabolic profile with survival data.
Collapse
Affiliation(s)
| | | | | | - A Ercüment Cicek
- Computational Biology Department, School of Computer Science , Carnegie Mellon University , Pittsburgh 15213 , Pennsylvania , United States.,Computer Engineering Department , Bilkent University , Ankara 06800 , Turkey
| | - Caroline Bund
- ICube, Université de Strasbourg/CNRS, UMR 7357 , Strasbourg 67081 , Alsace , France
| | - Izzie Jacques Namer
- ICube, Université de Strasbourg/CNRS, UMR 7357 , Strasbourg 67081 , Alsace , France
| |
Collapse
|
12
|
Karsy M, Azab MA, Abou-Al-Shaar H, Guan J, Eli I, Jensen RL, Ormond DR. Clinical potential of meningioma genomic insights: a practical review for neurosurgeons. Neurosurg Focus 2019; 44:E10. [PMID: 29852774 DOI: 10.3171/2018.2.focus1849] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/13/2023]
Abstract
Meningiomas are among the most common intracranial pathological conditions, accounting for 36% of intracranial lesions treated by neurosurgeons. Although the majority of these lesions are benign, the classical categorization of tumors by histological type or World Health Organization (WHO) grade has not fully captured the potential for meningioma progression and recurrence. Many targeted treatments have failed to generate a long-lasting effect on these tumors. Recently, several seminal studies evaluating the genomics of intracranial meningiomas have rapidly changed the understanding of the disease. The importance of NF2 (neurofibromin 2), TRAF7 (tumor necrosis factor [TNF] receptor-associated factor 7), KLF4 (Kruppel-like factor 4), AKT1, SMO (smoothened), PIK3CA (phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha), and POLR2 (RNA polymerase II subunit A) demonstrates that there are at least 6 distinct mutational classes of meningiomas. In addition, 6 methylation classes of meningioma have been appreciated, enabling improved prediction of prognosis compared with traditional WHO grades. Genomic studies have shed light on the nature of recurrent meningioma, distinct intracranial locations and mutational patterns, and a potential embryonic cancer stem cell-like origin. However, despite these exciting findings, the clinical relevance of these findings remains elusive. The authors review the key findings from recent genomic studies in meningiomas, specifically focusing on how these findings relate to clinical insights for the practicing neurosurgeon.
Collapse
Affiliation(s)
- Michael Karsy
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | - Mohammed A Azab
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | | | - Jian Guan
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | - Ilyas Eli
- 1Department of Neurosurgery, Clinical Neurosciences Center, and
| | - Randy L Jensen
- 1Department of Neurosurgery, Clinical Neurosciences Center, and.,2Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah; and
| | - D Ryan Ormond
- 3Department of Neurosurgery, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
13
|
Bender L, Lhermitte B, Carinato H, Baloglu S, Helali M, Cebula H, Antoni D, Noel G. Grade III meningioma with gastro-intestinal tract and brain metastases: case report and review of the literature. World J Surg Oncol 2019; 17:70. [PMID: 30992070 PMCID: PMC6469106 DOI: 10.1186/s12957-019-1596-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2019] [Accepted: 03/12/2019] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Meningioma is the most common adult primary intracranial tumor. Malignant meningioma is a rare variant of meningioma. The prognosis for the patients with these tumors is poor, due to the tumor's capacity for relapse and to develop distant metastases. These tumors can present the same evolutionary course as aggressive carcinoma. CASE DESCRIPTION We report the case of distant brain and gastro-intestinal tract (GIT) metastases. A 78-year-old patient developed malignant meningioma with a Ki-67 proliferative index of 40%. According to guidelines, surgery followed by postoperative radiotherapy (RT) was performed. Three months after the end of RT, he presented histologically proven meningioma distant brain and GIT metastases. CONCLUSIONS To our knowledge, this is the first case of meningioma GIT metastases. Also, we report the difficulty to confirm the diagnosis of meningioma metastases. Indeed, malignant meningioma has the same histopathological features as melanoma or carcinoma. The standard of care for the management of malignant meningioma is gross total surgery followed by postoperative radiotherapy. Metastatic meningioma is uncommon and no guidelines for the management of recurrent or metastatic meningioma have yet been published. However, several studies reported systemic therapeutic options such as antibody against VEGF, somatostatin analogs, PDGF-R, and VEGF-R tyrosine kinase inhibitors, in the case of recurrent or metastatic meningioma. We also made a review of the actual literature of systemic treatment options for metastatic meningioma.
Collapse
Affiliation(s)
- Laura Bender
- Radiotherapy Department, Centre Paul Strauss, UNICANCER, 3, rue de la Porte de l’hôpital, F-67065 Strasbourg, France
| | - Benoit Lhermitte
- Pathology Service, University Hospital Hautepierre, 1, rue Molière, 67000 Strasbourg, France
| | - Hélène Carinato
- Medical Oncology Department, Centre Paul Strauss, UNICANCER, 3, rue de la Porte de l’hôpital, F-67065 Strasbourg, France
| | - Seyyid Baloglu
- Radiology Department, University Hospital Hautepierre, 1, rue Molière, 67000 Strasbourg, France
| | - Mehdi Helali
- Nuclear Medecine Department, Centre Paul Strauss, UNICANCER, 3, rue de la Porte de l’hôpital, F-67065 Strasbourg, France
| | - Hélène Cebula
- Neurosurgery Department, University Hospital Hautepierre, 1, rue Molière, 67000 Strasbourg, France
| | - Delphine Antoni
- Radiotherapy Department, Centre Paul Strauss, UNICANCER, 3, rue de la Porte de l’hôpital, F-67065 Strasbourg, France
- CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, Université de Strasbourg, 67000 Strasbourg, France
| | - Georges Noel
- Radiotherapy Department, Centre Paul Strauss, UNICANCER, 3, rue de la Porte de l’hôpital, F-67065 Strasbourg, France
- CNRS, IPHC UMR 7178, Centre Paul Strauss, UNICANCER, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
14
|
Dasanu CA, Alvarez-Argote J, Limonadi FM, Codreanu I. Bevacizumab in refractory higher-grade and atypical meningioma: the current state of affairs. Expert Opin Biol Ther 2018; 19:99-104. [PMID: 30556741 DOI: 10.1080/14712598.2019.1559292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Historically, systemic agents had shown limited efficacy in meningioma, at the expense of significant pharmacologic and/or financial toxicity. As meningiomas are highly vascularized, they might derive benefit from antiangiogenic therapy. AREAS COVERED This review summarizes the literature regarding bevacizumab pharmacology, safety and efficacy in patients with refractory meningioma. We have searched PubMed/Medline database for pertinent articles published from inception to 1 September 2018. EXPERT COMMENTARY Results of two prospective phase II trials, supported by several retrospective cohorts, suggest a clinical benefit for the vascular endothelial growth factor inhibitor bevacizumab in meningiomas refractory to surgery and radiation therapy. This agent has a tolerable toxicity profile and seems more effective in higher-grade histologies and atypical meningioma, although responses in low-grade meningiomas have also been documented. Our conclusions are restricted due to a small size and lack of control in the prospective trials as well as the retrospective design of other studies. Further study of bevacizumab in refractory higher-grade meningiomas seems warranted.
