1
|
Papadimitriou E, Kanellopoulou VK. Protein Tyrosine Phosphatase Receptor Zeta 1 as a Potential Target in Cancer Therapy and Diagnosis. Int J Mol Sci 2023; 24:ijms24098093. [PMID: 37175798 PMCID: PMC10178973 DOI: 10.3390/ijms24098093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a type V transmembrane tyrosine phosphatase that is highly expressed during embryonic development, while its expression during adulthood is limited. PTPRZ1 is highly detected in the central nervous system, affecting oligodendrocytes' survival and maturation. In gliomas, PTPRZ1 expression is significantly upregulated and is being studied as a potential cancer driver and as a target for therapy. PTPRZ1 expression is also increased in other cancer types, but there are no data on the potential functional significance of this finding. On the other hand, low PTPRZ1 expression seems to be related to a worse prognosis in some cancer types, suggesting that in some cases, it may act as a tumor-suppressor gene. These discrepancies may be due to our limited understanding of PTPRZ1 signaling and tumor microenvironments. In this review, we present evidence on the role of PTPRZ1 in angiogenesis and cancer and discuss the phenomenal differences among the different types of cancer, depending on the regulation of its tyrosine phosphatase activity or ligand binding. Clarifying the involved signaling pathways will lead to its efficient exploitation as a novel therapeutic target or as a biomarker, and the development of proper therapeutic approaches.
Collapse
Affiliation(s)
- Evangelia Papadimitriou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - Vasiliki K Kanellopoulou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| |
Collapse
|
2
|
Mühlenbruch L, Abou-Kors T, Dubbelaar ML, Bichmann L, Kohlbacher O, Bens M, Thomas J, Ezić J, Kraus JM, Kestler HA, von Witzleben A, Mytilineos J, Fürst D, Engelhardt D, Doescher J, Greve J, Schuler PJ, Theodoraki MN, Brunner C, Hoffmann TK, Rammensee HG, Walz JS, Laban S. The HLA ligandome of oropharyngeal squamous cell carcinomas reveals shared tumour-exclusive peptides for semi-personalised vaccination. Br J Cancer 2023; 128:1777-1787. [PMID: 36823366 PMCID: PMC9949688 DOI: 10.1038/s41416-023-02197-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND The immune peptidome of OPSCC has not previously been studied. Cancer-antigen specific vaccination may improve clinical outcome and efficacy of immune checkpoint inhibitors such as PD1/PD-L1 antibodies. METHODS Mapping of the OPSCC HLA ligandome was performed by mass spectrometry (MS) based analysis of naturally presented HLA ligands isolated from tumour tissue samples (n = 40) using immunoaffinity purification. The cohort included 22 HPV-positive (primarily HPV-16) and 18 HPV-negative samples. A benign reference dataset comprised of the HLA ligandomes of benign haematological and tissue datasets was used to identify tumour-associated antigens. RESULTS MS analysis led to the identification of naturally HLA-presented peptides in OPSCC tumour tissue. In total, 22,769 peptides from 9485 source proteins were detected on HLA class I. For HLA class II, 15,203 peptides from 4634 source proteins were discovered. By comparative profiling against the benign HLA ligandomic datasets, 29 OPSCC-associated HLA class I ligands covering 11 different HLA allotypes and nine HLA class II ligands were selected to create a peptide warehouse. CONCLUSION Tumour-associated peptides are HLA-presented on the cell surfaces of OPSCCs. The established warehouse of OPSCC-associated peptides can be used for downstream immunogenicity testing and peptide-based immunotherapy in (semi)personalised strategies.
