1
|
Aung TM, Ngamjarus C, Proungvitaya T, Saengboonmee C, Proungvitaya S. Biomarkers for prognosis of meningioma patients: A systematic review and meta-analysis. PLoS One 2024; 19:e0303337. [PMID: 38758750 PMCID: PMC11101050 DOI: 10.1371/journal.pone.0303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/23/2024] [Indexed: 05/19/2024] Open
Abstract
Meningioma is the most common primary brain tumor and many studies have evaluated numerous biomarkers for their prognostic value, often with inconsistent results. Currently, no reliable biomarkers are available to predict the survival, recurrence, and progression of meningioma patients in clinical practice. This study aims to evaluate the prognostic value of immunohistochemistry-based (IHC) biomarkers of meningioma patients. A systematic literature search was conducted up to November 2023 on PubMed, CENTRAL, CINAHL Plus, and Scopus databases. Two authors independently reviewed the identified relevant studies, extracted data, and assessed the risk of bias of the studies included. Meta-analyses were performed with the hazard ratio (HR) and 95% confidence interval (CI) of overall survival (OS), recurrence-free survival (RFS), and progression-free survival (PFS). The risk of bias in the included studies was evaluated using the Quality in Prognosis Studies (QUIPS) tool. A total of 100 studies with 16,745 patients were included in this review. As the promising markers to predict OS of meningioma patients, Ki-67/MIB-1 (HR = 1.03, 95%CI 1.02 to 1.05) was identified to associate with poor prognosis of the patients. Overexpression of cyclin A (HR = 4.91, 95%CI 1.38 to 17.44), topoisomerase II α (TOP2A) (HR = 4.90, 95%CI 2.96 to 8.12), p53 (HR = 2.40, 95%CI 1.73 to 3.34), vascular endothelial growth factor (VEGF) (HR = 1.61, 95%CI 1.36 to 1.90), and Ki-67 (HR = 1.33, 95%CI 1.21 to 1.46), were identified also as unfavorable prognostic biomarkers for poor RFS of meningioma patients. Conversely, positive progesterone receptor (PR) and p21 staining were associated with longer RFS and are considered biomarkers of favorable prognosis of meningioma patients (HR = 0.60, 95% CI 0.41 to 0.88 and HR = 1.89, 95%CI 1.11 to 3.20). Additionally, high expression of Ki-67 was identified as a prognosis biomarker for poor PFS of meningioma patients (HR = 1.02, 95%CI 1.00 to 1.04). Although only in single studies, KPNA2, CDK6, Cox-2, MCM7 and PCNA are proposed as additional markers with high expression that are related with poor prognosis of meningioma patients. In conclusion, the results of the meta-analysis demonstrated that PR, cyclin A, TOP2A, p21, p53, VEGF and Ki-67 are either positively or negatively associated with survival of meningioma patients and might be useful biomarkers to assess the prognosis.