Collapse
Affiliation(s)
- Constantin A Dasanu
- a Lucy Curci Cancer Center, Eisenhower Medical Center , Rancho Mirage , CA , USA.,b Department of Oncology , University of California San Diego Health System , La Jolla , CA , USA
| | | | - Farhad M Limonadi
- d Department of Neurosurgery , Eisenhower Medical Center , Rancho Mirage , CA , USA
| | - Ion Codreanu
- e Department of Radiology and Imaging , State University of Medicine and Pharmacy "Nicolae Testemitanu" , Chisinau , Moldova
| |
Collapse
|
15
|
Dasanu CA, Samara Y, Codreanu I, Limonadi FM, Hamid O, Alvarez-Argote J. Systemic therapy for relapsed/refractory meningioma: Is there potential for antiangiogenic agents? J Oncol Pharm Pract 2018; 25:638-647. [PMID: 30253729 DOI: 10.1177/1078155218799850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/15/2022]
Abstract
Effective therapies for relapsed/refractory meningioma after surgery and radiation therapy represent an unmet need. Most meningiomas are highly vascularized tumors and, therefore, potentially amenable to antiangiogenic therapy. Herein, we review comprehensively the scientific literature on systemic therapy options for relapsed, persistent or metastatic meningioma, not amenable to local therapy. Also, this review offers insights into the function of vascular endothelial growth factor/receptor pathway both in health and disease. Further, we address the current status of the preclinical and clinical studies targeting vascular endothelial growth factor/receptor signaling in meningioma. Most relevant publications were identified through searching the PubMed/Medline database for articles published from inception to 1 February 2018. Vascular endothelial growth factor pathway activation might represent the primary driver of angiogenesis in meningioma. Positive findings of two prospective phase II trials, supported by the results of several retrospective cohorts, suggest a clinical benefit for the vascular endothelial growth factor inhibitor bevacizumab in refractory meningioma. Bevacizumab causes both peritumoral brain edema reduction and true meningioma shrinkage. Patients with WHO grades II-III meningioma appear to benefit more than patients with grade I disease. Similarly, responses have been documented with certain oral targeted anti-vascular endothelial growth factor/receptor agents. Further exploration of the role of vascular endothelial growth factor/receptor inhibitors in refractory meningioma seems warranted.
Collapse
Affiliation(s)
- Constantin A Dasanu
- 1 Lucy Curci Cancer Center, Eisenhower Medical Center, Rancho Mirage, CA, USA.,2 University of California San Diego Health System, La Jolla, CA, USA
| | - Yazeed Samara
- 3 Department of Medicine, Eisenhower Medical Center, Rancho Mirage, CA, USA
| | - Ion Codreanu
- 4 Department of Radiology and Imaging, State University of Medicine and Pharmacy "Nicolae Testemitanu", Chisinau, Moldova
| | - Farhad M Limonadi
- 5 Department of Neurosurgery, Eisenhower Medical Center, Rancho Mirage, CA, USA
| | - Omid Hamid
- 6 Department of Translational Research and Immunotherapy, The Angeles Clinic and Research Institute, Los Angeles, CA, USA
| | | |
Collapse
|
16
|
Sharma P, Katiyar V, Sharma R, Gurjar HK, Krishnan S. Letter: Role of Tyrosine Kinase Inhibitors in Recurrent Meningiomas: Controversies and Promises. Neurosurgery 2018; 82:E181-E183. [DOI: 10.1093/neuros/nyy055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/12/2022] Open
|
17
|
Genomic analysis of synchronous intracranial meningiomas with different histological grades. J Neurooncol 2018; 138:41-48. [PMID: 29423538 DOI: 10.1007/s11060-018-2772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/30/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
Although meningioma is the most common primary tumor of the central nervous system, the mechanism of progression from benign to atypical or anaplastic grade remains elusive. The present case reports the genomic evaluation of two synchronous meningiomas with different histological grades (benign and atypical) in the same patient. Under the assumption that the atypical tumor may have progressed from the benign tumor, the clonal origin of the lesions was investigated to identify genomic events responsible for the oncogenic process of evolution to higher grades in meningioma. A 59 year-old female patient was diagnosed with two synchronous meningiomas with different histological grades, benign and atypical. Whole-exome sequencing (WES) and RNA sequencing (RNA-seq) analysis of both tumors were done. WES analysis showed that each meningioma harbored distinct mutation profiles, and RNA-seq analysis revealed distinct gene expression profiles between the two tumors. The only apparent common genetic abnormality found in both tumors was the loss of heterozygosity of chromosome 22, raising the possibility that this event is the initial step in tumor formation, after which distinct subsequent mutations lead to the evolvement of two separate tumors of different grades. The result provides additional evidence on previous reports suggesting separate, independent mechanism of progression into higher grades in meningioma.
Collapse
|
18
|
MiR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro and is directly targeting SMAD4, FRAT1 and BCL2. Aging (Albany NY) 2017; 9:932-954. [PMID: 28340489 PMCID: PMC5391240 DOI: 10.18632/aging.101201] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 02/07/2023]
Abstract
Micro (mi)RNAs are short, noncoding RNAs and deregulation of miRNAs and their targets are implicated in tumor generation and progression in many cancers. Meningiomas are mostly benign, slow growing tumors of the central nervous system with a small percentage showing a malignant phenotype. Following in silico prediction of potential targets of miR-34a-3p, SMAD4, FRAT1, and BCL2 have been confirmed as targets by dual luciferase assays with co-expression of miR-34a-3p and reporter gene constructs containing the respective 3'UTRs. Disruption of the miR-34a-3p binding sites in the 3'UTRs resulted in loss of responsiveness to miR-34a-3p overexpression. In meningioma cells, overexpression of miR-34a-3p resulted in decreased protein levels of SMAD4, FRAT1 and BCL2, while inhibition of miR-34a-3p led to increased levels of these proteins as confirmed by Western blotting. Furthermore, deregulation of miR-34a-3p altered cell proliferation and apoptosis of meningioma cells in vitro. We show that SMAD4, FRAT1 and BCL2 are direct targets of miR-34a-3p and that deregulation of miR-34a-3p alters proliferation and apoptosis of meningioma cells in vitro. As part of their respective signaling pathways, which are known to play a role in meningioma genesis and progression, deregulation of SMAD4, FRAT1 and BCL2 might contribute to the aberrant activation of these signaling pathways leading to increased proliferation and inhibition of apoptosis in meningiomas.
