1
|
Esmailnejad A, Zununi Vahed S, Hejazian SM, Aslanabadi N, Lotfollahhi Gharakhanlu H, Saraei M, Ahmadzadehpournaky A, Ardalan K, Ardalan M, Ghaffari Bavil S. Effectiveness of edaravone in preventing contrast-induced nephropathy in high-risk patients undergoing coronary angiography: A randomized, double-blind trial. Pharmacol Res Perspect 2024; 12:e1228. [PMID: 38956898 PMCID: PMC11219510 DOI: 10.1002/prp2.1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/28/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Contrast-induced nephropathy (CIN) is a serious complication that occurs subsequent to the administration of contrast media for therapeutic angiographic interventions. As of present, no effective therapy exists to prevent its occurrence. This single-center double-blind randomized controlled trial aimed to evaluate the effect of edaravone, an antioxidant, in a group of high-risk patients undergoing coronary angiography. Ninety eligible patients with chronic kidney disease Stages 3-4 were randomly assigned to either the control group (n = 45) or the intervention group (n = 45). In the intervention group, one dosage of edaravone (60 mg) in 1 L of normal saline was infused via a peripheral vein 1 h prior to femoral artery-directed coronary angiography. Patients in the control group received an equal amount of infusion in their last hour before angiography. Both groups received intravenous hydration with 0.9% sodium 1 mL/kg/h starting 12 h before and continuing for 24 h after angiography. The primary outcome measure was the onset of CIN, defined as a 25% increase in serum creatinine levels 120 h after administration of contrast media. The occurrence of CIN was observed in 5.5% (n = 5) of the studied population: 2.2% of patients in the intervention group (n = 1) and 8.9% of controls (n = 4). However, this difference was not statistically significant. Administration of a single dosage of edaravone 1 h prior to infusion of contrast media led to a reduction in the incidence of CIN. Further investigations, employing larger sample sizes, are warranted to gain a comprehensive understanding of its efficacy.
Collapse
Affiliation(s)
- Azam Esmailnejad
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
- Kidney Research CenterTabriz University of Medical SciencesTabrizIran
| | | | | | - Naser Aslanabadi
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Majid Saraei
- Cardiovascular Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Kasra Ardalan
- School of Pharmacy and Pharmaceutical SciencesIslamic Azad UniversityTeheranIran
| | | | | |
Collapse
|
2
|
Duranti E, Cordani N, Villa C. Edaravone: A Novel Possible Drug for Cancer Treatment? Int J Mol Sci 2024; 25:1633. [PMID: 38338912 PMCID: PMC10855093 DOI: 10.3390/ijms25031633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Despite significant advancements in understanding the causes and progression of tumors, cancer remains one of the leading causes of death worldwide. In light of advances in cancer therapy, there has been a growing interest in drug repurposing, which involves exploring new uses for medications that are already approved for clinical use. One such medication is edaravone, which is currently used to manage patients with cerebral infarction and amyotrophic lateral sclerosis. Due to its antioxidant and anti-inflammatory properties, edaravone has also been investigated for its potential activities in treating cancer, notably as an anti-proliferative and cytoprotective drug against side effects induced by traditional cancer therapies. This comprehensive review aims to provide updates on the various applications of edaravone in cancer therapy. It explores its potential as a standalone antitumor drug, either used alone or in combination with other medications, as well as its role as an adjuvant to mitigate the side effects of conventional anticancer treatments.
Collapse
Affiliation(s)
| | | | - Chiara Villa
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (E.D.); (N.C.)
| |
Collapse
|
3
|
Kawamoto T, Sasai K. Edaravone Exerts Protective Effects on Mice Intestinal Injury without Interfering with the Anti-Tumor Effects of Radiation. Curr Issues Mol Biol 2023; 45:5362-5372. [PMID: 37504256 PMCID: PMC10378466 DOI: 10.3390/cimb45070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
The appropriate dosage of edaravone-a radioprotective agent-and its effect on tumors are unknown. This study evaluated the effects of edaravone on intestinal injuries and tumors in mice induced by whole body X-ray irradiation. Small intestinal mucositis was induced in C3H/HeNSlc mice using a single X-ray dose (15 Gy). Edaravone (15, 30, and 100 mg/kg) was administered 30 min before irradiation to evaluate its protective effect. After 3.5 days, the jejunum was removed and the histological changes were evaluated. Next, C3H/HeNSlc mice with squamous cell carcinoma VII tumors were provided the same single X-ray dose and 100 mg/kg edaravone; further, the tumors were immediately induced after irradiation. The tumor cell viability was detected using an in vivo-in vitro colony formation assay. We found that the intestinal colony-forming ability after irradiation was significantly higher in the 100 mg/kg edaravone group than that in the control group. Moreover, the apoptotic cells in the villi immunohistochemically stained with cleaved caspase-3 were significantly lower in the 100 mg/kg edaravone group than in the control group. We found no radioprotective effects of intraperitoneally inoculated edaravone in both hind legs on squamous cell carcinoma VII tumors. These findings suggest that 100 mg/kg edaravone exerts protective effects on small intestinal injuries without interfering with the antitumor effects of radiation.