Collapse
Affiliation(s)
- Lena Mühlenbruch
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Tsima Abou-Kors
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Marissa L. Dubbelaar
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Leon Bichmann
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Oliver Kohlbacher
- grid.10392.390000 0001 2190 1447Applied Bioinformatics, Department of Computer Science, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence Machine Learning in the Sciences (EXC2064), Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.411544.10000 0001 0196 8249Institute for Translational Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Institute for Bioinformatics and Medical Informatics, Eberhard Karls University Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Martin Bens
- grid.418245.e0000 0000 9999 5706Leibniz-Institute on Aging, Fritz-Lipmann-Institute, 07745 Jena, Thüringen Germany
| | - Jaya Thomas
- grid.5491.90000 0004 1936 9297CRUK and NIHR Experimental Cancer Medicine Center & School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, SO17 1BJ UK
| | - Jasmin Ezić
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Johann M. Kraus
- grid.6582.90000 0004 1936 9748Ulm University, Institute of Medical Systems Biology, Ulm, Germany
| | - Hans A. Kestler
- grid.6582.90000 0004 1936 9748Ulm University, Institute of Medical Systems Biology, Ulm, Germany
| | - Adrian von Witzleben
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Joannis Mytilineos
- grid.410712.10000 0004 0473 882XInstitute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden–Württemberg–Hessen, and University Hospital Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute of Transfusion Medicine, Ulm University, Ulm, Germany ,German Stem Cell Donor Registry, German Red Cross Blood Transfusion Service, Ulm, Germany
| | - Daniel Fürst
- grid.410712.10000 0004 0473 882XInstitute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden–Württemberg–Hessen, and University Hospital Ulm, Ulm, Germany ,grid.6582.90000 0004 1936 9748Institute of Transfusion Medicine, Ulm University, Ulm, Germany
| | - Daphne Engelhardt
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Johannes Doescher
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Jens Greve
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Patrick J. Schuler
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Marie-Nicole Theodoraki
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Cornelia Brunner
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Thomas K. Hoffmann
- grid.410712.10000 0004 0473 882XDepartment of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany
| | - Hans-Georg Rammensee
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,German Cancer Consortium (DKTK), Partner Site Tübingen, 72076 Tübingen, Baden-Württemberg Germany
| | - Juliane S. Walz
- grid.10392.390000 0001 2190 1447Institute for Cell Biology, Department of Immunology, Eberhard Karls University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Department of Peptide-based Immunotherapy, Eberhard Karls University and University Hospital Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.10392.390000 0001 2190 1447Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Baden-Württemberg Germany ,grid.411544.10000 0001 0196 8249Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK), Department of Internal Medicine, University Hospital Tübingen, Tübingen, Baden-Württemberg 72076 Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, Ulm University Medical Center, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, Ulm, Germany.
| |
Collapse
|
3
|
SEC61G identified as a prognostic biomarker of head and neck squamous cell carcinoma. Eur Arch Otorhinolaryngol 2021; 279:2039-2048. [PMID: 34173014 PMCID: PMC8930941 DOI: 10.1007/s00405-021-06955-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/21/2021] [Indexed: 11/27/2022]
Abstract
Purpose It is of obvious interest to identify clinical prognosis-related oncogenes in HNSCC (head and neck squamous cell carcinoma). Methods Based on the available datasets within the TCGA (The Cancer Genome Atlas) and the GEO (Gene Expression Omnibus) databases, the potential mechanism of action of the SEC61G (SEC61 translocon subunit gamma) gene in HNSCC tumorigenesis was explored by several bioinformatics approaches. Results There was a higher expression level of SEC61G in primary HNSCC tumor tissues than in normal tissues. Moreover, highly expressed SEC61G was statistically associated with the poor survival prognosis of HNSCC patients. When HPV (human papilloma virus) was considered, we also observed a relatively lower proportion of “arm-level gain” and “high amplification” types of CNA (copy-number alteration) in the HNSCC-HPV (+) group than in the HNSCC-HPV (−) group. Additionally, we identified SEC61G CAN-correlated genes, such as CCT6A (chaperonin-containing TCP1 subunit 6A) and HUS1 (HUS1 checkpoint clamp component), and found a correlation between SEC61G copy-number segments and prognosis related to overall and progression-free survival intervals of HNSCC patients. Moreover, the molecular regulation mechanisms of the spliceosome, ribosome, proteasome degradation, cell adhesion, and immune infiltration of B and CD8+ T cells may contribute to the involvement of SEC61G in the pathogenesis of HNSCC.
Conclusions The SEC61G gene was identified for the first time as a prognostic biomarker of HNSCC. The detailed underlying mechanism merits further research. Supplementary Information The online version contains supplementary material available at 10.1007/s00405-021-06955-7.
Collapse
|
4
|
Sturm T, Sautter B, Wörner TP, Stevanović S, Rammensee HG, Planz O, Heck AJR, Aebersold R. Mild Acid Elution and MHC Immunoaffinity Chromatography Reveal Similar Albeit Not Identical Profiles of the HLA Class I Immunopeptidome. J Proteome Res 2020; 20:289-304. [PMID: 33141586 PMCID: PMC7786382 DOI: 10.1021/acs.jproteome.0c00386] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
To
understand and treat immunology-related diseases, a comprehensive,
unbiased characterization of major histocompatibility complex (MHC)
peptide ligands is of key importance. Preceding the analysis by mass
spectrometry, MHC class I peptide ligands are typically isolated by
MHC immunoaffinity chromatography (MHC-IAC) and less often by mild
acid elution (MAE). MAE may provide a cheap alternative to MHC-IAC
for suspension cells but has been hampered by the high number of contaminating,
MHC-unrelated peptides. Here, we optimized MAE, yielding MHC peptide
ligand purities of more than 80%. When compared with MHC-IAC, obtained
peptides were similar in numbers, identities, and to a large extent
intensities, while the percentage of cysteinylated peptides was 5
times higher in MAE. The latter benefitted the discovery of MHC-allotype-specific,
distinct cysteinylation frequencies at individual positions of MHC
peptide ligands. MAE revealed many MHC ligands with unmodified, N-terminal
cysteine residues which get lost in MHC-IAC workflows. The results
support the idea that MAE might be particularly valuable for the high-confidence
analysis of post-translational modifications by avoiding the exposure
of the investigated peptides to enzymes and reactive molecules in
the cell lysate. Our improved and carefully documented MAE workflow
represents a high-quality, cost-effective alternative to MHC-IAC for
suspension cells.