Collapse
|
19
|
Messerer M, Richoz B, Cossu G, Dhermain F, Hottinger A, Parker F, Levivier M, Daniel R. Recent advances in the management of atypical meningiomas. Neurochirurgie 2016; 62:213-22. [DOI: 10.1016/j.neuchi.2016.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2015] [Revised: 01/17/2016] [Accepted: 02/26/2016] [Indexed: 11/26/2022]
|
20
|
Karsy M, Guan J, Cohen A, Colman H, Jensen RL. Medical Management of Meningiomas: Current Status, Failed Treatments, and Promising Horizons. Neurosurg Clin N Am 2016; 27:249-60. [PMID: 27012389 DOI: 10.1016/j.nec.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/14/2023]
Abstract
Meningiomas are benign tumors of the central nervous system, with low recurrence risk for World Health Organization (WHO) grade I lesions but a high risk for WHO grade II and III lesions. Current standard treatments include maximum safe surgical resection when indicated and radiation. Only three systemic therapies alpha-interferon, somatostatin receptor agonists, and vascular endothelial growth factor inhibitors are currently recommended by the National Comprehensive Cancer Network for treatment of recurrent meningioma. This paper aims to review medical approaches in the treatment of meningiomas.
Collapse
Affiliation(s)
- Michael Karsy
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Jian Guan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA
| | - Adam Cohen
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Howard Colman
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
| | - Randy L Jensen
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, 175 N. Medical Drive East, Salt Lake City, UT 84132, USA; Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA; Department of Radiation Oncology, Huntsman Cancer Institute, University of Utah, 2000 Circle of Hope, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Hydroxyurea with or without imatinib in the treatment of recurrent or progressive meningiomas: a randomized phase II trial by Gruppo Italiano Cooperativo di Neuro-Oncologia (GICNO). Cancer Chemother Pharmacol 2015; 77:115-20. [PMID: 26659583 DOI: 10.1007/s00280-015-2927-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/11/2015] [Accepted: 11/17/2015] [Indexed: 10/22/2022]
Abstract
PURPOSE Hydroxyurea (HU) is among the most widely used salvage therapies in progressive meningiomas. Platelet-derived growth factor receptors are expressed in virtually all meningiomas. Imatinib sensitizes transformed cells to the cytotoxic effects of chemotherapeutic agents that interfere with DNA metabolism. The combination of HU with imatinib yielded intriguing results in recurrent malignant glioma. The current trial addressed the activity of this association against meningioma. METHODS Patients with recurrent or progressive WHO grade I-III meningioma, without therapeutic indication for surgery, radiotherapy, or stereotactic radiosurgery, aged 18-75 years, ECOG performance status 0-2, and not on enzyme-inducing anti-epileptic drugs were randomized to receive HU 500 mg BID ± imatinib 400 mg QD until progression, unacceptable toxicity, or patient's refusal. The primary endpoint was progression-free survival rate at 9 months (PFS-9). RESULTS Between September 2009 and February 2012, 15 patients were randomized to receive HU + imatinib (N = 7; Arm A) or HU alone (N = 8; Arm B). Afterward the trial was prematurely closed due to slow enrollment rate. PFS-9 (A/B) was 0/75%, and median PFS was 4/19.5 months. Median and 2-year overall survival (A/B) rates were: 6/27.5 months; 28.5/75%, respectively. Main G3-4 toxicities were: G3 neutropenia in 1/0, G4 headache in 1/1, and G3 vomiting in 1/0. CONCLUSION The conduction of a study in recurrent or progressive meningioma remains a challenge. Given the limited number of patients enrolled, no firm conclusions can be drawn about the combination of imatinib and HU. The optimal systemic therapy for meningioma failing surgery and radiation has yet to be identified.
Collapse
|
22
|
Sekhar LN, Juric-Sekhar G, Brito da Silva H, Pridgeon JS. Skull Base Meningiomas: Aggressive Resection. Neurosurgery 2015; 62 Suppl 1:30-49. [PMID: 26181918 DOI: 10.1227/neu.0000000000000803] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Laligam N Sekhar
- *Departments of Neurological Surgery and ‡Pathology, University of Washington, Seattle, Washington
| | | | | | | |
Collapse
|
23
|
Feichtinger RG, Weis S, Mayr JA, Zimmermann FA, Bogner B, Sperl W, Kofler B. Alterations of oxidative phosphorylation in meningiomas and peripheral nerve sheath tumors. Neuro Oncol 2015; 18:184-94. [PMID: 26106125 DOI: 10.1093/neuonc/nov105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/29/2015] [Accepted: 05/08/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Changes in the mode of aerobic energy production are observed in many solid tumors, though the kinds of changes differ among tumor types. We investigated mitochondrial energy metabolism in meningiomas and peripheral nerve sheath tumors, taking into consideration the histologic heterogeneity of these tumors. METHODS Oxidative phosphorylation (OXPHOS) complexes and porin (a marker for mitochondrial mass) were analyzed by immunohistochemical staining of meningiomas (n = 76) and peripheral nerve sheath tumors (schwannomas: n = 10; neurofibromas: n = 4). The enzymatic activities of OXPHOS complexes and citrate synthase were determined by spectrophotometric measurement. Western blot analysis of OXPHOS complexes, porin, and mitochondrial transcription factor A was performed. Furthermore, mitochondrial DNA copy number was determined. RESULTS The tumors differed with regard to mitochondrial energy metabolism. Low levels of a subset of OXPHOS complexes were frequently observed in World Health Organization grade I meningiomas (percent of cases with a reduction; complex I: 63%; complex II: 67%; complex IV: 56%) and schwannomas (complex III: 40%, complex IV: 100%), whereas in neurofibromas a general reduction of all complexes was observed. In contrast, expression of complexes III and V was similar to that in normal brain tissue in the majority of tumors. Mitochondrial mass was comparable or higher in all tumors compared with normal brain tissue, whereas mitochondrial DNA copy number was reduced. CONCLUSIONS The reduction of OXPHOS complexes in meningiomas and peripheral nerve sheath tumors has potential therapeutic implications, since respiratory chain-deficient tumor cells might be selectively starved by inhibitors of glycolysis or by ketogenic diet.