Collapse
Affiliation(s)
- Terufumi Kawamoto
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
4
|
OuYang PY, Zhang BY, Guo JG, Liu JN, Li J, Peng QH, Yang SS, He Y, Liu ZQ, Zhao YN, Li A, Wu YS, Hu XF, Chen C, Han F, You KY, Xie FY. Deep learning-based precise prediction and early detection of radiation-induced temporal lobe injury for nasopharyngeal carcinoma. EClinicalMedicine 2023; 58:101930. [PMID: 37090437 PMCID: PMC10114519 DOI: 10.1016/j.eclinm.2023.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 04/25/2023] Open
Abstract
Background Radiotherapy is the mainstay of treatment for nasopharyngeal carcinoma. Radiation-induced temporal lobe injury (TLI) can regress or resolve in the early phase, but it is irreversible at a later stage. However, no study has proposed a risk-based follow-up schedule for its early detection. Planning evaluation is difficult when dose-volume histogram (DVH) parameters are similar and optimization is terminated. Methods This multicenter retrospective study included 6065 patients between 2014 and 2018. A 3D ResNet-based deep learning model was developed in training and validation cohorts and independently tested using concordance index in internal and external test cohorts. Accordingly, the patients were stratified into risk groups, and the model-predicted risks were used to develop risk-based follow-up schedules. The schedule was compared with the Radiation Therapy Oncology Group (RTOG) recommendation (every 3 months during the first 2 years and every 6 months in 3-5 years). Additionally, the model was used to evaluate plans with similar DVH parameters. Findings Our model achieved concordance indexes of 0.831, 0.818, and 0.804, respectively, which outperformed conventional prediction models (all P < 0.001). The temporal lobes in all the cohorts were stratified into three groups with discrepant TLI-free survival. Personalized follow-up schedules developed for each risk group could detect TLI 1.9 months earlier than the RTOG recommendation. According to a higher median predicted 3-year TLI-free survival (99.25% vs. 99.15%, P < 0.001), the model identified a better plan than previous models. Interpretation The deep learning model predicted TLI more precisely. The model-determined risk-based follow-up schedule detected the TLI earlier. The planning evaluation was refined because the model identified a better plan with a lower risk of TLI. Funding The Sun Yat-sen University Clinical Research 5010 Program (2015020), Guangdong Basic and Applied Basic Research Foundation (2022A1515110356), Medical Scientific Research Foundation of Guangdong Province (A2022367), and Guangzhou Science and Technology Program (2023A04J1788).
Collapse
Affiliation(s)
- Pu-Yun OuYang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Bao-Yu Zhang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Jian-Gui Guo
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jia-Ni Liu
- Department of Head and Neck Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiajian Li
- CVTE Research, Guangzhou, Guangdong, China
| | - Qing-He Peng
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Shan-Shan Yang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yun He
- Department of Radiology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Zhi-Qiao Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Ya-Nan Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Anwei Li
- CVTE Research, Guangzhou, Guangdong, China
| | - Yi-Shan Wu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Xue-Feng Hu
- Department of Radiation Oncology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Chen Chen
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Fei Han
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
| | - Kai-Yun You
- Department of Radiation Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Fang-Yun Xie
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, Guangdong, China
- Corresponding author. Department of Radiation Oncology, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine; Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, No. 651 Dongfeng East Road, Guangzhou, 510060, China.
| |
Collapse
|
5
|
He L, Pi Y, Li Y, Wu Y, Jiang J, Rong X, Cai J, Yue Z, Cheng J, Li H, Chua MLK, Simone CB, Aronow WS, Lattanzi S, Palmer JD, Gaertner J, Glass J, Chen P, Tang Y. Efficacy and safety of apatinib in radiation-induced brain injury among head and neck cancer: an open-label, single-arm, phase 2 study. Int J Radiat Oncol Biol Phys 2022; 113:796-804. [PMID: 35378217 DOI: 10.1016/j.ijrobp.2022.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/04/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND The treatment of radiation-induced brain injury (RI) caused by radiotherapy for head and neck cancer is challenging. Antiangiogenic therapy is a promising treatment. Apatinib is an oral tyrosine kinase inhibitor (TKI) that selectively inhibits vascular endothelial growth factor receptor (VEGFR) 2. We aimed to assess the efficacy and safety of apatinib in patients with RI. PATIENTS AND METHODS In this phase 2, open-label, single-arm, prospective study, we recruited patients aged 35-80 years with prior radiotherapy history for head and neck cancer who had newly diagnosed RI at the Sun Yat-sen Memorial Hospital, China. Apatinib was administered at a dosage of 250 mg once daily orally for 4 weeks. A Simon's mini-max two-stage design was performed. The primary outcome was the proportion of patients with an overall clinical efficacy defined as radiographic response ≥ 25% reduction in baseline brain edema volume on magnetic resonance (MR) fluid attenuated inversion recovery (FLAIR) images at week 4. Secondary endpoints were overall improvement rate of brain necrosis, neurological function, and safety. RESULTS We screened 37 patients, 36 of whom were enrolled between October 17, 2019 and August 3, 2020. At the cutoff date, 36 patients were assessed for efficacy and safety (19 to stage 1 and 17 to stage 2). Of the 36 patients evaluated for overall clinical efficacy, 22 patients (61.1%; 95%CI 43.5-76.9%) achieved the primary endpoint at week 4. Among the 31 patients with brain necrosis lesions, 19 patients (61.3%; 95%CI 42.2%-78.2%) showed improvement of brain necrosis. The most common grade 1 to 2 adverse events were hand-foot syndrome, fatigue and hypertension There were no treatment-related grade 4-5 toxicities. CONCLUSION Oral apatinib shows promising efficacy and is well-tolerated in patients with RI. Further randomized controlled studies are warranted. TRIAL REGISTRATION ClinicalTrials.gov (ID: NCT04152681).
