1
|
Chen Z, Long Y, Zhang Y, Zhang B, He Q, Zhang X. Detection efficacy of analog [ 18F]FDG PET/CT, digital [ 18F]FDG, and [ 13N]NH 3 PET/CT: a prospective, comparative study of patients with lung adenocarcinoma featuring ground glass nodules. Eur Radiol 2023; 33:2118-2127. [PMID: 36322193 DOI: 10.1007/s00330-022-09186-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This prospective study compared the detection efficacy of analog 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) (aF PET/CT), digital [18F]FDG PET/CT (dF PET/CT), and digital 13N-ammonia (13N-NH3) PET/CT (dN PET/CT) for patients with lung adenocarcinoma featuring ground glass nodules (GGNs). METHODS Eighty-seven patients with lung adenocarcinoma featuring GGNs who underwent dF and dN PET/CT were enrolled. Based on the GGN component, diameter, and solid-part size, 87 corresponding patients examined using aF PET/CT were included, with age, sex, and lesion characteristics closely matched. Images were visually evaluated, and the tumor to background ratio (TBR) was used for semi-quantitative analysis. RESULTS Ultimately, 40 and 47 patients with pure GGNs (pGGNs) and mixed GGNs (mGGNs), respectively, were included. dF PET/CT revealed more positive lesions and higher tracer uptake in GGNs than did aF PET/CT (53/87 vs. 26/87, p < 0.05; TBR: 3.08 ± 4.85 vs. 1.42 ± 0.93, p < 0.05), especially in mGGNs (44/47 vs. 26/47, p < 0.05; TBR: 4.48 ± 6.17 vs. 1.78 ± 1.16, p < 0.05). However, dN PET/CT detected more positive lesions than did dF PET/CT (71/87 vs. 53/87, p < 0.05), especially in pGGNs (24/40 vs. 9/40, p < 0.05). CONCLUSIONS dF PET/CT provides superior detection efficacy over aF PET/CT for patients with lung adenocarcinoma featuring GGNs, particularly mGGNs. dN PET/CT revealed superior detection efficacy over dF PET/CT, particularly in pGGNs. aF, dF, and dN PET/CT are valuable non-invasive examinations for lung cancer featuring GGNs, with dN PET/CT offering the best detection performance. KEY POINTS • Digital PET/CT provides superior detection efficacy over analog PET/CT in patients with lung adenocarcinoma featuring GGNs. • dN PET/CT can offer more help in the early detection of malignant GGN.
Collapse
Affiliation(s)
- Zhifeng Chen
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yali Long
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Yuying Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, 510080, Guangdong Province, People's Republic of China.
| |
Collapse
|
2
|
Ding L, Zhang F, He Q, Li Z, Shi X, Li R, Zhang X. Differentiation of suprasellar meningiomas from non-functioning pituitary macroadenomas by 18F-FDG and 13N-Ammonia PET/CT. BMC Cancer 2020; 20:564. [PMID: 32552842 PMCID: PMC7301455 DOI: 10.1186/s12885-020-06852-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background Differentiation of suprasellar meningiomas (SSMs) from non-functioning pituitary macroadenomas (NFPMAs) is useful for clinical management. We investigated the utility of 13N-ammonia combined with 18F-FDG positron emission tomography (PET)/computed tomography (CT) in distinguishing SSMs from NFPMAs retrospectively. Methods Fourteen NFPMA patients and eleven SSM patients with histopathologic diagnosis were included in this study. Every patient underwent both 18F-FDG and 13N-ammonia PET/CT scans. The tumor to gray matter (T/G) ratios were calculated for the evaluation of tumor uptake. Results The uptake of 18F-FDG was higher in NFPMAs than SSMs, whereas the uptake of 13N-ammonia was obviously lower in NFPMAs than SSMs. The differences of 18F-FDG and 13N-ammonia uptake between the two groups were significant respectively (0.92[0.46] vs 0.59[0.29], P < 0.05, 18F-FDG; 1.58 ± 0.56 vs 2.80 ± 1.45, P < 0.05, 13N-ammonia). Tumor classification demonstrated a high overall accuracy of 96.0% for differential diagnosis. When the two traces were combined, only 1 SSM was misclassified into the NFPMA group. Conclusion SSMs and NFPMAs have different metabolic characteristics on 18F-FDG and 13N-ammonia PET images. The combination of these two tracers can effectively distinguish SSMs from NFPMAs.