Collapse
Affiliation(s)
- René G Feichtinger
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Serge Weis
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Johannes A Mayr
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Franz A Zimmermann
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Barbara Bogner
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Wolfgang Sperl
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (R.G.F., F.A.Z., B.K.); Laboratory of Neuropathology, Department of Pathology and Neuropathology, State Neuropsychiatric Hospital Wagner-Jauregg, Medical School, Johannes Kepler University, Linz, Austria (S.W.); Department of Pediatrics, Paracelsus Medical University, Salzburg, Austria (J.A.M., W.S.); Department of Ophthalmology, Paracelsus Medical University, Salzburg, Austria (B.B.)
| |
Collapse
|
24
|
Abstract
The efficacy of surgery and radiation has been well validated in the treatment of meningiomas, with efficacy depending on tumor pathology, size, symptomatology and rate of progression. The role of medical therapy has the least amount of data but is being increasingly investigated for tumors that are inoperable or those tumors that recur and/or progress despite standard therapy. In this review, current data on the use of chemotherapeutic agents in the management of meningiomas will be reviewed, including cytotoxic, biologic, targeted molecular and hormonal agents.
Collapse
Affiliation(s)
- Wendy J Sherman
- Northwestern University Department of Neurology, 710 North Lake Shore Drive, Abbott Hall, Room 1123, Chicago, IL 60611, USA
| | | |
Collapse
|
25
|
Ludwig N, Kim YJ, Mueller SC, Backes C, Werner TV, Galata V, Sartorius E, Bohle RM, Keller A, Meese E. Posttranscriptional deregulation of signaling pathways in meningioma subtypes by differential expression of miRNAs. Neuro Oncol 2015; 17:1250-60. [PMID: 25681310 DOI: 10.1093/neuonc/nov014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Micro (mi)RNAs are key regulators of gene expression and offer themselves as biomarkers for cancer development and progression. Meningioma is one of the most frequent primary intracranial tumors. As of yet, there are limited data on the role of miRNAs in meningioma of different histological subtypes and the affected signaling pathways. METHODS In this study, we compared expression of 1205 miRNAs in different meningioma grades and histological subtypes using microarrays and independently validated deregulation of selected miRNAs with quantitative real-time PCR. Clinical utility of a subset of miRNAs as biomarkers for World Health Organization (WHO) grade II meningioma based on quantitative real-time data was tested. Potential targets of deregulated miRNAs were discovered with an in silico analysis. RESULTS We identified 13 miRNAs deregulated between different subtypes of benign meningiomas, and 52 miRNAs deregulated in anaplastic meningioma compared with benign meningiomas. Known and putative target genes of deregulated miRNAs include genes involved in epithelial-to-mesenchymal transition for benign meningiomas, and Wnt, transforming growth factor-β, and vascular endothelial growth factor signaling for higher-grade meningiomas. Furthermore, a 4-miRNA signature (miR-222, -34a*, -136, and -497) shows promise as a biomarker differentiating WHO grade II from grade I meningiomas with an area under the curve of 0.75. CONCLUSIONS Our data provide novel insights into the contribution of miRNAs to the phenotypic spectrum in benign meningiomas. By deregulating translation of genes belonging to signaling pathways known to be important for meningioma genesis and progression, miRNAs provide a second in line amplification of growth promoting cellular signals. MiRNAs as biomarkers for diagnosis of aggressive meningiomas might prove useful and should be explored further in a prospective manner.
Collapse
Affiliation(s)
- Nicole Ludwig
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Yoo-Jin Kim
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Sabine C Mueller
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Christina Backes
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Tamara V Werner
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Valentina Galata
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Elke Sartorius
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Rainer M Bohle
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Andreas Keller
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| | - Eckart Meese
- Department of Human Genetics Medical School, Saarland University, Homburg/Saar, Germany (N.L., S.C.M., C.B., T.V.W., V.G., E.M.); Institute of Pathology Medical School, Saarland University, Homburg/Saar, Germany (Y.-J.K., E.S., R.M.B.); Chair for Clinical Bioinformatics, Saarland University, University Hospital, Saarbrücken, Germany (S.C.M., C.B., V.G., A.K.)
| |
Collapse
|
26
|
Chang X, Shi L, Gao F, Russin J, Zeng L, He S, Chen TC, Giannotta SL, Weisenberger DJ, Zada G, Wang K, Mack WJ. Genomic and transcriptome analysis revealing an oncogenic functional module in meningiomas. Neurosurg Focus 2014; 35:E3. [PMID: 24289128 DOI: 10.3171/2013.10.focus13326] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/06/2022]
Abstract
OBJECT Meningiomas are among the most common primary adult brain tumors. Although typically benign, roughly 2%-5% display malignant pathological features. The key molecular pathways involved in malignant transformation remain to be determined. METHODS Illumina expression microarrays were used to assess gene expression levels, and Illumina single-nucleotide polymorphism arrays were used to identify copy number variants in benign, atypical, and malignant meningiomas (19 tumors, including 4 malignant ones). The authors also reanalyzed 2 expression data sets generated on Affymetrix microarrays (n = 68, including 6 malignant ones; n = 56, including 3 malignant ones). A weighted gene coexpression network approach was used to identify coexpression modules associated with malignancy. RESULTS At the genomic level, malignant meningiomas had more chromosomal losses than atypical and benign meningiomas, with average length of 528, 203, and 34 megabases, respectively. Monosomic loss of chromosome 22 was confirmed to be one of the primary chromosomal level abnormalities in all subtypes of meningiomas. At the transcriptome level, the authors identified 23 coexpression modules from the weighted gene coexpression network. Gene functional enrichment analysis highlighted a module with 356 genes that was highly related to tumorigenesis. Four intramodular hubs within the module (GAB2, KLF2, ID1, and CTF1) were oncogenic in other cancers such as leukemia. A putative meningioma tumor suppressor MN1 was also identified in this module with differential expression between malignant and benign meningiomas. CONCLUSIONS The authors' genomic and transcriptome analysis of meningiomas provides novel insights into the molecular pathways involved in malignant transformation of meningiomas, with implications for molecular heterogeneity of the disease.