Collapse
Affiliation(s)
- Lei He
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaxuan Pi
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yi Li
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Wu
- Department of Biostatistics, Southern Medical University, Guangzhou, China
| | - Jingru Jiang
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinhua Cai
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zongwei Yue
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jinping Cheng
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Honghong Li
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology and Medical Sciences, National Cancer Centre Singapore, Singapore; Oncology Academic Programme, Duke-NUS Medical School, Singapore
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center and Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wilbert S Aronow
- New York Medical College/Westchester Medical Center, Valhalla, NY, USA
| | - Simona Lattanzi
- Neurological Clinic, Department of Experimental and Clinical Medicine, Marche Polytechnic University, Ancona, Italy
| | - Joshua D Palmer
- Departments of Radiation Oncology and Neurosurgery, The James Cancer Center at The Ohio State University, Columbus, OH, USA
| | - Jan Gaertner
- Palliative Care Center Hildegard, Basel, Switzerland, University of Basel, Switzerland
| | - Jon Glass
- Departments of Neurology and Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Pingyan Chen
- Department of Biostatistics, Southern Medical University, Guangzhou, China
| | - Yamei Tang
- Department of Neurology,Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | | |
Collapse
|
6
|
Zheng Z, Wang B, Zhao Q, Zhang Y, Wei J, Meng L, Xin Y, Jiang X. Research progress on mechanism and imaging of temporal lobe injury induced by radiotherapy for head and neck cancer. Eur Radiol 2021; 32:319-330. [PMID: 34327577 DOI: 10.1007/s00330-021-08164-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/07/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022]
Abstract
Radiotherapy (RT) is an effective treatment for head and neck cancer (HNC). Radiation-induced temporal lobe injury (TLI) is a serious complication of RT. Late symptoms of radiation-induced TLI are irreversible and manifest as memory loss, cognitive impairment, and even temporal lobe necrosis (TLN). It is currently believed that the mechanism of radiation-induced TLI involves microvascular injury, neuron and neural stem cell injury, glial cell damage, inflammation, and the production of free radicals. Significant RT-related structural changes and dose-dependent changes in gray matter (GM) and white matter (WM) volume and morphology were observed through computed tomography (CT) and magnetic resonance imaging (MRI) which were common imaging assessment tools. Diffusion tensor imaging (DTI), dispersion kurtosis imaging (DKI), susceptibility-weighted imaging (SWI), resting-state functional magnetic resonance (rs-fMRI), magnetic resonance spectroscopy (MRS), and positron emission tomography (PET) can be used for early diagnosis and prognosis evaluation according to functional, molecular, and cellular processes of TLI. Early diagnosis of TLI is helpful to reduce the incidence of TLN and its related complications. This review summarizes the clinical features, mechanisms, and imaging of radiation-induced TLI in HNC patients. KEY POINTS: • Radiation-induced temporal lobe injury (TLI) is a clinical complication and its symptoms mainly include memory impairment, headache, and cognitive impairment. • The mechanisms of TLI include microvascular injury, cell injury, and inflammatory and free radical injury. Significant RT-related structural changes and dose-dependent changes in TL volume and morphology were observed through CT and MRI. • SWI, MRS, DTI, and DKI and other imaging examinations can detect anatomical and functional, molecular, and cellular changes of TLI.