Collapse
Affiliation(s)
- Lei Ding
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Fangling Zhang
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.,Department of Radiology, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, 56#, Cemetery west Road, Guangzhou, Guangdong Province, 510055, People's Republic of China
| | - Qiao He
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Zhoulei Li
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xinchong Shi
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Ruocheng Li
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xiangsong Zhang
- Department of the Medical Imaging, The First Affiliated Hospital, Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
3
|
Albano D, Giubbini R, Bertagna F. 13N-NH 3 PET/CT in oncological disease. Jpn J Radiol 2019; 37:799-807. [PMID: 31599383 DOI: 10.1007/s11604-019-00883-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 09/30/2019] [Indexed: 01/21/2023]
Abstract
13N-Ammonia (13N-NH3) is widely used positron emission tomography/computed tomography (PET/CT) radiotracer for the measurement of myocardial blood perfusion; the possible role of 13N-NH3 PET or PET/CT in oncological disease is not yet clear. Aim of this review is to evaluate the diagnostic performances of 13N-NH3 PET in this field. A comprehensive computer literature search of the PubMed/MEDLINE, Scopus, and Embase databases was conducted including articles up to June 2019. Eighteen articles were finally included in the review. From the analyses of the selected studies, the following main findings could be drawn: (1) 13N-NH3 PET is useful in discriminating between gliomas and non-neoplastic brain lesions, and among gliomas between high-grade and low-grade gliomas; (2) 13N-NH3 PET have better diagnostic performance than 18F-FDG in studying gliomas; (3) a combination of 13N-NH3 PET and 18F-FDG PET may be useful to differentiate between several cerebral lesions (gliomas, cerebral lymphoma, meningioma); (4) only preliminary results about the positive impact in liver and prostate cancer.
Collapse
Affiliation(s)
- Domenico Albano
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, P.le Spedali Civili 1; 25123, Brescia, Italy.
| | - Raffaele Giubbini
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, P.le Spedali Civili 1; 25123, Brescia, Italy
| | - Francesco Bertagna
- Nuclear Medicine, University of Brescia and Spedali Civili Brescia, P.le Spedali Civili 1; 25123, Brescia, Italy
| |
Collapse
|
4
|
He Q, Zhang L, Zhang B, Shi X, Yi C, Zhang X. Diagnostic accuracy of 13N-ammonia PET, 11C-methionine PET and 18F-fluorodeoxyglucose PET: a comparative study in patients with suspected cerebral glioma. BMC Cancer 2019; 19:332. [PMID: 30961564 PMCID: PMC6454631 DOI: 10.1186/s12885-019-5560-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/31/2019] [Indexed: 11/10/2022] Open
Abstract
Background The treatment of patients with glioma depended on the nature of the lesion and on histological grade of the tumor. Positron emission tomography (PET) using 13N-ammonia (NH3), 11C-methionine (MET) and 18F-fluorodeoxyglucose (FDG) have been used to assess brain tumors. Our aim was to compare their diagnostic accuracies in patients with suspected cerebral glioma. Methods Ninety patients with suspicion of glioma based on previous CT/MRI, who underwent NH3 PET, MET PET and FDG PET, were prospectively enrolled in the study. The reference standard was established by histology or clinical and radiological follow-up. Images were interpreted by visual evaluation and semi-quantitative analysis using the lesion-to-normal white matter uptake ratio (L/WM ratio). Results Finally, 30 high-grade gliomas (HGG), 27 low-grade gliomas (LGG), 10 non-glioma tumors and 23 non-neoplastic lesions (NNL) were diagnosed. On visual evaluation, sensitivity and specificity for differentiating tumors from NNL were 62.7% (42/67) and 95.7% (22/23) for NH3 PET, 94.0% (63/67) and 56.5% (13/23) for MET PET, and 35.8% (24/67) and 65.2% (15/23) for FDG PET. On semi-quantitative analysis, brain tumors showed significantly higher L/WM ratios than NNL both in NH3 and MET PET (both P < 0.001). The sensitivity, specificity and the area under the curve (AUC) by receiver operating characteristic (ROC) analysis, respectively, were 64.2, 100% and 0.819 for NH3; and 89.6, 69.6% and 0.840 for MET. Besides, the L/WM ratios of NH3, MET and FDG PET in HGG all significantly higher than that in LGG (all P < 0.001). The predicted (by ROC) accuracy of the tracers (AUC shown in parentheses) were 86.0% (0.896) for NH3, 87.7% (0.928) for MET and 93.0% (0.964) for FDG. While no significant differences in the AUC were seen between them. Conclusion NH3 PET has remarkably high specificity for the differentiation of brain tumors from NNL, but low sensitivity for the detection of LGG. MET PET was found to be highly useful for detection of brain tumors. However, like FDG, high MET uptake is frequently observed in some NNL. NH3, MET and FDG PET all appears to be valuable for evaluating the histological grade of gliomas.
