1
|
Liu J, Han D, Xuan J, Xie J, Wang W, Zhou Q, Chen K. COP9 signalosome complex is a prognostic biomarker and corresponds with immune infiltration in hepatocellular carcinoma. Aging (Albany NY) 2024; 16:5264-5287. [PMID: 38466642 PMCID: PMC11006475 DOI: 10.18632/aging.205646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/15/2024] [Indexed: 03/13/2024]
Abstract
Hepatocellular carcinoma (HCC) is among the most common deadly tumors but still lacks specific biomarkers for diagnosis, prognosis, and treatment guidance. The COP9 signalosome (COPS) is an essential regulator of the ubiquitin conjugation pathway upregulated in various cancers. We evaluated the contributions of COPS subunits to HCC tumorigenesis and their utility for prognosis. We comprehensively evaluated the tumor expression pattern and tumorigenic functions of COPS subunits using The Cancer Genome Atlas (TCGA), The Human Protein Atlas and immunohistochemistry. Kaplan-Meier, Cox regression, ROC curve, and nomogram analyses were used to assess the predictive values of COPS subunits for clinical outcome. Expression levels of COPS subunits were significantly upregulated in HCC tissues, which predicted shorter overall survival (OS). Further, Cox regression analysis identified COPS5, COPS7B, and COPS9 as independent prognostic biomarkers for OS. High mutation rates were also found in COPS subunits. Functional network analysis indicated that COPS and neighboring genes regulate 'protein neddylation', 'protein deneddylation', and 'protein ubiquitination'. The COPS PPI included strong interactions with p53, CUL1/2/3/4, and JUN. Moreover, the correlations between COPS subunit expression levels and tumor immune cell infiltration rates were examined using TIMER, TISIDB, ssGSEA, and ESTIMATE packages. COPS subunits expression levels were positively correlated with specific tumor immune cell infiltration rates, immunoregulator expression levels, and microsatellite instability in HCC. Finally, knockout of COPS6 and COPS9 in HCC cells reduced while overexpression enhanced proliferation rate and metastasis capacity. Our study revealed that COPS potential biomarker for unfavorable HCC prognosis and indicators of immune infiltration, tumorigenicity, and metastasis.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
| | - Dexing Han
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Junfeng Xuan
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
| | - Jinye Xie
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| | - Weijia Wang
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| | - Quan Zhou
- Laboratory of Basic Medical Science, General Hospital of Southern Theater Command of PLA, Guangzhou 510000, Guangdong, China
- Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510000, Guangdong, China
| | - Kang Chen
- Department of Clinical Laboratory, Zhongshan City People’s Hospital, The Affiliated Zhongshan Hospital of Sun Yat-Sen University, Zhongshan 528400, Guangdong, China
| |
Collapse
|
2
|
Wang Y, Wang K, Fu J, Zhang Y, Mao Y, Wang X, Wang X, Yu R, Zhou X. FRK inhibits glioblastoma progression via phosphorylating YAP and inducing its ubiquitylation and degradation by Siah1. Neuro Oncol 2022; 24:2107-2120. [PMID: 35723276 PMCID: PMC9713521 DOI: 10.1093/neuonc/noac156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND We previously report that yes-associated protein (YAP), the core downstream effector of Hippo pathway, promotes the malignant progression of glioblastoma (GBM). However, although classical regulatory mechanisms of YAP are well explored, how YAP is modulated by the Hippo-independent manner remains poorly understood. Meanwhile, the nonreceptor tyrosine kinase Fyn-related kinase (FRK), which exhibits low expression and possesses tumor suppressor effects in GBM, is reported to be involved in regulation of protein phosphorylation. Here, we examined whether FRK could impede tumor progression by modulating YAP activities. METHODS Human GBM cells and intracranial GBM model were used to assess the effects of FRK and YAP on the malignant biological behaviors of GBM. Immunoblotting and immunohistochemistry were used to detect the expression of core proteins in GBM tissues. Co-immunoprecipitation, proximity ligation assay, luciferase assay and ubiquitination assay were utilized to determine the protein-protein interactions and related molecular mechanisms. RESULTS The expression levels of FRK and YAP were inversely correlated with each other in glioma tissues. In addition, FRK promoted the ubiquitination and degradation of YAP, leading to tumor suppression in vitro and in vivo. Mechanistically, FRK interacted with and phosphorylated YAP on Tyr391/407/444, which recruited the classical E3 ubiquitin ligase Siah1 to catalyze ubiquitination and eventually degradation of YAP. Siah1 is required for YAP destabilization initiated by FRK. CONCLUSIONS We identify a novel mechanism by which FRK orchestrates tumor-suppression effect through phosphorylating YAP and inducing its ubiquitination by Siah1. FRK-Siah1-YAP signaling axis may serve as a potential therapeutic target for GBM treatment.