Collapse
Affiliation(s)
- Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Bin Wang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Yuyu Zhang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Jinlong Wei
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China.,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, 126 Xinmin Street, Changchun, 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021, China. .,Jilin Provincial Key Laboratory of Radiation Oncology& Therapy, The First Hospital of Jilin University, Changchun, 130021, China. .,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
7
|
Li Z. Equilibrium solubility of edaravone in some binary aqueous and non-aqueous solutions reconsidered: Extended Hildebrand solubility approach, transfer property and preferential solvation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115794] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Zhou X, Liu P, Wang X. Temporal Lobe Necrosis Following Radiotherapy in Nasopharyngeal Carcinoma: New Insight Into the Management. Front Oncol 2021; 10:593487. [PMID: 33552967 PMCID: PMC7859432 DOI: 10.3389/fonc.2020.593487] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is one of the most prominent sequelae following radiation therapy for nasopharyngeal carcinoma (NPC), which might have devastating effects on patients' quality of life (QOL). Advances in histopathology and neuro-radiology have shed light on the management of CRN more comprehensively, yet effective therapeutic interventions are still lacking. CRN was once regarded as progressive and irreversible, however, in the past 20 years, with the application of intensity-modulated radiation therapy (IMRT), both the incidence and severity of CRN have declined. In addition, newly developed medical agents including bevacizumab-a humanized monoclonal antibody against vascular endothelial growth factor (VEGF), nerve growth factor (NGF), monosialotetrahexosylganglioside (GM1), etc., have shown great potency in successfully reversing radiation-induced CRN. As temporal lobes are most frequently compromised in NPC patients, this review will summarize the state-of-the-art progress regarding the incidence, pathophysiology, prevention, treatment, and prognosis of temporal lobe necrosis (TLN) after IMRT in NPC.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peiyao Liu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoshen Wang
- Department of Radiation Oncology, Eye and ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Potential use of edaravone to reduce specific side effects of chemo-, radio- and immuno-therapy of cancers. Int Immunopharmacol 2019; 77:105967. [DOI: 10.1016/j.intimp.2019.105967] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 02/06/2023]
|
10
|
Abstract
INTRODUCTION Hyperbaric oxygen therapy (HBOT) shows promising results in treating radionecrosis (RN) but there is limited evidence for its use in brain RN. The purpose of this study is to report the outcomes of using HBOT for symptomatic brain RN at a single institution. METHODS This was a retrospective review of patients with symptomatic brain RN between 2008 and 2018 and was treated with HBOT. Demographic data, steroid use, clinical response, radiologic response and toxicities were collected. The index time for analysis was the first day of HBOT. The primary endpoint was clinical improvement of a presenting symptom, including steroid dose reduction. RESULTS Thirteen patients who received HBOT for symptomatic RN were included. The median time from last brain radiation therapy to presenting symptoms of brain RN was 6 months. Twelve patients (92%) had clinical improvement with median time to symptom improvement of 33 days (range 1-109 days). One patient had transient improvement after HBOT but had recurrent symptomatic RN at 12 months. Of the eight patients with evaluable follow-up MRI, four patients had radiological improvement while four had stable necrosis appearance. Two patients had subsequent deterioration in MRI appearances, one each in the background of initial radiologic improvement and stability. Median survival was 15 months with median follow-up of 10 months. Seven patients reported side effects attributable to HBOT (54%), four of which were otologic in origin. CONCLUSIONS HBOT is a safe and effective treatment for brain RN. HBOT showed clinical and radiologic improvement or stability in most patients. Prospective studies to further evaluate the effectiveness and side effects of HBOT are needed.
Collapse
|
11
|
Wang TM, Shen GP, Chen MY, Zhang JB, Sun Y, He J, Xue WQ, Li XZ, Huang SY, Zheng XH, Zhang SD, Hu YZ, Qin HD, Bei JX, Ma J, Mu J, Yao Shugart Y, Jia WH. Genome-Wide Association Study of Susceptibility Loci for Radiation-Induced Brain Injury. J Natl Cancer Inst 2019; 111:620-628. [PMID: 30299488 PMCID: PMC6579742 DOI: 10.1093/jnci/djy150] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/24/2018] [Accepted: 07/29/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Radiation-induced brain injury is a nonnegligible issue in the management of cancer patients treated by partial or whole brain irradiation. In particular, temporal lobe injury (TLI), a deleterious late complication in nasopharyngeal carcinoma, greatly affects the long-term life quality of these patients. Although genome-wide association studies (GWASs) have successfully identified single nucleotide polymorphisms (SNPs) associated with radiation toxicity, genetic variants contributing to the radiation-induced brain injury have not yet been assessed. METHODS We recruited and performed follow-up for a prospective observational cohort, Genetic Architecture of Radiotherapy Toxicity and Prognosis, using magnetic resonance imaging for TLI diagnosis. We conducted genome-wide association analysis in 1082 patients and validated the top associations in two independent cohorts of 1119 and 741 patients, respectively. All statistical tests were two-sided. RESULTS We identified a promoter variant rs17111237 (A > G, minor allele frequency [MAF] = 0.14) in CEP128 associated with TLI risk (hazard ratio = 1.45, 95% confidence interval = 1.26 to 1.66, Pcombined=3.18 × 10-7) which is in moderate linkage disequilibrium (LD) with rs162171 (MAF = 0.18, R2 = 0.69), the top signal in CEP128 (hazard ratio = 1.46, 95% confidence interval = 1.29-1.66, Pcombined= 6.17 × 10-9). Combining the clinical variables with the top SNP, we divided the patients into different subgroups with varying risk with 5-year TLI-free rates ranging from 33.7% to 95.5%. CEP128, a key component of mother centriole, tightly interacts with multiple radiation-resistant genes and plays an important role in maintaining the functional cilia, which otherwise will lead to a malfunction of the neural network. We found that A > G alteration at rs17111237 impaired the promoter activity of CEP128 and knockdown of CEP128 decreased the clonogenic cell survival of U87 cells under radiation. Noteworthy, 12.7% (27/212) of the GWAS-based associated genes (P < .001) were enriched in the neurogenesis pathway. CONCLUSIONS This three-stage study is the first GWAS of radiation-induced brain injury that implicates the genetic susceptibility gene CEP128 involved in TLI development and provides the novel insight into the underlying mechanisms of radiation-induced brain injury.