Collapse
Affiliation(s)
- Tin May Aung
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Chetta Ngamjarus
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Tanakorn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Charupong Saengboonmee
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| | - Siriporn Proungvitaya
- Centre of Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
- Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
2
|
Gousias K, Theocharous T, Simon M. Mechanisms of Cell Cycle Arrest and Apoptosis in Glioblastoma. Biomedicines 2022; 10:biomedicines10030564. [PMID: 35327366 PMCID: PMC8945784 DOI: 10.3390/biomedicines10030564] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/10/2022] [Accepted: 02/26/2022] [Indexed: 12/13/2022] Open
Abstract
Cells of glioblastoma, the most frequent primary malignant brain tumor, are characterized by their rapid growth and infiltration of adjacent healthy brain parenchyma, which reflects their aggressive biological behavior. In order to maintain their excessive proliferation and invasion, glioblastomas exploit the innate biological capacities of the patients suffering from this tumor. The pathways involved in cell cycle regulation and apoptosis are the mechanisms most commonly affected. The following work reviews the regulatory pathways of cell growth in general as well as the dysregulated cell cycle and apoptosis relevant mechanisms observed in glioblastomas. We then describe the molecular targeting of the current established adjuvant therapy and present ongoing trials or completed studies on specific promising therapeutic agents that induce cell cycle arrest and apoptosis of glioblastoma cells.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
- Medical School, Westfälische Wilhelms University of Muenster, 48149 Muenster, Germany
- Medical School, University of Nicosia, Nicosia 2414, Cyprus
- Correspondence: ; Tel.: +49-2306-773151
| | - Theocharis Theocharous
- Department of Neurosurgery, St. Marien Academic Hospital Lünen, KLW St. Paulus Corporation, 44534 Luenen, Germany;
| | - Matthias Simon
- Department of Neurosurgery, Bethel Clinic, University of Bielefeld Medical School, 33617 Bielefeld, Germany;
| |
Collapse
|
3
|
Receptor Tyrosine Kinases as Candidate Prognostic Biomarkers and Therapeutic Targets in Meningioma. Int J Mol Sci 2021; 22:ijms222111352. [PMID: 34768783 PMCID: PMC8583503 DOI: 10.3390/ijms222111352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 11/17/2022] Open
Abstract
Meningioma (MGM) is the most common type of intracranial tumor in adults. The validation of novel prognostic biomarkers to better inform tumor stratification and clinical prognosis is urgently needed. Many molecular and cellular alterations have been described in MGM tumors over the past few years, providing a rational basis for the identification of biomarkers and therapeutic targets. The role of receptor tyrosine kinases (RTKs) as oncogenes, including those of the ErbB family of receptors, has been well established in several cancer types. Here, we review histological, molecular, and clinical evidence suggesting that RTKs, including the epidermal growth factor receptor (EGFR, ErbB1), as well as other members of the ErbB family, may be useful as biomarkers and therapeutic targets in MGM.
Collapse
|
4
|
van der Watt PJ, Okpara MO, Wishart A, Parker MI, Soares NC, Blackburn JM, Leaner VD. Nuclear transport proteins are secreted by cancer cells and identified as potential novel cancer biomarkers. Int J Cancer 2021; 150:347-361. [PMID: 34591985 DOI: 10.1002/ijc.33832] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/20/2021] [Accepted: 09/20/2021] [Indexed: 12/21/2022]
Abstract
Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer. Mass spectrometry identified 10 nuclear transport proteins in the secretome and exosomes of cultured cancer cells, and Western blot analysis confirmed increased secreted levels in cancer cells compared to normal. To investigate their presence in patient serum, enzyme-linked immunosorbent assays were performed and revealed significantly increased levels of KPNβ1, CRM1, CAS, IPO5 and TNPO1 in cervical and oesophageal cancer patient serum compared to non-cancer controls. Significantly elevated KPNα2 and RAN levels were also identified in oesophageal cancer serum samples. Logistics regression analyses revealed IPO5 and TNPO1 to be the best performing individual candidate biomarkers in discriminating between cancer cases and controls. The combination of KPNβ1, CRM1, KPNα2, CAS, RAN, IPO5 and TNPO1 as a panel of biomarkers had the highest diagnostic capacity with an area under the curve of 0.944 and 0.963, for cervical cancer and oesophageal cancer, and sensitivity of 92.5% at 86.8% specificity and 95.3% sensitivity at 87.5% specificity, respectively. These results suggest that nuclear transport proteins have potential as diagnostic biomarkers for cervical and oesophageal cancers, with a combination of protein family members being the best predictor.