Collapse
Affiliation(s)
- Theo Sturm
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands.,Philochem AG, 8112 Otelfingen, Switzerland
| | - Benedikt Sautter
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Tobias P Wörner
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Oliver Planz
- Department of Immunology, Institute for Cell Biology, University of Tübingen, 72076 Tübingen, Germany
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, The Netherlands.,Netherlands Proteomics Centre, 3584 CH Utrecht, The Netherlands
| | - Ruedi Aebersold
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, 8093 Zürich, Switzerland.,Faculty of Science, University of Zurich, 8057 Zürich, Switzerland
| |
Collapse
|
5
|
Mohme M, Neidert MC. Tumor-Specific T Cell Activation in Malignant Brain Tumors. Front Immunol 2020; 11:205. [PMID: 32117316 PMCID: PMC7031483 DOI: 10.3389/fimmu.2020.00205] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Due to their delicate locations as well as aggressive and infiltrative behavior, malignant brain tumors remain a therapeutic challenge. Harnessing the efficacy and specificity of the T-cell response to counteract malignant brain tumor progression and recurrence, represents an attractive treatment option. With the tremendous advances in the current era of immunotherapy, ongoing studies aim to determine the best treatment strategies for mounting a tumor-specific immune response against malignant brain tumors. However, immunosuppression in the local tumor environment, molecular and cellular heterogeneity as well as a lack of suitable targets for tumor-specific vaccination impede the successful implementation of immunotherapeutic treatment strategies in neuro-oncology. In this review, we therefore discuss the role of T cell exhaustion, the genetic and antigenic landscape, potential pitfalls and ongoing efforts to overcome the individual challenges in order to elicit a tumor-specific T cell response.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marian Christoph Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich, Zurich, Switzerland.,Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Broad Institute of Harvard and MIT, Cambridge, MA, United States
| |
Collapse
|
6
|
Mohme M, Maire CL, Geumann U, Schliffke S, Dührsen L, Fita K, Akyüz N, Binder M, Westphal M, Guenther C, Lamszus K, Hermann FG, Schmidt NO. Local Intracerebral Immunomodulation Using Interleukin-Expressing Mesenchymal Stem Cells in Glioblastoma. Clin Cancer Res 2020; 26:2626-2639. [PMID: 31988196 DOI: 10.1158/1078-0432.ccr-19-0803] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 12/11/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Mesenchymal stem cells (MSCs) show an inherent brain tumor tropism that can be exploited for targeted delivery of therapeutic genes to invasive glioma. We assessed whether a motile MSC-based local immunomodulation is able to overcome the immunosuppressive glioblastoma microenvironment and to induce an antitumor immune response. EXPERIMENTAL DESIGN We genetically modified MSCs to coexpress high levels of IL12 and IL7 (MSCIL7/12, Apceth-301). Therapeutic efficacy was assessed in two immunocompetent orthotopic C57BL/6 glioma models using GL261 and CT2A. Immunomodulatory effects were assessed by multicolor flow cytometry to profile immune activation and exhaustion of tumor-infiltrating immune cells. Diversity of the tumor-specific immune response as analyzed using T-cell receptor sequencing. RESULTS Intratumoral administration of MSCIL7/12 induced significant tumor growth inhibition and remission of established intracranial tumors, as demonstrated by MR imaging. Notably, up to 50% of treated mice survived long-term. Rechallenging of survivors confirmed long-lasting tumor immunity. Local treatment with MSCIL7/12 was well tolerated and led to a significant inversion of the CD4+/CD8+ T-cell ratio with an intricate, predominantly CD8+ effector T-cell-mediated antitumor response. T-cell receptor sequencing demonstrated an increased diversity of TILs in MSCIL7/12-treated mice, indicating a broader tumor-specific immune response with subsequent oligoclonal specification during generation of long-term immunity. CONCLUSIONS Local MSC-based immunomodulation is able to efficiently alter the immunosuppressive microenvironment in glioblastoma. The long-lasting therapeutic effects warrant a rapid clinical translation of this concept and have led to planning of a phase I/II study of apceth-301 in recurrent glioblastoma.