Collapse
Affiliation(s)
| | | | | | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufei Mao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China,The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Corresponding Authors: Rutong Yu, MD, PhD, Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China (); Xiuping Zhou, PhD, Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, PR China ()
| | - Xiuping Zhou
- Corresponding Authors: Rutong Yu, MD, PhD, Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, Jiangsu, 221002, PR China (); Xiuping Zhou, PhD, Institute of Nervous System Diseases, Xuzhou Medical University, 84 West Huai-hai Road, Xuzhou, Jiangsu, 221002, PR China ()
| |
Collapse
|
3
|
Jab1/Cops5: a promising target for cancer diagnosis and therapy. Int J Clin Oncol 2021; 26:1159-1169. [PMID: 34019195 DOI: 10.1007/s10147-021-01933-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/08/2021] [Indexed: 01/21/2023]
Abstract
C-Jun activation domain-binding protein1 (Jab1), the fifth component of the constitutive photomorphogenic-9 signalosome (COPS5/Csn5) complex, functions in several cellular processes to affect different signaling pathways. Dysregulation of Jab1/Csn5 both restrains tumor suppressors and activates oncogenes to contribute oncogenesis. Jab1 overexpressed in various tumors and played an essential part in cancer initiation, progression and prognosis, which has spurred strong research interest in developing inhibitors for cancer therapy. Here, we summarize the multiple signaling pathways and functions of Jab1/Csn5 in tumorigenesis. By querying the Oncomine database, a cancer microarray database and web-based data-mining platform aimed at facilitating discovery from genome-wide expression analyses, we investigated statistically the differential expression of Jab1/Csn5 between different cancer samples and the corresponding normal tissue samples, cancer samples with different histological types, different cancer types, and different clinical outcomes. These statistical data confirmed the significant role of Jab1/Csn5 in carcinogenesis, indicating Jab1/Csn5 as a biomarker and a therapeutic target in different cancers.
Collapse
|
4
|
Zhao W, Zheng Z, Aweya JJ, Wang F, Li S, Tuan TN, Yao D, Zhang Y. Litopenaeus vannamei Notch interacts with COP9 signalosome complex subunit 1 (CNS1) to negatively regulate the NF-κB pathway. J Proteomics 2020; 232:104074. [PMID: 33309928 DOI: 10.1016/j.jprot.2020.104074] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/04/2020] [Accepted: 12/06/2020] [Indexed: 01/06/2023]
Abstract
Notch signaling pathway is a highly evolutionary conserved signaling pathway, which modulates many biological processes such as cell differentiation, tissue development and immune response. Our previous study revealed that Litopenaeus vannamei Notch (LvNotch) was involved in immune response by regulating reactive oxygen species (ROS) production in hemocytes. However, the immune regulatory networks mediated by LvNotch remain unclear in shrimp. In this study, 21 proteins that potentially interact with LvNotch were identified by GST pull-down and liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Among these proteins, COP9 signalosome complex subunit 1 (CSN1) was chosen for further studies due to its putative role in immune response. The interaction between LvNotch and LvCSN1 was confirmed by Far-Western blot and GST pull-down analyses. In vivo knockdown of LvNotch resulted in an increase in LvCSN1 expression in hemocytes, which suggest that the COP9 signalosome complex might be negatively regulated by LvNotch. In addition, in vivo silencing of LvNotch upregulated the expression of LvDorsal, LvTNFSF and LvCrustin2 (NF-κB pathway related-genes), while their expression decreased after LvCSN1 depletion. Collectively, the current results indicate that LvNotch negatively regulates the NF-κB pathway by modulating LvCSN1 in shrimp. SIGNIFICANCE: Although the Notch signaling pathway has been implicated in the regulation of immune response in vertebrates and invertebrates, the functions and immune-related interacting networks of Notch in shrimp immune response remain unknown. In this study, twenty-one proteins including COP9 signalosome complex subunit 1 (CSN1) were identified as potential interacting partners of LvNotch. Further analysis revealed that LvNotch negatively regulates the NF-κB pathway by binding to CSN1 and modulating its expression. These findings for the first time suggest that the Notch signaling pathway has cross-talk with the NF-κB pathway in shrimp as part of the immune response.