Collapse
Affiliation(s)
- Pauline J van der Watt
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Michael O Okpara
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Andrew Wishart
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - M Iqbal Parker
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Nelson C Soares
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jonathan M Blackburn
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Virna D Leaner
- Division of Medical Biochemistry and Structural Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.,SAMRC Gynaecology Cancer Research Centre, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
5
|
Han Y, Wang X. The emerging roles of KPNA2 in cancer. Life Sci 2019; 241:117140. [PMID: 31812670 DOI: 10.1016/j.lfs.2019.117140] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/25/2019] [Accepted: 11/30/2019] [Indexed: 12/13/2022]
Abstract
Karyopherin α2 (KPNA2, also known as importinα-1), a member of the nuclear transporter family, is involved in the nucleocytoplasmic transport pathway of a variety of tumor-associated proteins. Recent studies have found that KPNA2 is overexpressed in various cancers, which is associated with poor prognosis. In addition, it has been shown to promote tumor formation and progression by participating in cell differentiation, proliferation, apoptosis, immune response, and viral infection. It is indicated that KPNA2 also plays an important role in the diagnosis, treatment and prognosis of tumors. Herein, we provide an overview of the function and mechanism of KPNA2 in cancer and the prospects in the diagnosis and treatment of cancer. In the future, KPNA2 provides new ideas for the early diagnosis of malignant tumors, the development of molecularly targeted drugs, and prognosis evaluation.
Collapse
Affiliation(s)
- Yang Han
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China; School of Medicine, Shandong University, Jinan, Shandong 250012, China; Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong 250021, China; Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong 250021, China.
| |
Collapse
|
6
|
Müller T, Tolkach Y, Stahl D, Steiner S, Hauser S, Ellinger J, Rabien A, Ralla B, Jung K, Stephan C, Kristiansen G. Karyopherin Alpha 2 Is an Adverse Prognostic Factor in Clear-Cell and Papillary Renal-Cell Carcinoma. Clin Genitourin Cancer 2018; 17:e167-e175. [PMID: 30448104 DOI: 10.1016/j.clgc.2018.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/10/2018] [Accepted: 10/14/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Karyopherin α2 (KPNA2) is involved in the nucleocytoplasmic transport system and is functionally involved in the pathogenesis of various solid tumors by the translocation of cancer associated cargo proteins. However, the role of KPNA2 in renal-cell carcinoma (RCC) is still unknown. The aim of the present study was to investigate the protein expression of KPNA2 in cancerous and healthy renal tissues to evaluate its prognostic value in RCC. PATIENTS AND METHODS We assessed KPNA2 protein expression via immunohistochemistry in a well-characterized cohort of 240 RCC patients by using a quantitative image analysis software. In addition, we analyzed publicly available gene expression data from The Cancer Genome Atlas (TCGA). RESULTS A subgroup of clear-cell RCC (ccRCC) showed elevated protein expression levels of KPNA2. Most remarkably, we detected a correlation between high KPNA2 protein expression and shorter overall survival times as well as higher tumor stage and International Society of Urologic Pathology grade in ccRCC. However, the prognostic value of KPNA2 was not confirmed by multivariate Cox regression analysis when tested together with strong prognostic factors like tumor stage, lymph node metastasis, International Society of Urologic Pathology grade, and resection status. The results of the TCGA gene expression data analysis confirmed the prognostic value of KPNA2 in ccRCC. Additionally, KPNA2 expression was identified as an adverse factor in papillary RCC at the transcript level. CONCLUSION KPNA2 appears to be involved in the carcinogenesis of RCC and functions as a novel prognostic indicator.