Collapse
Affiliation(s)
- Xiao Chang
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
PURPOSE OF REVIEW For standard first-line treatment of high-grade meningiomas, surgical resection and radiotherapy are regarded as standard of care. In the recurrent setting after exhaustion of all local treatment options, no effective therapies are known and several drugs have failed to show efficacy, but novel compounds may offer hope for better disease control. RECENT FINDINGS Upregulation of proangiogenic molecules and dysregulation of some signaling pathways such as the platelet-derived growth factor and mammalian target of rapamycin are recurrently found in high-grade meningiomas. Furthermore, in-vitro studies and single patient experience indicate that trabectedin may be an effective therapy in this tumor type. Unfortunately, so far there is a lack of conclusive clinical trials to draw definite conclusions of efficacy of these approaches. SUMMARY There remains a significant unmet need for defining the role of medical therapy in recurrent high-grade meningioma, and more basic research and multicentric well designed trials are needed in this rare and devastating tumor type. Potentially promising novel therapeutics include antiangiogenic drugs, molecular inhibitors of signaling cascades, immunotherapeutics or trabectedin. However, more basic research is required to identify more promising drug targets. VIDEO ABSTRACT AVAILABLE See the Video Supplementary Digital Content 1 (http://links.lww.com/CONR/A22).
Collapse
Affiliation(s)
- Matthias Preusser
- aDepartment of Medicine I & Comprehensive Cancer Center - CNS Unit, Medical University of Vienna bDepartment of Clinical Neurosciences, CHUV, Lausanne University Medical Center and University of Lausanne, Switzerland
| | | | | |
Collapse
|
28
|
miR-200a-mediated suppression of non-muscle heavy chain IIb inhibits meningioma cell migration and tumor growth in vivo. Oncogene 2014; 34:1790-8. [PMID: 24858044 DOI: 10.1038/onc.2014.120] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2013] [Revised: 04/13/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
miR-200a has been implicated in the pathogenesis of meningiomas, one of the most common central nervous system tumors in humans. To identify how miR-200a contributes to meningioma pathogenesis at the molecular level, we used a comparative protein profiling approach using Gel-nanoLC-MS/MS and identified approximately 130 dysregulated proteins in miR-200a-overexpressing meningioma cells. Following the bioinformatic analysis to identify potential genes targeted by miR-200a, we focused on the non-muscle heavy chain IIb (NMHCIIb), and showed that miR-200a directly targeted NMHCIIb. Considering the key roles of NMHCIIb in cell division and cell migration, we aimed to identify whether miR-200a regulated these processes through NMHCIIb. We found that NMHCIIb overexpression partially rescued miR-200a-mediated inhibition of cell migration, as well as cell growth in vitro and in vivo. Moreover, siRNA-mediated silencing of NMHCIIb expression resulted in a similar migration phenotype in these cells and inhibited meningioma tumor growth in mice. Taken together, these results suggest that NMHCIIb might serve as a novel therapeutic target in meningiomas.
Collapse
|
29
|
A phase II trial of PTK787/ZK 222584 in recurrent or progressive radiation and surgery refractory meningiomas. J Neurooncol 2014; 117:93-101. [PMID: 24449400 DOI: 10.1007/s11060-014-1358-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2013] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
When surgery and radiation are no longer treatment options, salvage systemic therapy has been used for recurrent meningiomas with little compelling evidence to suggest effectiveness. Patients with surgery and radiation refractory recurrent meningiomas were treated with the oral multifunctional tyrosine kinase inhibitor PTK787/ZK 222584 (PTK787) at a dose of 500 mg twice a day. Each treatment cycle was 4 weeks with MRI done every 8 weeks. Twenty-five patients (14 men; 11 women) with a median age of 59 years and KPS of 80 were treated. Meningioma WHO Grade was I in 2 patients, II in 14 patients and III in 8 patients; 1 patient had a hemangiopericytoma. All patients had prior surgery, external beam radiation therapy or radiosurgery and 11 patients prior systemic chemotherapy. Median number of cycles of PTK 787 administered was 4 (range <1-22). Best response in the 22 evaluable patients was stable disease in 15 (68.2 %). Predominant PTK787 related toxicities included fatigue (60 %), hypertension (24 %) and elevated transaminases (24 %). Grade II patients had a progression free survival (PFS)-6 of 64.3 %, a median PFS of 6.5 months and an overall survival (OS) of 26.0 months; grade III patients had a PFS-6 of 37.5 %, median PFS of 3.6 months and OS 23 months. PTK787 was modestly toxic at the dose of 500 mg administered twice per day. Activity as determined by PFS-6 suggests that targeting PDGF/VEGF pathway warrants further investigation.
Collapse
|
30
|
Chamberlain MC, Barnholtz-Sloan JS. Medical treatment of recurrent meningiomas. Expert Rev Neurother 2014; 11:1425-32. [DOI: 10.1586/ern.11.38] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/08/2022]
|
31
|
Abstract
Object
Currently, few medical options exist for refractory and atypical/anaplastic meningiomas. New developments in chemotherapeutic options for meningiomas have been explored over the past decade. The authors review these recent developments, with an emphasis on emerging avenues for therapy, clinical efficacy, and adverse effects.
Methods
A review of the literature was performed to identify any studies exploring recent medical and chemotherapeutic agents that have been or are currently being tested for meningiomas. Results from included preclinical and human clinical trials were reviewed and summarized.
Results
Current guidelines recommend only 3 drugs that can be used to treat patients with refractory and highgrade meningiomas: hydroxyurea, interferon-α 2B, and Sandostatin long-acting release. Recent developments in the medical treatment of meningiomas have been made across a variety of pharmacological classes, including cytotoxic agents, hormonal agents, immunomodulators, and targeted agents toward a variety of growth factors and their signaling cascades. Promising avenues of therapy that are being evaluated for efficacy and safety include antagonists of platelet-derived growth factor receptor, epidermal growth factor receptor, vascular endothelial growth factor receptor, and mammalian target of rapamycin. Because malignant transformation in meningiomas is likely to be mediated by numerous processes interacting via a complex matrix of signals, combination therapies affecting multiple molecular targets are currently being explored and hold significant promise as adjuvant therapy options.
Conclusions
Improved understanding of the molecular mechanisms driving meningioma tumorigenesis and malignant transformation has resulted in the targeted development of more specific agents for chemotherapeutic intervention in patients with nonresectable, aggressive, and malignant meningiomas.