Collapse
Affiliation(s)
- Weiling Zhao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Zhihong Zheng
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Jude Juventus Aweya
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Fan Wang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Shengkang Li
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Tran Ngoc Tuan
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China
| | - Defu Yao
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China.
| | - Yueling Zhang
- Institute of Marine Sciences and Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou 515063, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| |
Collapse
|
5
|
Nishimoto A, Takemoto Y, Saito T, Kurazumi H, Tanaka T, Harada E, Shirasawa B, Hamano K. Nuclear β-catenin expression is positively regulated by JAB1 in human colorectal cancer cells. Biochem Biophys Res Commun 2020; 533:548-552. [PMID: 32977947 DOI: 10.1016/j.bbrc.2020.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 11/29/2022]
Abstract
Wnt/β-catenin signaling is important for development and progression of colorectal cancer (CRC). The degradation complex for β-catenin is functionally impaired in CRC cells, thereby resulting in the accumulation of β-catenin and its translocation into the nucleus. Nuclear β-catenin interacts with and co-activates T cell factor4 (TCF4), resulting in β-catenin/TCF4-dependent transcription. Therefore, nuclear β-catenin has been categorized as the main driving force in the tumorigenesis of CRC. Recent studies reveal that Jun activation domain-binding protein 1 (JAB1) enhances the degradation of seven in absentia homolog-1 (SIAH-1), a putative E3 ubiquitin ligase of β-catenin, and positively regulates the expression of total β-catenin in human CRC cells. An another recent study also shows that nuclear β-catenin is ubiquitinated and degraded by an E3 ubiquitin ligase, tripartite motif-containing protein 33 (TRIM33). However, the regulatory mechanism for the expression of nuclear β-catenin remains to be fully understood. In this study, we have demonstrated that JAB1 positively regulates the expression of nuclear β-catenin, c-MYC as a β-catenin/TCF4 target, and cell cycle regulators, such as Ki-67 and topoisomerase IIα, in human CRC cells. Taken together, these results suggest that JAB1 is considered as a promising target for novel CRC therapy.
Collapse
Affiliation(s)
- Arata Nishimoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan; Department of Medical Education, Yamaguchi University Graduate School of Medicine, Ube, Japan.
| | - Yoshihiro Takemoto
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiro Saito
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Hiroshi Kurazumi
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Toshiki Tanaka
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Eijiro Harada
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Bungo Shirasawa
- Department of Medical Education, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Kimikazu Hamano
- Department of Surgery and Clinical Science, Yamaguchi University Graduate School of Medicine, Ube, Japan
| |
Collapse
|
6
|
Pandey P, Siddiqui MH, Behari A, Kapoor VK, Mishra K, Sayyed U, Tiwari RK, Shekh R, Bajpai P. Jab1-siRNA Induces Cell Growth Inhibition and Cell Cycle Arrest in Gall Bladder Cancer Cells via Targeting Jab1 Signalosome. Anticancer Agents Med Chem 2020; 19:2019-2033. [PMID: 31345154 DOI: 10.2174/1871520619666190725122400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND The aberrant alteration in Jab1 signalosome (COP9 Signalosome Complex Subunit 5) has been proven to be associated with the progression of several carcinomas. However the specific role and mechanism of action of Jab1 signalosome in carcinogenesis of gall bladder cancer (GBC) are poorly understood. OBJECTIVE The main objective of our study was to elucidate the role and mechanism of Jab1 signalosome in gall bladder cancer by employing siRNA. METHODS Jab1 overexpression was identified in gall bladder cancer tissue sample. The role of Jab1-siRNA approach in cell growth inhibition and apoptotic induction was then examined by RT-PCR, Western Blotting, MTT, ROS, Hoechst and FITC/Annexin-V staining. RESULTS In the current study, we have shown that overexpression of Jab1 stimulated the proliferation of GBC cells; whereas downregulation of Jab1 by using Jab1-siRNA approach resulted incell growth inhibition and apoptotic induction. Furthermore, we found that downregulation of Jab1 induces cell cycle arrest at G1 phase and upregulated the expression of p27, p53 and Bax gene. Moreover, Jab1-siRNA induces apoptosis by enhancing ROS generation and caspase-3 activation. In addition, combined treatment with Jab1-siRNA and gemicitabine demonstrated an enhanced decline in cell proliferation which further suggested increased efficacy of gemcitabine at a very lower dose (5μM) in combination with Jab1-siRNA. CONCLUSION In conclusion, our study strongly suggests that targeting Jab1 signalosome could be a promising therapeutic target for the treatment of gall bladder cancer.