Collapse
Affiliation(s)
- Tong-Min Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Guo-Ping Shen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ming-Yuan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Nasopharyngeal Carcinoma
| | - Jiang-Bo Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ying Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing He
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen-Qiong Xue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xi-Zhao Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Yi Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiao-Hui Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shao-Dan Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ye-Zhu Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hai-De Qin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jin-Xin Bei
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jianbing Mu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD
| | - Yin Yao Shugart
- Unit on Statistical Genomics, Division of Intramural Research Programs, National Institute of Mental Health, National Institutes of Health, Bethesda, MD
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, China
- Correspondence to: Wei-Hua Jia, PhD, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China (e-mail: )
| |
Collapse
|
12
|
Comparison between high-dose and low-dose intravenous methylprednisolone therapy in patients with brain necrosis after radiotherapy for nasopharyngeal carcinoma. Radiother Oncol 2019; 137:16-23. [PMID: 31048233 DOI: 10.1016/j.radonc.2019.04.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/12/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Radiotherapy is the standard radical treatment for nasopharyngeal carcinoma (NPC) and may cause radiation-induced brain necrosis (RN). Intravenous steroids have been considered as an effective treatment for RN. However, evidence concerning the efficacy of different doses of intravenous steroid therapy remains insufficient to establish the optimal regimen for NPC patients with RN. METHODS We retrospectively reviewed charts of 169 patients who were diagnosed with RN after radiotherapy for NPC, treated with low-dose or high-dose intravenous methylprednisolone (IVMP) and followed up for 12 months. We collected the clinical data, including the Late Effects of Normal Tissue (LENT)/Subjective, Objective, Management, Analytic (SOMA) scales score and Montreal Cognitive Assessment (MoCA) score. Magnetic resonance imaging (MRI) was performed pre- and post-treatment to define the radiographic response. RESULTS There were no significant differences in the treatment response based on MRI, or changes in clinical symptoms and cognitive function between low and high-dose groups. Thirty of 93 low-dose patients (32.3%) and 21 of 76 high-dose patients (27.6%) presented effective response in MRI, with no significant differences between groups (P = 0.515). Neither group showed a significant difference in the effective rate based on the MoCA total score and LENT/SOMA score. The most commonly reported grade 3 adverse events in the high-dose group (n = 76) were infections and infestations (3 [3.9%] vs. none for low-dose group). CONCLUSIONS We found low-dose IVMP was not inferior to high-dose IVMP for NPC patients with RN. In addition, treatment-related infections and infestations were likewise more common with high-dose steroid than low-dose steroid.
Collapse
|
13
|
Reduzierte strahleninduzierte Hirnnekrose bei Patienten mit Nasopharynxkarzinom durch Bevacizumab-Monotherapie. Strahlenther Onkol 2019; 195:277-280. [DOI: 10.1007/s00066-019-01425-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Liao H, Zhu Z, Rong X, Wang H, Peng Y. Hyponatremia is a potential predictor of progression in radiation-induced brain necrosis: a retrospective study. BMC Neurol 2018; 18:130. [PMID: 30157800 PMCID: PMC6114772 DOI: 10.1186/s12883-018-1135-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 08/22/2018] [Indexed: 12/02/2022] Open
Abstract
Background To investigate the prognostic value of hyponatremia, defined as serum sodium level < 135 mEq/L, in radiation-induced brain necrosis (RN) patients. Methods We performed a retrospective analysis of the RN patients (The patients included in our study had a history of primary cancers including nasopharyngeal carcinoma/glioma/oral cancer and received radiotherapy previously and then were diagnosed with RN) treated in Sun yat-sen Memorial Hospital from January 2013 to August 2015. Patients without cranial magnetic resonance imaging (MRI) scan and serum sodium data were excluded. Progression was identified when the increase of edema area ≥ 25% on the MRI taken in six months comparing with those taken at the baseline. Factors that might associate with prognosis of RN were collected. Multivariable logistic regression analyses were used to identify potential predictors. Results We total included 135 patients, 32 (23.7%) of them with hyponatremia and 36 (26.7%) with RN progression. Percentage of progression was roughly three fold in hyponatremia patients compared with nonhyponatremia patients (53.1% versus 18.4%), translating into a 5-fold increased odds ratio (P < 0.001). Multivariable analyses identified hyponatremia as a potential predictor of progression (OR, 4.82; 95% CI [1.94–11.94]; P = 0.001). Conclusions Hyponatremia was identified as a potential predictor for the progression of patients with RN. Hyponatremia management in patients with RN should be paid much more concern in clinical practice.