Collapse
Affiliation(s)
- Malte Mohme
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Cecile L Maire
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Simon Schliffke
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lasse Dührsen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Krystian Fita
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nuray Akyüz
- Department of Oncology and Hematology, Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Department of Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Nils Ole Schmidt
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Department of Neurosurgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
7
|
Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Mol Cell Proteomics 2019; 18:1255-1268. [PMID: 31154438 PMCID: PMC6553928 DOI: 10.1074/mcp.ra119.001524] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Indexed: 12/24/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Further, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Eilon Barnea
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Dganit Melamed Kadosh
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Yael Haimovich
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Slobodin
- §Rheumatology Unit, Bnai Zion Medical Center, Haifa 31048, Israel
| | - Itzhak Rosner
- §Rheumatology Unit, Bnai Zion Medical Center, Haifa 31048, Israel
| | | | - Norbert Hilf
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Sabrina Kuttruff
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Colette Song
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Cedrik Britten
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - John Castle
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | | | | | - Marcos Tatagiba
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ghazaleh Tabatabai
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Pierre-Yves Dietrich
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Valérie Dutoit
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Wolfgang Wick
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Michael Platten
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Frank Winkler
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Andreas von Deimling
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Judith Kroep
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juan Sahuquillo
- ‡‡‡Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Francisco Martinez-Ricarte
- ‡‡‡Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Rodon
- ‡‡‡Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ulrik Lassen
- ‖‖‖Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Christian Ottensmeier
- §§§Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sjoerd H van der Burg
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - Per Thor Straten
- ‖‖‖Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- ‡‡‡‡Rigshospitalet, Departments of Radiation Biology and Oncology, Rigshospitalet 9, Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - Berta Ponsati
- §§§§BCN Peptides, Pol. Ind. Els Vinyets-Els Fogars II. 08777 Sant Quinti de Mediona (Barcelona), Spain
| | - Hideho Okada
- ¶¶¶¶University of California and the Parker Institute for Cancer Immunotherapy, San Francisco, CA 94131
| | - Hans-Georg Rammensee
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ugur Sahin
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | - Harpreet Singh
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Arie Admon
- From the ‡Department of Biology, Technion, Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
8
|
Nelde A, Kowalewski DJ, Stevanović S. Purification and Identification of Naturally Presented MHC Class I and II Ligands. Methods Mol Biol 2019; 1988:123-136. [PMID: 31147937 DOI: 10.1007/978-1-4939-9450-2_10] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The large-scale and in-depth identification of MHC class I- and II-presented peptides is indispensable for gaining insight into the fundamental rules of immune recognition as well as for developing innovative immunotherapeutic approaches against cancer and other diseases. In this chapter we briefly review the existing strategies for the isolation of MHC-restricted peptides and provide a detailed protocol for the immunoaffinity purification of MHC class I- and II-presented peptides from primary tissues or cells.
Collapse
Affiliation(s)
- Annika Nelde
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Daniel J Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
9
|
Rajaraman S, Canjuga D, Ghosh M, Codrea MC, Sieger R, Wedekink F, Tatagiba M, Koch M, Lauer UM, Nahnsen S, Rammensee HG, Mühlebach MD, Stevanovic S, Tabatabai G. Measles Virus-Based Treatments Trigger a Pro-inflammatory Cascade and a Distinctive Immunopeptidome in Glioblastoma. MOLECULAR THERAPY-ONCOLYTICS 2018; 12:147-161. [PMID: 30775418 PMCID: PMC6365369 DOI: 10.1016/j.omto.2018.12.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 12/26/2022]
Abstract
Glioblastoma is an aggressive primary brain tumor with bad prognosis. On the other hand, oncolytic measles virus (MeV) therapy is an experimental glioma treatment strategy with clinical safety and first evidence of anti-tumoral efficacy. Therefore, we investigated the combination of MeV with conventional therapies by cytotoxic survival assays in long-term glioma cell lines LN229, LNZ308, and glioma stem-like GS8 cells, as well as the basal viral infectivity in primary glioblastoma cultures T81/16, T1094/17, and T708/16. We employed Chou-Talalay analysis to identify the synergistic treatment sequence chemotherapy, virotherapy, and finally radiotherapy (CT-VT-RT). RNA sequencing and immunopeptidome analyses were used to delineate treatment-induced molecular and immunological profiles. CT-VT-RT displayed synergistic anti-glioma activity and initiated a type 1 interferon response, along with canonical Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling, and downstream interferon-stimulated genes were induced, resulting in apoptotic cascades. Furthermore, antigen presentation along with immunostimulatory chemokines was increased in CT-VT-RT-treated glioma cells, indicating a treatment-induced pro-inflammatory phenotype. We identified novel treatment-induced viral and tumor-associated peptides through HLA ligandome analysis. Our data delineate an actionable treatment-induced molecular and immunological signature of CT-VT-RT, and they could be exploited for the design of novel tailored treatment strategies involving virotherapy and immunotherapy.