Collapse
Affiliation(s)
- Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Linqi Zhang
- Department of Nuclear Medicine, Affiliated Cancer Hospital&Institute of Guangzhou Medical University, Guangzhou, 510095, People's Republic of China
| | - Bing Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xinchong Shi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Chang Yi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-sen University, 58# Zhongshan Er Road, Guangzhou, Guangdong Province, 510080, People's Republic of China.
| |
Collapse
|
5
|
Khangembam BC, Singhal A, Kumar R, Bal C. Tc-99m Glucoheptonate Single Photon Emission Computed Tomography-Computed Tomography for Detection of Recurrent Glioma: A Prospective Comparison with N-13 Ammonia Positron Emission Tomography-Computed Tomography. Indian J Nucl Med 2019; 34:107-117. [PMID: 31040521 PMCID: PMC6481207 DOI: 10.4103/ijnm.ijnm_164_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Purpose of the Study: To assess the efficacies of Tc-99m glucoheptonate single photon emission computed tomography-computed tomography (Tc-99m GHA SPECT-CT) and N-13 ammonia positron emission tomography-computed tomography (N-13 NH3 PET-CT) in detecting recurrent glioma. Materials and Methods: Fifty-five consecutive, histologically proven, and previously treated glioma patients (age, 38.9 ± 12.2 years; 61.8% males) presenting with clinical suspicion of recurrence were evaluated with Tc-99m GHA SPECT-CT and N-13 NH3 PET-CT. Images were evaluated both qualitatively and semiquantitatively. A combination of clinicoradiological follow-up, repeat imaging, and/or biopsy (when available) was considered as the reference standard. Results: Based on the reference standard, 28/55 (50.9%) patients had recurrence. Sensitivity, specificity, positive predictive value, negative predictive value, accuracy of Tc-99m GHA SPECT-CT, and N-13 NH3 PET-CT were 85.7%, 85.2%, 85.7%, 85.2%, 85.5% and 78.6%, 88.9%, 88.0%, 80.0%, 83.6%, respectively (concordant findings in 46 patients). The performances of the two modalities were equivalent both in overall and subgroup McNemar analyses (P = 0.508, overall; P = 0.687, low grade; P = 1.000, high grade). Conclusion: Tc-99m GHA SPECT-CT is an alternative imaging modality equally efficacious as N-13 NH3 PET-CT in detecting recurrent glioma.