Collapse
Affiliation(s)
| | | | - Gabriel Zada
- 3Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California
| |
Collapse
|
32
|
Johnson MD, O’Connell MJ, Walter K. Cucurbitacin I blocks cerebrospinal fluid and platelet derived growth factor-BB stimulation of leptomeningeal and meningioma DNA synthesis. Altern Ther Health Med 2013; 13:303. [PMID: 24188277 PMCID: PMC4228312 DOI: 10.1186/1472-6882-13-303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/10/2013] [Accepted: 10/29/2013] [Indexed: 02/02/2023]
Abstract
Background Currently, there are no consistently effective chemotherapies for recurrent and inoperable meningiomas. Recently, cucurbitacin I (JSI-124), a naturally occurring tetracyclic triterpenoid compound used as folk medicines has been found to have cytoxic and anti-proliferative properties in several malignancies thru inhibition of activator of transcription (STAT3) activation. Previously, we have found STAT3 to be activated in meningiomas, particularly higher grade tumors. Methods Primary leptomeningeal cultures were established from 17, 20 and 22 week human fetuses and meningioma cell cultures were established from 6 World Health Organization (WHO) grade I or II meningiomas. Cells were treated with cerebrospinal fluid from patients without neurologic disease. The effects of cucurbitacin I on cerebrospinal fluid stimulation of meningioma cell DNA synthesis phosphorylation/activation of JAK1, STAT3, pMEK1/2, p44/42MAPK, Akt, mTOR, Rb and caspase 3 activation were analyzed in human leptomeningeal and meningioma cells. Results Cerebrospinal fluid significantly stimulated DNA synthesis in leptomeningeal cells. Co-administration of cucurbitacin I (250 nM) produces a significant blockade of this effect. Cucurbitacin I alone also produced a significant reduction in basal DNA synthesis. In grade I and II meningiomas, cerebrospinal fluid also significantly stimulated DNA synthesis. Co-administration of cucurbitacin I (250 nM) blocked this effect. In the leptomeningeal cultures, cerebrospinal fluid stimulated STAT3 phosphorylation but not p44/42MAPK, Akt or mTOR. Cucurbitacin I had no effect on basal STAT3 phosphorylation but co-administration with cerebrospinal fluid blocked cerebrospinal fluid stimulation of STAT3 phosphorylation in each. In the grade I meningiomas, cerebrospinal fluid stimulated phosphorylation of STAT3 and decreased MEK1/2 and cucurbitacin I had no effect on basal STAT3, p44/42MAPK, Akt, JAK1, mTOR, or Rb phosphorylation. In the grade II meningiomas, cerebrospinal fluid stimulated STAT3 phosphorylation in all and reduced phosphorylation of MEK1/2 in all and p44/42MAPK in one. Cucurbitacin I had no effect on basal phosphorylation of STAT3 but reduced phorphorylated p44/42 MAPK in 2 grade II meningioma cells lines. Conclusions These studies raise the possibility that cucurbitacin I might have value as an adjunct chemotherapy. Additional studies are warranted to evaluate the effects of cucurbitacin I on meningiomas in vivo.
Collapse
|
33
|
Murovic JA, Chang SD. A literature review of key molecular genetic aberrations in meningiomas: a potential role in the determination of radiosurgery outcomes. World Neurosurg 2013; 81:714-6. [PMID: 24012470 DOI: 10.1016/j.wneu.2013.08.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/11/2013] [Accepted: 08/29/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Judith Ann Murovic
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | - Steven D Chang
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA.
| |
Collapse
|
34
|
Abstract
Meningiomas represent the most common primary brain tumor and comprise 3 World Health Organization (WHO) grades, the most frequent being WHO grade I (90%). Surgery is mandatory to establish the diagnosis and to remove the tumor; however, complete resection can be achieved in only <50% of patients. Depending on the extent of resection, tumor location and the WHO grade radiation therapy can be applied. The issue of systemic treatment such as chemotherapy or targeted therapy (eg, somatostatin receptors, antiangiogenic agents) is yet not solved, particularly as current data are derived from small uncontrolled series in patients with long-standing disease and after several pretreatments. A more thorough understanding of molecular genetics, signaling pathways and prognostic factors in meningiomas should lead to the design of studies which stratify according to these factors. These studies have to be conducted in newly diagnosed patients after incomplete resection and in tumors of WHO grade II and III.
Collapse
Affiliation(s)
- Ali-Reza Fathi
- Department of Neurosurgery, Cantonal Hospital, 5001, Aarau, Switzerland.
| | | |
Collapse
|
35
|
Serna E, Morales JM, Mata M, Gonzalez-Darder J, San Miguel T, Gil-Benso R, Lopez-Gines C, Cerda-Nicolas M, Monleon D. Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma. PLoS One 2013; 8:e67291. [PMID: 23840654 PMCID: PMC3696107 DOI: 10.1371/journal.pone.0067291] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/15/2013] [Accepted: 05/16/2013] [Indexed: 12/27/2022] Open
Abstract
Around 20% of meningiomas histologically benign may be clinically aggressive and recur. This strongly affects management of meningioma patients. There is a need to evaluate the potential aggressiveness of an individual meningioma. Additional criteria for better classification of meningiomas will improve clinical decisions as well as patient follow up strategy after surgery. The aim of this study was to determine the relationship between gene expression profiles and new metabolic subgroups of benign meningioma with potential clinical relevance. Forty benign and fourteen atypical meningioma tissue samples were included in the study. We obtained metabolic profiles by NMR and recurrence after surgery information for all of them. We measured gene expression by oligonucleotide microarray measurements on 19 of them. To our knowledge, this is the first time that distinct gene expression profiles are reported for benign meningioma molecular subgroups with clinical correlation. Our results show that metabolic aggressiveness in otherwise histological benign meningioma proceeds mostly through alterations in the expression of genes involved in the regulation of transcription, mainly the LMO3 gene. Genes involved in tumor metabolism, like IGF1R, are also differentially expressed in those meningioma subgroups with higher rates of membrane turnover, higher energy demand and increased resistance to apoptosis. These new subgroups of benign meningiomas exhibit different rates of recurrence. This work shows that benign meningioma with metabolic aggressiveness constitute a subgroup of potentially recurrent tumors in which alterations in genes regulating critical features of aggressiveness, like increased angiogenesis or cell invasion, are still no predominant. The determination of these gene expression biosignatures may allow the early detection of clinically aggressive tumors.