Collapse
Affiliation(s)
- Srinath Rajaraman
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Denis Canjuga
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Michael Ghosh
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen 72076, Germany
| | - Marius Cosmin Codrea
- Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Raika Sieger
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Florian Wedekink
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Marcos Tatagiba
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Marilin Koch
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center (QBiC), Eberhard Karls University Tübingen, Tübingen 72076, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen 72076, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Michael D Mühlebach
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen 63225, Germany
| | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen 72076, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| | - Ghazaleh Tabatabai
- Interdisciplinary Division of Neuro-Oncology, Hertie Institute for Clinical Brain Research, Departments of Neurology and Neurosurgery, University Hospital Tübingen, Eberhard Karls University Tübingen, Tübingen 72076, Germany.,German Translational Cancer Consortium (DKTK), DKFZ partner site Tübingen, Germany
| |
Collapse
|
10
|
Shraibman B, Barnea E, Kadosh DM, Haimovich Y, Slobodin G, Rosner I, López-Larrea C, Hilf N, Kuttruff S, Song C, Britten C, Castle J, Kreiter S, Frenzel K, Tatagiba M, Tabatabai G, Dietrich PY, Dutoit V, Wick W, Platten M, Winkler F, von Deimling A, Kroep J, Sahuquillo J, Martinez-Ricarte F, Rodon J, Lassen U, Ottensmeier C, van der Burg SH, Thor Straten P, Poulsen HS, Ponsati B, Okada H, Rammensee HG, Sahin U, Singh H, Admon A. Identification of Tumor Antigens Among the HLA Peptidomes of Glioblastoma Tumors and Plasma. Mol Cell Proteomics 2018; 17:2132-2145. [PMID: 30072578 PMCID: PMC6210219 DOI: 10.1074/mcp.ra118.000792] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/22/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive brain tumor with poor prognosis to most patients. Immunotherapy of GBM is a potentially beneficial treatment option, whose optimal implementation may depend on familiarity with tumor specific antigens, presented as HLA peptides by the GBM cells. Furthermore, early detection of GBM, such as by a routine blood test, may improve survival, even with the current treatment modalities. This study includes large-scale analyses of the HLA peptidome (immunopeptidome) of the plasma-soluble HLA molecules (sHLA) of 142 plasma samples, and the membranal HLA of GBM tumors of 10 of these patients' tumor samples. Tumor samples were fresh-frozen immediately after surgery and the plasma samples were collected before, and at multiple visits after surgery. In total, this HLA peptidome analysis involved 52 different HLA allotypes and resulted in the identification of more than 35,000 different HLA peptides. Strong correlations were observed in the signal intensities and in the repertoires of identified peptides between the tumors and plasma-soluble HLA peptidomes of the individual patients, whereas low correlations were observed between these HLA peptidomes and the tumors' proteomes. HLA peptides derived from Cancer/Testis Antigens (CTAs) were selected based on their presence among the HLA peptidomes of the patients and absence of expression of their source genes from any healthy and essential human tissues, except from immune-privileged sites. Additionally, peptides were selected as potential biomarkers if their levels in the plasma-sHLA peptidome were significantly reduced after the removal of tumor mass. The CTAs identified among the analyzed HLA peptidomes provide new opportunities for personalized immunotherapy and for early diagnosis of GBM.