Collapse
Affiliation(s)
- Tim Müller
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Yuri Tolkach
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - David Stahl
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Susanne Steiner
- Institute of Pathology, University Hospital Bonn, Bonn, Germany
| | - Stefan Hauser
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Jörg Ellinger
- Department of Urology, University Hospital Bonn, Bonn, Germany
| | - Anja Rabien
- Berlin Institute for Urologic Research, Berlin, Germany; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Ralla
- Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Klaus Jung
- Berlin Institute for Urologic Research, Berlin, Germany; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Stephan
- Berlin Institute for Urologic Research, Berlin, Germany; Department of Urology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Glen Kristiansen
- Institute of Pathology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
7
|
Martinez-Olivera R, Datsi A, Stallkamp M, Köller M, Kohtz I, Pintea B, Gousias K. Silencing of the nucleocytoplasmic shuttling protein karyopherin a2 promotes cell-cycle arrest and apoptosis in glioblastoma multiforme. Oncotarget 2018; 9:33471-33481. [PMID: 30323892 PMCID: PMC6173355 DOI: 10.18632/oncotarget.26033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 08/04/2018] [Indexed: 12/31/2022] Open
Abstract
We have previously shown that the nucleocytoplasmic carrier karyopherin a2 (KPNA2) is overexpressed in glioblastoma multiforme (GBM) whereas its expression is inversely associated with patient prognosis. However, the promoting role of KPNA2 in gliomagenesis is still poorly understood. This study aims to further elucidate this role of KPNA2 in in vitro GBM models. From four different tested GBM cell lines, the U87MG showed the highest proliferation, low adherence and outgrowth in 3D clusters as well as the highest expression of KPNA2, all features conferring greater malignant behaviour. Silencing of KPNA2 via siRNA interference in those cells significantly decreased their proliferative capacity (p = 0.001). We further observed both a significant cell cycle phase arrest (p = 0.040) and the promoting of cellular apoptosis (p = 0.016) as well as a strong trend (p = 0.062) for an inhibition of nuclear import of c-Myc. This study confirms that a higher expression of KPNA2 in GBM is associated with a more malignant phenotype also in in vitro models. While increased expression of KPNA2 promotes proliferation and survival of GBM tumour cells, silencing of KPNA2 conferred a less malignant behaviour. Our results strongly suggest that silencing of KPNA2 may play an important role in modulation of malignant features of GBM cells.
Collapse
Affiliation(s)
- Ramon Martinez-Olivera
- Department of Neurosurgery and Neurotraumatology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Angeliki Datsi
- Department of Laboratory for Neurosurgical Research, BG University Hospital Bergmannsheil, 44789 Bochum, Germany.,Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Maren Stallkamp
- Department of Laboratory for Neurosurgical Research, BG University Hospital Bergmannsheil, 44789 Bochum, Germany.,Medical School, Rheinische Friedrich-Wilhelms University of Bonn, 53121 Bonn, Germany
| | - Manfred Köller
- Department of Surgical Research, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Isabelle Kohtz
- Department of Laboratory for Neurosurgical Research, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Bogdan Pintea
- Department of Neurosurgery and Neurotraumatology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Konstantinos Gousias
- Department of Neurosurgery and Neurotraumatology, BG University Hospital Bergmannsheil, 44789 Bochum, Germany.,Department of Laboratory for Neurosurgical Research, BG University Hospital Bergmannsheil, 44789 Bochum, Germany.,Medical School, Rheinische Friedrich-Wilhelms University of Bonn, 53121 Bonn, Germany.,Department of Neurosurgery, University Hospital of Marburg, 35033 Marburg, Germany
| |
Collapse
|
8
|
Zhou LN, Tan Y, Li P, Zeng P, Chen MB, Tian Y, Zhu YQ. Prognostic value of increased KPNA2 expression in some solid tumors: A systematic review and meta-analysis. Oncotarget 2018; 8:303-314. [PMID: 27974678 PMCID: PMC5352121 DOI: 10.18632/oncotarget.13863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Background Karyopherin α2 (KPNA2), a member of the Karyopherin α family, has recently been reported to play an important role in tumor progression. However, the association between KPNA2 expression and prognosis in cancer remains controversial. So we performed this meta-analysis to evaluate whether expression of KPNA2 was associated with prognosis in patients with solid tumor. Methods/Findings 24 published eligible studies, including 6164 cases, were identified and included in this meta-analysis through searching of PubMed, EMBASE and Web of Science. We found that KPNA2 expression was an independent predictor for the prognosis of solid tumor with primary outcome (overall survival [OS]: pooled HR=1.767, 95% CI=1.503-2.077, P<0.001) and secondary outcomes (time to recurrence [TTR], recurrence free survival [RFS] and progression free survival [PFS]). However, the association between KPNA2 overexpression and disease free survival [DFS] in solid tumors was not significant (pooled HR=1.653, 95% CI=0.903-3.029, P=0.104). Furthermore, the subgroup analysis revealed that KPNA2 overexpression was associated with poor OS in East-Asian patients and European patients, as well as patients with gastric and colorectal cancer. Conclusion KPNA2 expression may be a useful prognostic biomarker to monitor cancer prognosis. Further prospective studies with larger sample sizes are required to confirm our findings.