Collapse
Affiliation(s)
- Huan Liao
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Zhuoting Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Hongxuan Wang
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China
| | - Ying Peng
- Department of Neurology, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
15
|
Chung C, Bryant A, Brown PD. Interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery. Cochrane Database Syst Rev 2018; 7:CD011492. [PMID: 29987845 PMCID: PMC6513335 DOI: 10.1002/14651858.cd011492.pub2] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Brain radionecrosis (tissue death caused by radiation) can occur following high-dose radiotherapy to brain tissue and can have a significant impact on a person's quality of life (QoL) and function. The underlying pathophysiological mechanism remains unclear for this condition, which makes establishing effective treatments challenging. OBJECTIVES To assess the effectiveness of interventions used for the treatment of brain radionecrosis in adults over 18 years old. SEARCH METHODS In October 2017, we searched the Cochrane Register of Controlled Trials (CENTRAL), MEDLINE, Embase and the Cumulative Index to Nursing and Allied Health Literature (CINAHL) for eligible studies. We also searched unpublished data through Physicians Data Query, www.controlled-trials.com/rct, www.clinicaltrials.gov, and www.cancer.gov/clinicaltrials for ongoing trials and handsearched relevant conference material. SELECTION CRITERIA We included randomised controlled trials (RCTs) of any intervention directed to treat brain radionecrosis in adults over 18 years old previously treated with radiation therapy to the brain. We anticipated a limited number of RCTs, so we also planned to include all comparative prospective intervention trials and quasi-randomised trials of interventions for brain radionecrosis in adults as long as these studies had a comparison group that reflects the standard of care (i.e. placebo or corticosteroids). Selection bias was likely to be an issue in all the included non-randomised studies therefore results are interpreted with caution. DATA COLLECTION AND ANALYSIS Two review authors (CC, PB) independently extracted data from selected studies and completed a 'Risk of bias' assessment. For dichotomous outcomes, the odds ratio (OR) for the outcome of interest was reported. For continuous outcomes, treatment effect was reported as mean difference (MD) between treatment arms with 95% confidence intervals (CIs). MAIN RESULTS Two RCTs and one prospective non-randomised study evaluating pharmacological interventions met the inclusion criteria for this review. As each study evaluated a different drug or intervention using different endpoints, a meta-analysis was not possible. There were no trials of non-pharmacological interventions that met the inclusion criteria.A very small randomised, double-blind, placebo-controlled trial of bevacizumab versus placebo reported that 100% (7/7) of participants on bevacizumab had reduction in brain oedema by at least 25% and reduction in post-gadolinium enhancement, whereas all those receiving placebo had clinical or radiological worsening or both. This was an encouraging finding but due to the small sample size we did not report a relative effect. The authors also failed to provide adequate details regarding the randomisation and blinding procedures Therefore, the certainty of this evidence is low and a larger RCT adhering to reporting standards is needed.An open-label RCT demonstrated a greater reduction in brain oedema (T2 hyperintensity) in the edaravone plus corticosteroid group than in the corticosteroid alone group (MD was 3.03 (95% CI 0.14 to 5.92; low-certainty evidence due to high risk of bias and imprecision); although the result approached borderline significance, there was no evidence of any important difference in the reduction in post-gadolinium enhancement between arms (MD = 0.47, 95% CI - 0.80 to 1.74; low-certainty evidence due to high risk of bias and imprecision).In the RCT of bevacizumab versus placebo, all seven participants receiving bevacizumab were reported to have neurological improvement, whereas five of seven participants on placebo had neurological worsening (very low-certainty evidence due to small sample size and concerns over validity of analyses). While no adverse events were noted with placebo, three severe adverse events were noted with bevacizumab, which included aspiration pneumonia, pulmonary embolus and superior sagittal sinus thrombosis. In the RCT of corticosteroids with or without edaravone, the participants who received the combination treatment were noted to have significantly greater clinical improvement than corticosteroids alone based on LENT/SOMA scale (OR = 2.51, 95% CI 1.26 to 5.01; low-certainty evidence due to open-label design). No differences in treatment toxicities were observed between arms.One included prospective non-randomised study of alpha-tocopherol (vitamin E) versus no active treatment was found but it did not include any radiological assessment. As only one included study was a double-blinded randomised controlled trial, the other studies were prone to selection and detection biases.None of the included studies reported quality of life outcomes or adequately reported details about corticosteroid requirements.A limited number of prospective studies were identified but subsequently excluded as these studies had a limited number of participants evaluating different pharmacological interventions using variable endpoints. AUTHORS' CONCLUSIONS There is a lack of good certainty evidence to help quantify the risks and benefits of interventions for the treatment of brain radionecrosis after radiotherapy or radiosurgery. In an RCT of 14 patients, bevacizumab showed radiological response which was associated with minimal improvement in cognition or symptom severity. Although it was a randomised trial by design, the small sample size limits the quality of data. A trial of edaravone plus corticosteroids versus corticosteroids alone reported greater reduction in the surrounding oedema with combination treatment but no effect on the enhancing radionecrosis lesion. Due to the open-label design and wide confidence intervals in the results, the quality of this data was also low. There was no evidence to support any non-pharmacological interventions for the treatment of radionecrosis. Further prospective randomised studies of pharmacological and non-pharmacological interventions are needed to generate stronger evidence. Two ongoing RCTs, one evaluating bevacizumab and one evaluating hyperbaric oxygen therapy were identified.