Collapse
Affiliation(s)
- Bracha Shraibman
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Eilon Barnea
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | | | - Yael Haimovich
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Gleb Slobodin
- §Rheumatology Unit Bnai Zion Medical Center, Haifa 31048, Israel
| | - Itzhak Rosner
- §Rheumatology Unit Bnai Zion Medical Center, Haifa 31048, Israel
| | | | - Norbert Hilf
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Sabrina Kuttruff
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Colette Song
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Cedrik Britten
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - John Castle
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | | | | | - Marcos Tatagiba
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ghazaleh Tabatabai
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Pierre-Yves Dietrich
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Valérie Dutoit
- §§Université de Genève, Rue Gabrielle Perret Gentil 4; 1211 Geneve 14, Switzerland
| | - Wolfgang Wick
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Michael Platten
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Frank Winkler
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Andreas von Deimling
- ¶¶Heidelberg University Medical Center, Im Neuenheimer Feld 672, D-69120 Heidelberg, Germany
| | - Judith Kroep
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Juan Sahuquillo
- ***Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Francisco Martinez-Ricarte
- ***Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Jordi Rodon
- ***Vall d'Hebron University Hospital, Institut Catala de la Salut, Pg. Vall d'Hebron 119-129, 08035 Barcelona, Spain
| | - Ulrik Lassen
- ‡‡‡Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Christian Ottensmeier
- §§§Cancer Sciences Division, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Sjoerd H van der Burg
- ‖‖Leiden University Medical Center, Department of Medical Oncology, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
- ¶¶¶Association for Cancer Immunotherapy (CIMT), Langenbeckstr. 1,55131 Mainz, Germany
| | - Per Thor Straten
- ‡‡‡Region Hovedstaden (Center for Cancer Immune Therapy (CCIT), Herlev Hospital, Herlev Ringvej 75, DK-2730, Copenhagen, Denmark
| | - Hans Skovgaard Poulsen
- ‖‖‖Rigshospitalet, Departments of Radiation Biology and Oncology, Rigshospitalet 9, Blegdamsvej, DK-2100, Copenhagen, Denmark
| | - Berta Ponsati
- ****BCN Peptides, Pol. Ind. Els Vinyets-Els Fogars II. 08777 Sant Quinti de Mediona (Barcelona), Spain
| | - Hideho Okada
- ‡‡‡‡University of California, San Francisco, CA 94131 USA
| | - Hans-Georg Rammensee
- ‡‡Eberhard Karls Universität Tübingen, Department of Immunology, Auf der Morgenstelle 15,72076 Tubingen, Germany
| | - Ugur Sahin
- **BioNTech AG, Holderlinstr. 8,55131 Mainz, Germany
| | - Harpreet Singh
- ‖Immatics Biotechnologies GmbH, Paul-Ehrlich-Str. 15,72076 Tuebingen, Germany
| | - Arie Admon
- From the ‡Biology, Technion - Israel Institute of Technology, Haifa 32000, Israel;
| |
Collapse
|
11
|
Neidert MC, Kowalewski DJ, Silginer M, Kapolou K, Backert L, Freudenmann LK, Peper JK, Marcu A, Wang SSY, Walz JS, Wolpert F, Rammensee HG, Henschler R, Lamszus K, Westphal M, Roth P, Regli L, Stevanović S, Weller M, Eisele G. The natural HLA ligandome of glioblastoma stem-like cells: antigen discovery for T cell-based immunotherapy. Acta Neuropathol 2018; 135:923-938. [PMID: 29557506 DOI: 10.1007/s00401-018-1836-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 01/27/2023]
Abstract
Glioblastoma is the most frequent malignant primary brain tumor. In a hierarchical tumor model, glioblastoma stem-like cells (GSC) play a major role in tumor initiation and maintenance as well as in therapy resistance and recurrence. Thus, targeting this cellular subset may be key to effective immunotherapy. Here, we present a mass spectrometry-based analysis of HLA-presented peptidomes of GSC and glioblastoma patient specimens. Based on the analysis of patient samples (n = 9) and GSC (n = 3), we performed comparative HLA peptidome profiling against a dataset of normal human tissues. Using this immunopeptidome-centric approach we could clearly delineate a subset of naturally presented, GSC-associated HLA ligands, which might serve as highly specific targets for T cell-based immunotherapy. In total, we identified 17 antigens represented by 41 different HLA ligands showing natural and exclusive presentation both on GSC and patient samples. Importantly, in vitro immunogenicity and antigen-specific target cell killing assays suggest these peptides to be epitopes of functional CD8+ T cell responses, thus rendering them prime candidates for antigen-specific immunotherapy of glioblastoma.
Collapse
|
12
|
Peper JK, Stevanović S. A combined approach of human leukocyte antigen ligandomics and immunogenicity analysis to improve peptide-based cancer immunotherapy. Cancer Immunol Immunother 2015; 64:1295-303. [PMID: 25822767 PMCID: PMC11029747 DOI: 10.1007/s00262-015-1682-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/10/2015] [Indexed: 11/30/2022]
Abstract
The breakthrough development of immune checkpoint inhibitors as clinically effective novel therapies demonstrates the potential of cancer immunotherapy. The identification of suitable targets for specific immunotherapy, however, remains a challenging task. Most peptides previously used for vaccination in clinical trials were able to elicit strong immunological responses but failed with regard to clinical benefit. This might, at least partly, be caused by an inadequate peptide selection, usually derived from established tumor-associated antigens which are not necessarily presented as human leukocyte antigen (HLA) ligands. Recently, HLA ligandome analysis revealed cancer-associated peptides, which have been used in clinical trials showing encouraging impact on survival. To improve peptide-based cancer immunotherapy, our group established a combined approach of HLA ligandomics and immunogenicity analysis for the identification of vaccine peptides. This approach is based on the identification of naturally presented HLA ligands on tumor samples, the selection of tumor-associated/tumor-specific HLA ligands and their subsequent testing for immunogenicity in vitro. In this review, we want to present our pipeline for the identification of vaccine peptides, focusing on ovarian cancer, and want to discuss differences to other approaches. Furthermore, we want to give a short outlook of a potential multi-peptide vaccination trial using the novel identified peptides.