Collapse
Affiliation(s)
- Li-Na Zhou
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.,Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Yue Tan
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.,Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Li
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China.,Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ping Zeng
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Min-Bin Chen
- Department of Radiotherapy and Oncology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan 215300, Jiangsu Province, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China
| | - Ya-Qun Zhu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Institute of Radiotherapy & Oncology, Soochow University, Suzhou, Jiangsu 215004, China
| |
Collapse
|
9
|
Stelma T, Chi A, van der Watt PJ, Verrico A, Lavia P, Leaner VD. Targeting nuclear transporters in cancer: Diagnostic, prognostic and therapeutic potential. IUBMB Life 2016; 68:268-80. [PMID: 26970212 DOI: 10.1002/iub.1484] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/10/2023]
Abstract
The Karyopherin superfamily is a major class of soluble transport receptors consisting of both import and export proteins. The trafficking of proteins involved in transcription, cell signalling and cell cycle regulation among other functions across the nuclear membrane is essential for normal cellular functioning. However, in cancer cells, the altered expression or localization of nuclear transporters as well as the disruption of endogenous nuclear transport inhibitors are some ways in which the Karyopherin proteins are dysregulated. The value of nuclear transporters in the diagnosis, prognosis and treatment of cancer is currently being elucidated with recent studies highlighting their potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Tamara Stelma
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alicia Chi
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Pauline J van der Watt
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Annalisa Verrico
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Patrizia Lavia
- Institute of Molecular Biology and Pathology, National Research Council of Italy, C/O University of Roma "La Sapienza", Rome, Italy
| | - Virna D Leaner
- Division of Medical Biochemistry, Department of Integrative Biomedical Sciences, SAMRC/UCT Gynaecological Cancer Research Centre, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Gousias K, Schramm J, Simon M. The Simpson grading revisited: aggressive surgery and its place in modern meningioma management. J Neurosurg 2016; 125:551-60. [PMID: 26824369 DOI: 10.3171/2015.9.jns15754] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Recent advances in radiotherapy and neuroimaging have called into question the traditional role of aggressive resections in patients with meningiomas. In the present study the authors reviewed their institutional experience with a policy based on maximal safe resections for meningiomas, and they analyzed the impact of the degree of resection on functional outcome and progression-free survival (PFS). METHODS The authors retrospectively analyzed 901 consecutive patients with primary meningiomas (716 WHO Grade I, 174 Grade II, and 11 Grade III) who underwent resections at the University Hospital of Bonn between 1996 and 2008. Clinical and treatment parameters as well as tumor characteristics were analyzed using standard statistical methods. RESULTS The median follow-up was 62 months. PFS rates at 5 and 10 years were 92.6% and 86.0%, respectively. Younger age, higher preoperative Karnofsky Performance Scale (KPS) score, and convexity tumor location, but not the degree of resection, were identified as independent predictors of a good functional outcome (defined as KPS Score 90-100). Independent predictors of PFS were degree of resection (Simpson Grade I vs II vs III vs IV), MIB-1 index (< 5% vs 5%-10% vs >10%), histological grade (WHO I vs II vs III), tumor size (≤ 6 vs > 6 cm), tumor multiplicity, and location. A Simpson Grade II rather than Grade I resection more than doubled the risk of recurrence at 10 years in the overall series (18.8% vs 8.5%). The impact of aggressive resections was much stronger in higher grade meningiomas. CONCLUSIONS A policy of maximal safe resections for meningiomas prolongs PFS and is not associated with increased morbidity.
Collapse
Affiliation(s)
- Konstantinos Gousias
- Department of Neurosurgery, University Hospital of Bonn; and.,Department of Neurosurgery, University Hospital of Bochum Bergmannsheil, Bochum, Germany
| | | | - Matthias Simon
- Department of Neurosurgery, University Hospital of Bonn; and
| |
Collapse
|