Collapse
Affiliation(s)
- Caroline Chung
- MD Anderson Cancer CenterRadiation Oncology1515 Holcombe BlvdHoustonTexasUSA77030
| | - Andrew Bryant
- Newcastle UniversityInstitute of Health & SocietyMedical School New BuildRichardson RoadNewcastle upon TyneUKNE2 4AX
| | - Paul D Brown
- Mayo ClinicRadiation Oncology200 First Street SWRochesterMNUSA55905
| | | |
Collapse
|
16
|
Ding Z, Zhang H, Lv X, Xie F, Liu L, Qiu S, Li L, Shen D. Radiation-induced brain structural and functional abnormalities in presymptomatic phase and outcome prediction. Hum Brain Mapp 2018; 39:407-427. [PMID: 29058342 PMCID: PMC6866621 DOI: 10.1002/hbm.23852] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 07/07/2017] [Accepted: 10/09/2017] [Indexed: 01/08/2023] Open
Abstract
Radiation therapy, a major method of treatment for brain cancer, may cause severe brain injuries after many years. We used a rare and unique cohort of nasopharyngeal carcinoma patients with normal-appearing brains to study possible early irradiation injury in its presymptomatic phase before severe, irreversible necrosis happens. The aim is to detect any structural or functional imaging biomarker that is sensitive to early irradiation injury, and to understand the recovery and progression of irradiation injury that can shed light on outcome prediction for early clinical intervention. We found an acute increase in local brain activity that is followed by extensive reductions in such activity in the temporal lobe and significant loss of functional connectivity in a distributed, large-scale, high-level cognitive function-related brain network. Intriguingly, these radiosensitive functional alterations were found to be fully or partially recoverable. In contrast, progressive late disruptions to the integrity of the related far-end white matter structure began to be significant after one year. Importantly, early increased local brain functional activity was predictive of severe later temporal lobe necrosis. Based on these findings, we proposed a dynamic, multifactorial model for radiation injury and another preventive model for timely clinical intervention. Hum Brain Mapp 39:407-427, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhongxiang Ding
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Han Zhang
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Xiao‐Fei Lv
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Fei Xie
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Lizhi Liu
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shijun Qiu
- Medical Imaging CenterThe First Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhou510405China
| | - Li Li
- Department of Medical ImagingCollaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Dinggang Shen
- Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of Brain and Cognitive EngineeringKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
17
|
Zhang X, Li Y, Li X, Rong X, Tang Y, Peng Y. Neuroprotective effect of Dl-3-n-butylphthalide on patients with radiation-induced brain injury: a clinical retrospective cohort study. Int J Neurosci 2017; 127:1059-1064. [PMID: 28332424 DOI: 10.1080/00207454.2017.1310727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoni Zhang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
18
|
Wang GH, Liu Y, Wu XB, Lu Y, Liu J, Qin YR, Li T, Duan HF. Neuroprotective effects of human umbilical cord-derived mesenchymal stromal cells combined with nimodipine against radiation-induced brain injury through inhibition of apoptosis. Cytotherapy 2016; 18:53-64. [PMID: 26719199 DOI: 10.1016/j.jcyt.2015.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/30/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) possess the ability to repair brain injuries. Additionally, nimodipine is a neuroprotective agent that increases cerebral blood flow and may help with the homing of MSCs to the injury site. Here we investigate the effectiveness of a combined human umbilical cord-derived MSCs and nimodipine therapy in radiation-induced brain injury (RIBI). METHODS Female mice received whole brain irradiation (WBI) and were treated with saline, nimodipine, hUC-MSCs, or hUC-MSCs combined with nimodipine. Body weight was measured weekly. An open field test for locomotor activity and a step-down avoidance test for learning and memory function were conducted at week 4 and week 12 post-WBI. The histological damage was evaluated by hematoxylin and eosin staining and glial fibrillary acidic protein immunohistochemistry. Quantitative polymerase chain reaction and Western blotting were used to detect apoptosis-related mediators (p53, Bax and Bcl-2). RESULTS In mice receiving the hUC-MSCs or the combined treatment, their body weight recovered, their locomotor and cognitive ability improved, and the percentage of necrotic neurons and astrocytes was reduced. The combined therapy was significantly (P < 0.05) more effective than hUC-MSCs alone; these mice showed decreased expression of pro-apoptotic indicators (p53, Bax) and increased expression of an anti-apoptotic indicator (Bcl-2), which may protect brain cells. CONCLUSIONS We demonstrated that hUC-MSCs therapy helps recover body weight loss and behavior dysfunction in a mice model of RIBI. Moreover, the effectiveness of the combined hUC-MSCs and nimodipine therapy is due to apoptosis inhibition and enhancing homing of MSCs to the injured brain.
Collapse
Affiliation(s)
- Gui-Hua Wang
- Department of Neurology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China; Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Liu
- College of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Xiao-Bing Wu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ying Lu
- No. 307 Hospital of the Chinese People's Liberation Army, Beijing, China
| | - Jin Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Ru Qin
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Tong Li
- Department of Neurology, the First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China.
| | - Hai-Feng Duan
- Beijing Institute of Radiation Medicine, Beijing, China.
| |
Collapse
|
19
|
Cai Z, Li Y, Hu Z, Fu R, Rong X, Wu R, Cheng J, Huang X, Luo J, Tang Y. Radiation-induced brachial plexopathy in patients with nasopharyngeal carcinoma: a retrospective study. Oncotarget 2016; 7:18887-95. [PMID: 26934119 PMCID: PMC4951337 DOI: 10.18632/oncotarget.7748] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/14/2016] [Indexed: 12/16/2022] Open
Abstract
Radiation-induced brachial plexopathy (RIBP) is one of the late complications in nasopharyngeal carcinoma (NPC) patients who received radiotherapy. We conducted a retrospective study to investigate its clinical characteristics and risk factors.Thirty-onepatients with RIBP after radiotherapy for NPC were enrolled. Clinical manifestations of RIBP, electrophysiologic data, magnetic resonance imaging (MRI), and the correlation between irradiation strategy and incidence of RIBP were evaluated. The mean latency at the onset of RIBP was 4.26 years. Of the symptoms, paraesthesia usually presented first (51.6%), followed by pain (22.6%) and weakness (22.6%). The major symptoms included paraesthesia (90.3%), pain (54.8%), weakness (48.4%), fasciculation (19.3%) and muscle atrophy (9.7%). Nerve conduction velocity (NCV) and electromyography (EMG) disclosed that pathological changes of brachial plexus involved predominantly in the upper and middle trunks in distribution. MRI of the brachial plexus showed hyper-intensity on T1, T2, post-contrast T1 and diffusion weighted whole body imaging with background body signal suppression (DWIBS) images in lower cervical nerves. Radiotherapy with Gross Tumor volume (GTVnd) and therapeutic dose (mean 66.8±2.8Gy) for patients with lower cervical lymph node metastasis was related to a significantly higher incidence of RIBP (P<0.001).Thus, RIBP is a severe and progressive complication of NPC after radiotherapy. The clinical symptoms are predominantly involved in upper and middle trunk of the brachial plexus in distribution. Lower cervical lymph node metastasis and corresponding radiotherapy might cause a significant increase of the RIBP incidence.