Collapse
Affiliation(s)
- Janet Kerstin Peper
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076, Tübingen, Germany,
| | | |
Collapse
|
13
|
Abstract
Glioblastoma is a grade IV astrocytoma that is widely accepted in clinical neurosurgery as being an extremely lethal diagnosis. Long-term survival rates remain dismal, and even when tumors undergo gross resection with confirmation of total removal on neuroimaging, they invariably recur with even greater virulence. Standard therapeutic modalities as well as more contemporary treatments have largely resulted in disappointing improvements. However, the therapeutic potential of vaccine immunotherapy for malignant glioma should not be underestimated. In contrast to many of the available treatments, vaccine immunotherapy is unique because it offers the means of delivering treatment that is highly specific to both the patient and the tumor. Peptide, heat-shock proteins, and dendritic cell vaccines collectively encapsulate the majority of research efforts involving vaccine-based treatment modalities. In this review, important recent findings for these vaccine types are discussed in the context of ongoing clinical trials. Broad challenges to immunotherapy are also considered.
Collapse
|
14
|
Ampie L, Woolf EC, Dardis C. Immunotherapeutic advancements for glioblastoma. Front Oncol 2015; 5:12. [PMID: 25688335 PMCID: PMC4310287 DOI: 10.3389/fonc.2015.00012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/12/2015] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy seeks to improve the body’s immune response to a tumor. Currently, the principal mechanisms employed are: (1) to improve an aspect of the immune response (e.g., T cell activation) and (2) to encourage the targeting of particular antigens. The latter is typically achieved by exposing the immune system to the antigen in question, in vivo, or in vitro followed by re-introduction of the primed cells to the body. The clinical relevance of these approaches has already been demonstrated for solid tumors such as melanoma and prostate cancer. The central nervous system was previously thought to be immune privileged. However, we know now that the immune system is highly active in the brain and interacts with brain tumors. Thus, harnessing and exploiting this interaction represents an important approach for treating malignant brain tumors. We present a summary of progress in this area, focusing particularly on immune-checkpoint inhibition, vaccines, and T cell engineering.
Collapse
Affiliation(s)
- Leonel Ampie
- Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Eric C Woolf
- Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| | - Christopher Dardis
- Department of Neurology, St. Joseph's Hospital and Medical Center, Barrow Neurological Institute , Phoenix, AZ , USA
| |
Collapse
|
15
|
Liu L, Li W, Xia H, Zhu Z, Luan X. Differential expression and clinical significance of glioblastoma mRNA expression profiles in Uyghur and Han patients in Xinjiang province. Med Sci Monit 2014; 20:2404-13. [PMID: 25418065 PMCID: PMC4247232 DOI: 10.12659/msm.892519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background The aim of this study was to investigate differences in glioblastoma RNA gene expression profiles between Uyghur and Han patients in Xinjiang province and to screen and compare differentially expressed genes with respect to their clinical significance in the pathogenesis of high-grade glioma and their relationship to disease prognosis. Material/Methods Illumina HT-12mRNA expression profiles microarray was employed to measure the gene expression profiles of 6 patients with advanced glioma and to screen for differentially expressed genes. Results GO and KEGG analyses were performed on the differentially expressed genes using Web Gestalt software (P<0.05). Comparison of glioblastoma RNA expression profiles in the Uyghur and Han patients indicated that 1475 genes were significantly differentially expressed, of which 669 showed increased expression, while 807 showed decreased expression. One gene (STRC) corresponded to 2 transcripts, 1 of which showed increased expression and the other showed decreased expression. The differentially expressed genes participate in metabolic processes, biological regulation, stress response, and multi-cellular organic processes, including small GTPase regulatory signaling pathways, Ras signaling pathway, neuronal reactive protein regulation, and myelination of the central nervous system. The genes are also involved in tumor-related signaling pathways, including metabolic pathways, cancer pathways, MAPK signaling pathway, TGF-β signaling pathway, neurotrophic factor signal transduction pathway, and mTOR signaling pathway. Conclusions Differentially expressed genes were screened by studying the gene expression profiles in glioblastoma from Uyghur and Han patients. The cellular function and location of these genes were further investigated. Based on related molecular markers of glioblastoma, the differences in the mechanism of initiation and development of glioblastoma between Uyghur and Han patients were investigated for polygenic interactions.