Collapse
Affiliation(s)
- Eva Serna
- Unidad Central de Investigación en Medicina, Universitat de Valéncia, Valencia, Spain
| | - José Manuel Morales
- Unidad Central de Investigación en Medicina, Universitat de Valéncia, Valencia, Spain
| | - Manuel Mata
- Unidad Central de Investigación en Medicina, Universitat de Valéncia, Valencia, Spain
| | - José Gonzalez-Darder
- Servicio de Neurocirugía, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | | | | | | | - Miguel Cerda-Nicolas
- Departamento de Patología, Universitat de Valencia, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBER-RES), Madrid, Spain
| | - Daniel Monleon
- Fundación de Investigación del Hospital Clínico Universitario de Valencia/Instituto de Investigacion Sanitaria Clinico Valencia (INCLIVA), Valencia, Spain
- * E-mail:
| |
Collapse
|
36
|
Torres-Martín M, Martinez-Glez V, Peña-Granero C, Isla A, Lassaletta L, DE Campos JM, Pinto GR, Burbano RR, Meléndez B, Castresana JS, Rey JA. Gene expression analysis of aberrant signaling pathways in meningiomas. Oncol Lett 2013; 6:275-279. [PMID: 23946817 PMCID: PMC3742750 DOI: 10.3892/ol.2013.1363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/31/2013] [Accepted: 05/15/2013] [Indexed: 12/28/2022] Open
Abstract
Examining aberrant pathway alterations is one method for understanding the abnormal signals that are involved in tumorigenesis and tumor progression. In the present study, expression arrays were performed on tumor-related genes in meningiomas. The GE Array Q Series HS-006 was used to determine the expression levels of 96 genes that corresponded to six primary biological regulatory pathways in a series of 42 meningiomas, including 32 grade I, four recurrent grade I and six grade II tumors, in addition to three normal tissue controls. Results showed that 25 genes that were primarily associated with apoptosis and angiogenesis functions were downregulated and 13 genes frequently involving DNA damage repair functions were upregulated. In addition to the inactivation of the neurofibromin gene, NF2, which is considered to be an early step in tumorigenesis, variations of other biological regulatory pathways may play a significant role in the development of meningioma.
Collapse
|
37
|
Kotipatruni RP, Ferraro DJ, Ren X, Vanderwaal RP, Thotala DK, Hallahan DE, Jaboin JJ. NDRG4, the N-Myc downstream regulated gene, is important for cell survival, tumor invasion and angiogenesis in meningiomas. Integr Biol (Camb) 2013; 4:1185-97. [PMID: 22869042 DOI: 10.1039/c2ib20168b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/04/2023]
Abstract
Meningiomas are the second most common brain tumor, and 20-30% of these tumors are aggressive. The aggressive subtypes are characterized by a capacity for invasion of normal brain with frequent and destructive recurrence patterns. Effective local therapies include surgery and radiation, but there is a need for novel molecular targets to improve survival and reduce morbidity for this group or cancer patients. We have recently identified the N-Myc downstream regulated gene 4, NDRG4, protein as being overexpressed in aggressive meningioma, and in this report, demonstrate its role in cell survival, invasion/migration and angiogenesis. Downregulation of NDRG4 mRNA and protein expression in two high-grade meningioma cancer cell lines, IOMM-Lee and CH-157 MN resulted in reduction in cell survival, DNA fragmentation and G2-M cell cycle arrest. NDRG4 downregulation also decreased cellular invasion and migration, as determined by spheroid migration, linear and radial wound healing, Boyden chamber matrigel invasion, and 3D invasion assays. To determine the effect of NDRG4 depletion on angiogenesis, we studied the immortalized brain endothelial cell line, bEnd.3. We treated bEnd.3 cells with conditioned media from NDRG4-depleted IOMM-Lee and CH-157 MN cells and abrogated their ability to elicit bEnd.3 capillary-like tubes, to proliferate, and to invade. NDRG4 is not overexpressed in bEnd.3 cells and direct NDRG4 depletion had no effect on the cells. This study is significant as it is the first to demonstrate the functional role of NDRG4 in various aspects of meningioma tumor biology. NDRG4 is involved in modulating cell proliferation, invasion, migration and angiogenesis in meningioma, and may play a valuable role as a molecular target in its treatment.
Collapse
Affiliation(s)
- Rama P Kotipatruni
- Department of Radiation Oncology, Washington University in St Louis, St Louis, MO 63108, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Meningiomas are the most common primary brain tumors; they arise from the coverings of the brain. Although meningiomas are generally benign, some are more clinically aggressive, as reflected by their histopathological features or by their unexpected recurrence. We hypothesized that recurrent histologically benign meningiomas might have genetic features in common with those showing a more aggressive histology. By comparing gene expression profiles associated with meningioma progression and recurrence in 128 tumor samples (i.e. 83 benign World Health Organization [WHO] Grade I, 37 atypical WHO Grade II, and 8 anaplastic WHO Grade III) from 121 patients, we identified a 49-gene signature of meningioma aggressivity. This signature classified the tumors into 2 groups showing different clinical and pathological behaviors. The signature was composed of genes involved in the cell cycle (TMEM30B, CKS2, and UCHL1) and other pathways previously described as being altered in meningiomas, that is, WNT (SFRP1 and SFRP4) and transforming growth factor-β pathways (LTBP2 and LMO4). Overall, gene downregulation was observed in advanced and recurrent samples versus benign and original ones. We propose that this gene repression may be caused by gene promoter hypermethylation, as in the case of UCHL1 and SFRP1, suggesting that this epigenetic event, together with loss of specific chromosomal regions, may play an important role in meningioma progression and recurrence.
Collapse
|
39
|
Abstract
While strong evidence exists for the standard therapy for meningiomas, inclusive of surgery and/or radiation therapy, for those tumors which recur, progress or are inoperable, the optimal medical therapies are yet to be elucidated. This article reviews the current literature for chemotherapeutic options for this subset of tumors, including cytotoxic agents, biologic agents, targeted molecular agents and hormonal agents. At this point in time, the most data is with hydroxyurea and somatostatin, although further trials with combination and targeted molecular therapies are still underway.
Collapse
Affiliation(s)
- W J Sherman
- Department of Neurology, Northwestern University, 710 North Lake Shore Dr. Abbott Hall, Room 1123, Chicago, IL 60611, USA
| | | |
Collapse
|
40
|
Lou E, Sumrall AL, Turner S, Peters KB, Desjardins A, Vredenburgh JJ, McLendon RE, Herndon JE, McSherry F, Norfleet J, Friedman HS, Reardon DA. Bevacizumab therapy for adults with recurrent/progressive meningioma: a retrospective series. J Neurooncol 2012; 109:63-70. [PMID: 22535433 DOI: 10.1007/s11060-012-0861-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/21/2011] [Accepted: 03/28/2012] [Indexed: 01/22/2023]
Abstract
Intracranial meningiomas are often indolent tumors which typically grow over years to decades. Nonetheless, meningiomas that progress after maximum safe resection and radiation therapy pose a significant therapeutic challenge and effective therapies have yet to be identified. Preclinical studies implicate angiogenesis in the pathophysiology of more aggressive meningiomas, suggesting that anti-angiogenic therapies may be of utility in this setting. We performed a retrospective review of fourteen patients with recurrent meningioma treated at Duke University Medical Center with bevacizumab, a humanized monoclonal antibody against vascular endothelial growth factor, administered either alone or in combination with chemotherapy. Most patients were heavily pre-treated. Progression-free survival at 6 months was 86 % and was comparable regardless of meningioma grade and whether bevacizumab was administered as monotherapy or in combination with chemotherapy. Most toxicities were mild however single patients developed CNS hemorrhage (grade 1) and intestinal perforation (grade 4), respectively. Bevacizumab can be administered safely to patients with meningioma and appears to be associated with encouraging anti-tumor effect when administered as either a single agent or in combination with chemotherapy. Phase II trials investigating bevacizumab in patients with progressive/recurrent meningioma are warranted.