Collapse
Affiliation(s)
- Zhaoxi Cai
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Yi Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhen Hu
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Ruying Fu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Rong Wu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xiaolong Huang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Jinjun Luo
- Departments of Neurology and Pharmacology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Key Laboratory of Malignant Tumor Gene Regulation and Target Therapy of Guangdong Higher Education Institutes, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
20
|
Li H, Qiu S, Li X, Li M, Peng Y. Autophagy biomarkers in CSF correlates with infarct size, clinical severity and neurological outcome in AIS patients. J Transl Med 2015; 13:359. [PMID: 26576535 PMCID: PMC4650838 DOI: 10.1186/s12967-015-0726-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
Background Autophagy is demonstrated to be involved in acute ischemic stroke(AIS), which, however, is confined to cells and/or animals levels. The aim of this study was to determine two autophagy biomarkers, Beclin1 and LC3B, in cerebrospinal fluid (CSF) and serum of patients with AIS, and to evaluate a possible correlation between levels of Beclin1 and LC3B and severity of neurological deficit and clinical outcome of stroke patients. Methods Levels of Beclin1 and LC3B were quantified by ELISA in CSF and serum collected from 37 AIS patients and 21 controls. The clinical severity at stroke onset was determined by the National Institute of Health Stroke Scale (NIHSS) and the neurological outcome was determined by the Modified Rankin Scale (mRs) and the improvement in NIHSS between stroke onset and 3 months later. Associations between autophagy biomarkers and infarct volume, NIHSS and mRs were assessed using Pearson analysis. Results The levels of Beclin1 and LC3B were increased both in CSF and serum of AIS patients relative to controls. In CSF, they were positively correlated with infarct volume and NIHSS scores, and negatively correlated with mRs scores, but no significant association was observed in serum. Moreover, AIS patients with higher levels of Beclin1 and LC3B in CSF had significantly higher improvement in NIHSS. Conclusion CSF and serum levels of autophagy biomarkers are altered in AIS patients. CSF levels of autophagy biomarkers are associated with infarct volume, clinical severity of and neurological outcome.
Collapse
Affiliation(s)
- Honghong Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Shuwei Qiu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China. .,Department of Neurology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiangpen Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China.
| | - Mei Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China.
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 West Yanjiang Road, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
21
|
Xu P, Xu Y, Hu B, Wang J, Pan R, Murugan M, Wu LJ, Tang Y. Extracellular ATP enhances radiation-induced brain injury through microglial activation and paracrine signaling via P2X7 receptor. Brain Behav Immun 2015; 50:87-100. [PMID: 26122280 DOI: 10.1016/j.bbi.2015.06.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/24/2015] [Accepted: 06/24/2015] [Indexed: 12/14/2022] Open
Abstract
Activation of purinergic receptors by extracellular ATP (eATP) released from injured cells has been implicated in the pathogenesis of many neuronal disorders. The P2X7 receptor (P2X7R), an ion-selective purinergic receptor, is associated with microglial activation and paracrine signaling. However, whether ATP and P2X7R are involved in radiation-induced brain injury (RBI) remains to be determined. Here, we found that the eATP level was elevated in the cerebrospinal fluid (CSF) of RBI patients and was associated with the clinical severity of the disorder. In our experimental model, radiation treatment increased the level of eATP in the supernatant of primary cultures of neurons and glial cells and in the CSF of irradiated mice. In addition, ATP administration activated microglia, induced the release of the inflammatory mediators such as cyclooxygenase-2, tumor necrosis factor α and interleukin 6, and promoted neuronal apoptosis. Furthermore, blockade of ATP-P2X7R interaction using P2X7 antagonist Brilliant Blue G or P2X7 knockdown suppressed radiation-induced microglial activation and proliferation in the hippocampus, and restored the spatial memory of irradiated mice. Finally, we found that the PI3K/AKT and nuclear factor κB mediated pathways were downstream of ATP-P2X7R signaling in RBI. Taken together, our results unveiled the critical role of ATP-P2X7R in brain damage in RBI, suggesting that inhibition of ATP-P2X7R axis might be a potential strategy for the treatment of patients with RBI.
Collapse
Affiliation(s)
- Pengfei Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Yongteng Xu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Bin Hu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Jue Wang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Rui Pan
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, United States
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China.
| |
Collapse
|