Collapse
Affiliation(s)
- Bangkim Chandra Khangembam
- Department of Nuclear Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Abhinav Singhal
- Department of Nuclear Medicine, Institute of Liver and Biliary Sciences, New Delhi, India.,Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Rajeev Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Chandrasekhar Bal
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
The combination of 13N-ammonia and 18F-FDG whole-body PET/CT on the same day for diagnosis of advanced prostate cancer. Nucl Med Commun 2016; 37:239-46. [PMID: 26588068 PMCID: PMC4727500 DOI: 10.1097/mnm.0000000000000444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Purpose The aim of the study was to evaluate the efficacy of 13N-ammonia and 18F-fluorodeoxyglucose (18F-FDG) PET performed on the same day in the detection of advanced prostate cancer (PC) and its metastases. Patients and methods Twenty-six patients with high-risk PC [Gleason score 8–10 or prostate-specific antigen (PSA)>20 ng/ml or clinical tumor extension≥T2c] were recruited into the study. 13N-Ammonia and 18F-FDG PET/CT were performed on the same day (18F-FDG followed ammonia, with an interval of a minimum of 2 h). Lesions were interpreted as positive, negative, or equivocal. Patient-based and field-based performance characteristics for both imaging techniques were reported. Results There was significant correlation between 13N-ammonia and 18F-FDG PET/CT in the detection of primary PC (κ=0.425, P=0.001) and no significant difference in sensitivity (60.2 vs. 54.5%) and specificity (100 vs. 83.3%). The maximum standard uptake values and corresponding target-to-background ratio values of the concordantly positive lesions in prostate glands in the two studies did not differ significantly (P=0.124 and 0.075, respectively). The sensitivity and specificity of PET imaging using 13N-ammonia for lymph node metastases were 77.5 and 96.3%, respectively, whereas the values were 75 and 44.4% using 18F-FDG. The two modalities were highly correlated with respect to the detection of lymph nodes and bone metastases. Conclusion The concordance between the two imaging modalities suggests a clinical impact of 13N-ammonia PET/CT in advanced PC patients as well as of 18F-FDG. 13N-Ammonia is a useful PET tracer and a complement to 18F-FDG for detecting primary focus and distant metastases in PC. The combination of these two tracers on the same day can accurately detect advanced PC.
Collapse
|
7
|
Abstract
A previous review published in 2012 demonstrated the role of clinical PET for diagnosis and management of brain tumors using mainly FDG, amino acid tracers, and 18F-fluorothymidine. This review provides an update on clinical PET studies, most of which are motivated by prediction of prognosis and planning and monitoring of therapy in gliomas. For FDG, there has been additional evidence supporting late scanning, and combination with 13N ammonia has yielded some promising results. Large neutral amino acid tracers have found widespread applications mostly based on 18F-labeled compounds fluoroethyltyrosine and fluorodopa for targeting biopsies, therapy planning and monitoring, and as outcome markers in clinical trials. 11C-alpha-methyltryptophan (AMT) has been proposed as an alternative to 11C-methionine, and there may also be a role for cyclic amino acid tracers. 18F-fluorothymidine has shown strengths for tumor grading and as an outcome marker. Studies using 18F-fluorocholine (FCH) and 68Ga-labeled compounds are promising but have not yet clearly defined their role. Studies on radiotherapy planning have explored the use of large neutral amino acid tracers to improve the delineation of tumor volume for irradiation and the use of hypoxia markers, in particular 18F-fluoromisonidazole. Many studies employed the combination of PET with advanced multimodal MR imaging methods, mostly demonstrating complementarity and some potential benefits of hybrid PET/MR.
Collapse
Affiliation(s)
- Karl Herholz
- The University of Manchester, Division of Neuroscience and Experimental Psychology Wolfson Molecular Imaging Centre, Manchester, England, United Kingdom.
| |
Collapse
|
8
|
Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, deKemp RA. PET Metabolic Biomarkers for Cancer. BIOMARKERS IN CANCER 2016; 8:61-9. [PMID: 27679534 PMCID: PMC5030827 DOI: 10.4137/bic.s27483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/08/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
Abstract
The body's main fuel sources are fats, carbohydrates (glucose), proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET) imaging using the glucose analog (18)F-fluorodeoxyglucose ((18)F-FDG) has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.