Collapse
Affiliation(s)
- Emil Lou
- Department of Surgery, The Preston Robert Tisch Brain Tumor Center at Duke, Duke University Medical Center, Durham, NC, 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Elder JB, Chiocca EA. Meningioma-toward an improved understanding of the role of sex steroids in tumor development and progression. World Neurosurg 2011; 76:409-11. [PMID: 22152567 DOI: 10.1016/j.wneu.2011.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/25/2011] [Accepted: 05/02/2011] [Indexed: 10/14/2022]
Affiliation(s)
- J Bradley Elder
- Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
42
|
Elder JB, Chiocca EA. Molecular and genetic characterization of meningiomas: future predictive assays and "personalized" treatment. World Neurosurg 2011; 79:247-8. [PMID: 22120235 DOI: 10.1016/j.wneu.2011.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/12/2011] [Accepted: 10/06/2011] [Indexed: 10/15/2022]
Affiliation(s)
- J Bradley Elder
- Department of Neurological Surgery, The Ohio State University Medical Center, Columbus, Ohio, USA
| | | |
Collapse
|
43
|
Cerebrospinal fluid stimulates leptomeningeal and meningioma cell proliferation and activation of STAT3. J Neurooncol 2011; 107:121-31. [DOI: 10.1007/s11060-011-0736-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/08/2011] [Accepted: 09/24/2011] [Indexed: 10/17/2022]
|
44
|
Reardon DA, Norden AD, Desjardins A, Vredenburgh JJ, Herndon JE, Coan A, Sampson JH, Gururangan S, Peters KB, McLendon RE, Norfleet JA, Lipp ES, Drappatz J, Wen PY, Friedman HS. Phase II study of Gleevec® plus hydroxyurea (HU) in adults with progressive or recurrent meningioma. J Neurooncol 2011; 106:409-15. [PMID: 21938530 DOI: 10.1007/s11060-011-0687-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/10/2011] [Accepted: 08/03/2011] [Indexed: 01/28/2023]
Abstract
We prospectively evaluated the efficacy and safety of imatinib plus hydroxyurea in patients with progressive/recurrent meningioma. A total of 21 patients with progressive/recurrent meningioma were enrolled in this dual center, single-arm, phase II trial. All patients received 500 mg of hydroxyurea twice a day. Imatinib was administered at 400 mg/day for patients not on CYP3A enzyme inducing anti-epileptic drugs (EIAEDs) and at 500 mg twice a day for patients on EIAEDs. The primary endpoint was progression-free survival at 6 months (PFS-6) and secondary endpoints were safety, radiographic response rate, and overall survival (OS). Best radiographic response was stable disease and was observed in 14 patients (67%). PFS-6 for all patients, those with grade I tumors (n = 8) and those with grade II or III tumors (n = 13) was 61.9, 87.5 and 46.2%, respectively. Patients with grade II or III tumors had poorer PFS and OS than those with grade I tumors, (P = 0.025 and P = 0.018) respectively. The only grade 3 or greater adverse event occurring in ≥ 10% of patients was anemia (10%). Imatinib plus hydroxyurea is well tolerated among patients with meningioma but has modest anti-tumor activity for this indication.
Collapse
Affiliation(s)
- David A Reardon
- Duke University Medical Center, Box 3624, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, Parsa AT, Yang I. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus 2011; 30:E6. [DOI: 10.3171/2011.2.focus1116] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/22/2023]
Abstract
Meningiomas are mostly benign, slow-growing tumors of the CNS that originate from arachnoidal cap cells. While monosomy 22 is the most frequent genetic abnormality found in meningiomas, a multitude of other aberrant chromosomal alterations, signaling pathways, and growth factors have been implicated in its pathogenesis. Losses on 22q12.2, a region encoding the tumor suppressor gene merlin, represent the most common genetic alterations in early meningioma formation. Malignant meningioma progression, however, is associated with more complex karyotypes and greater genetic instability. Cytogenetic studies of atypical and anaplastic meningiomas revealed gains and losses on chromosomes 9, 10, 14, and 18, with amplifications on chromosome 17. However, the specific gene targets in a majority of these chromosomal abnormalities remain elusive.
Studies have also implicated a myriad of aberrant signaling pathways involved with meningioma tumorigenesis, including those involved with proliferation, angiogenesis, and autocrine loops. Understanding these disrupted pathways will aid in deciphering the relationship between various genetic changes and their downstream effects on meningioma pathogenesis.
Despite advancements in our understanding of meningioma pathogenesis, the conventional treatments, including surgery, radiotherapy, and stereotactic radiosurgery, have remained largely stagnant. Surgery and radiation therapy are curative in the majority of lesions, yet treatment remains challenging for meningiomas that are recurrent, aggressive, or refractory to conventional treatments. Future therapies will include combinations of targeted molecular agents as a result of continued progress in the understanding of genetic and biological changes associated with meningiomas.
Collapse
Affiliation(s)
| | - Won Kim
- 1Department of Neurological Surgery, and
| | | | | | - Andrew Yew
- 1Department of Neurological Surgery, and
| | - Quinton Gopen
- 2Division of Otolaryngology, University of California Los Angeles; and
| | - Andrew T. Parsa
- 3Department of Neurological Surgery, University of California, San Francisco, California
| | - Isaac Yang
- 1Department of Neurological Surgery, and
| |
Collapse
|
46
|
Pediatric meningioma: current approaches and future direction. J Neurooncol 2011; 104:1-10. [DOI: 10.1007/s11060-010-0503-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/07/2010] [Accepted: 12/13/2010] [Indexed: 01/09/2023]
|
47
|
Hueng DY, Sytwu HK, Huang SM, Chang C, Ma HI. Isolation and characterization of tumor stem-like cells from human meningiomas. J Neurooncol 2010; 104:45-53. [DOI: 10.1007/s11060-010-0469-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2010] [Accepted: 11/08/2010] [Indexed: 02/06/2023]
|