Collapse
Affiliation(s)
- Liang Liu
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Wenting Li
- Department of Pathology, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Haicheng Xia
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Zhengquan Zhu
- Department of Neurosurgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| | - Xinping Luan
- Department of Neurosurgery, Second Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China (mainland)
| |
Collapse
|
16
|
Vaccine therapies for patients with glioblastoma. J Neurooncol 2014; 119:531-46. [PMID: 25163836 DOI: 10.1007/s11060-014-1502-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 06/06/2014] [Indexed: 01/22/2023]
Abstract
Glioblastoma (GBM) is a high-grade glial tumor with an extremely aggressive clinical course and a median overall survival of only 14.6 months following maximum surgical resection and adjuvant chemoradiotherapy. A central feature of this disease is local and systemic immunosuppression, and defects in patient immune systems are closely associated with tumor progression. Immunotherapy has emerged as an important adjuvant in the therapeutic armamentarium of clinicians caring for patients with GBM. The fundamental aim of immunotherapy is to augment the host antitumor immune response. Active immunotherapy utilizes vaccines to stimulate adaptive immunity against tumor-associated antigens. A vast array of vaccine strategies have advanced from preclinical study to active clinical trials in patients with recurrent or newly diagnosed GBM, including those that employ peptides, heat shock proteins, autologous tumor cells, and dendritic cells. In this review, the rationale for glioma immunotherapy is outlined, and the prevailing forms of vaccine therapy are described.
Collapse
|
17
|
Berlin C, Kowalewski DJ, Schuster H, Mirza N, Walz S, Handel M, Schmid-Horch B, Salih HR, Kanz L, Rammensee HG, Stevanović S, Stickel JS. Mapping the HLA ligandome landscape of acute myeloid leukemia: a targeted approach toward peptide-based immunotherapy. Leukemia 2014; 29:647-59. [PMID: 25092142 DOI: 10.1038/leu.2014.233] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 01/07/2023]
Abstract
Identification of physiologically relevant peptide vaccine targets calls for the direct analysis of the entirety of naturally presented human leukocyte antigen (HLA) ligands, termed the HLA ligandome. In this study, we implemented this direct approach using immunoprecipitation and mass spectrometry to define acute myeloid leukemia (AML)-associated peptide vaccine targets. Mapping the HLA class I ligandomes of 15 AML patients and 35 healthy controls, more than 25 000 different naturally presented HLA ligands were identified. Target prioritization based on AML exclusivity and high presentation frequency in the AML cohort identified a panel of 132 LiTAAs (ligandome-derived tumor-associated antigens), and 341 corresponding HLA ligands (LiTAPs (ligandome-derived tumor-associated peptides)) represented subset independently in >20% of AML patients. Functional characterization of LiTAPs by interferon-γ ELISPOT (Enzyme-Linked ImmunoSpot) and intracellular cytokine staining confirmed AML-specific CD8(+) T-cell recognition. Of note, our platform identified HLA ligands representing several established AML-associated antigens (e.g. NPM1, MAGED1, PRTN3, MPO, WT1), but found 80% of them to be also represented in healthy control samples. Mapping of HLA class II ligandomes provided additional CD4(+) T-cell epitopes and potentially synergistic embedded HLA ligands, allowing for complementation of a multipeptide vaccine for the immunotherapy of AML.
Collapse
Affiliation(s)
- C Berlin
- 1] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - D J Kowalewski
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - H Schuster
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - N Mirza
- 1] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - S Walz
- 1] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - M Handel
- Hospital Group South-West, Department of Orthopedics, Calw, Germany
| | - B Schmid-Horch
- Institute for Clinical and Experimental Transfusion Medicine, University of Tübingen, Tübingen, Germany
| | - H R Salih
- 1] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - L Kanz
- Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | - H-G Rammensee
- 1] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - S Stevanović
- 1] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Clinical Collaboration Unit Translational Immunology, German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - J S Stickel
- 1] Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany [2] Department of Hematology and Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
18
|
Immunological challenges for peptide-based immunotherapy in glioblastoma. Cancer Treat Rev 2014; 40:248-58. [DOI: 10.1016/j.ctrv.2013.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 08/28/2013] [Accepted: 08/30/2013] [Indexed: 02/04/2023]
|