Collapse
Affiliation(s)
- Etienne Croteau
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada; Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jennifer M Renaud
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Marie Anne Richard
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Terrence D Ruddy
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - François Bénard
- Division of Nuclear Medicine, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
9
|
He Q, Shi X, Zhang L, Yi C, Zhang X, Zhang X. De Novo Glutamine Synthesis: Importance for the Proliferation of Glioma Cells and Potentials for Its Detection With 13N-Ammonia. Mol Imaging 2016; 15:15/0/1536012116645440. [PMID: 27118759 PMCID: PMC5470141 DOI: 10.1177/1536012116645440] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/23/2016] [Indexed: 11/29/2022] Open
Abstract
Purpose: The aim of this study was to investigate the role of de novo glutamine (Gln) synthesis in the proliferation of C6 glioma cells and its detection with 13N-ammonia. Methods: Chronic Gln-deprived C6 glioma (0.06C6) cells were established. The proliferation rates of C6 and 0.06C6 cells were measured under the conditions of Gln deprivation along with or without the addition of ammonia or glutamine synthetase (GS) inhibitor. 13N-ammonia uptake was assessed in C6 cells by gamma counting and in rats with C6 and 0.06C6 xenografts by micro–positron emission tomography (PET) scanning. The expression of GS in C6 cells and xenografts was assessed by Western blotting and immunohistochemistry, respectively. Results: The Gln-deprived C6 cells showed decreased proliferation ability but had a significant increase in GS expression. Furthermore, we found that low concentration of ammonia was sufficient to maintain the proliferation of Gln-deprived C6 cells, and 13N-ammonia uptake in C6 cells showed Gln-dependent decrease, whereas inhibition of GS markedly reduced the proliferation of C6 cells as well as the uptake of 13N-ammoina. Additionally, microPET/computed tomography exhibited that subcutaneous 0.06C6 xenografts had higher 13N-ammonia uptake and GS expression in contrast to C6 xenografts. Conclusion: De novo Gln synthesis through ammonia–glutamate reaction plays an important role in the proliferation of C6 cells. 13N-ammonia can be a potential metabolic PET tracer for Gln-dependent tumors.
Collapse
Affiliation(s)
- Qiao He
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xinchong Shi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Linqi Zhang
- Department of Nuclear Medicine, the Cancer Center of Guangzhou Medical University, Guangzhou, China
| | - Chang Yi
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuezhen Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xiangsong Zhang
- Department of Nuclear Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
The combination of 13N-ammonia and 18F-FDG in predicting primary central nervous system lymphomas in immunocompetent patients. Clin Nucl Med 2013; 38:98-102. [PMID: 23334122 DOI: 10.1097/rlu.0b013e318279b6cc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Accurate identification of primary central nervous system lymphoma (PCNSL) and its differentiation from other brain tumors remain difficult but are essential for treatment. In this study, we investigated whether (13)N-ammonia combined with (18)F-FDG could distinguish PCNSL from solid gliomas effectively. METHODS Ten consecutive patients with final diagnosis of PCNSL (5 female and 5 male patients; mean [SD] age, 59.10 [12.47] years; range, 43-74 years) and another fifteen consecutive patients with solid glioma lesions (5 female and 10 male patients; mean [SD] age, 46.73 [19.61] years; range, 14-72 years) were included in this study. PET/CT imaging was performed for all of them with both (18)F-FDG and (13)N-ammonia as tracers. Tumor-to-gray matter (T/G) ratios were calculated for the evaluation of tumor uptake. Both Student t test and discriminant analysis were recruited to assess the differential efficacy of these 2 tracers. RESULTS The T/G ratios of (18)F-FDG in PCNSL lesions were higher than in solid gliomas (3.26 [1.18] vs 1.56 [0.41], P < 0.001), whereas the T/G ratios of (13)N-ammonia in PCNSL lesions were lower than in solid gliomas significantly (1.38 [0.20] vs 2.11 [0.69], P < 0.001). All the lesions of PCNSL displayed higher T/G ratios of (18)F-FDG than (13)N-ammonia, whereas 14 (77.8%) of 18 glioma lesions showed contrary results. Tumor classification by means of canonical discriminant analysis yielded an overall accuracy of 96.9%, and only one glioma lesion was misclassified into the PCNSL group. CONCLUSIONS PCNSLs and solid gliomas have different metabolic profiles on N-ammonia and F-FDG imaging. The combination of these 2 tracers can distinguish these 2 clinical entities effectively and make an accurate prediction of PCNSL.
Collapse
|