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Bioengineering, Integral University, Lucknow, India.,Department of Biotechnology, Noida Institute of Engireering and Technology, Greater Noida, India
| | | | - Anu Behari
- Department of Surgical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Vinay K Kapoor
- Department of Surgical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Kumudesh Mishra
- Department of Surgical Gastroenterology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Uzma Sayyed
- Department of Biosciences, Integral University, Lucknow, India
| | - Rohit K Tiwari
- Department of Biosciences, Integral University, Lucknow, India
| | - Rafia Shekh
- Department of Biosciences, Integral University, Lucknow, India
| | - Preeti Bajpai
- Department of Biosciences, Integral University, Lucknow, India
| |
Collapse
|
7
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
8
|
Guo Z, Wang Y, Zhao Y, Shu Y, Liu Z, Zhou H, Wang H, Zhang W. The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer. Gene 2018; 687:219-227. [PMID: 30468907 DOI: 10.1016/j.gene.2018.11.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 01/28/2023]
Abstract
Jab1/CSN5 is a conserved multifunctional protein involved in ubiquitin-mediated protein degradation. Deregulation of Jab1/CSN5 can exert dramatic effects on diverse cellular functions, including DNA repair, cell cycle control, apoptosis, angiogenesis, and signal transduction, all of which are critical for tumor development. Although increasing evidence has demonstrated that Jab1/CSN5 was overexpressed in a variety of human cancers and usually correlated with poor prognosis, little was known about the underlying regulatory principles that coordinated its function. In this review, we highlight recent advances of the oncogenic role of Jab1/CSN5 and its potential as a therapeutic target for anticancer intervention.
Collapse
Affiliation(s)
- Zhen Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Youhong Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Yu Zhao
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD 21201, USA
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Hui Wang
- Key Laboratory of Translational Radiation Oncology, Hunan Province, Department of Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, PR China.
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University and Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China.
| |
Collapse
|
9
|
Xie M, Ji Z, Bao Y, Zhu Y, Xu Y, Wang L, Gao S, Liu Z, Tian Z, Meng Q, Shi H, Yu R. PHAP1 promotes glioma cell proliferation by regulating the Akt/p27/stathmin pathway. J Cell Mol Med 2018; 22:3595-3604. [PMID: 29667783 PMCID: PMC6033192 DOI: 10.1111/jcmm.13639] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/14/2018] [Indexed: 12/20/2022] Open
Abstract
PHAP1 (Putative HLA‐DR‐associated protein 1), also termed acidic leucine‐rich nuclear phosphoprotein 32A (ANP32A), Phosphoprotein 32 (pp32) or protein phosphatase 2A inhibitor (I1PP2A), is a multifunctional protein aberrantly expressed in multiple types of human cancers. However, its expression pattern and clinical relevance in human glioma remain unknown. In this study, Western blotting and immunohistochemistry analysis demonstrated PHAP1 protein was highly expressed in glioma patients, especially in those with high‐grade disease. Publicly available data also revealed high levels of PHAP1 were associated with poor prognosis in glioma patients. The functional studies showed that knock‐down of PHAP1 suppressed the proliferation of glioma cells, while overexpression of PHAP1 facilitated it. The iTRAQ proteomic analysis suggested that stathmin might be a potential downstream target of PHAP1. Consistently, PHAP1 knock‐down significantly decreased the expression of stathmin, while overexpression of PHAP1 increased it. Also, the upstream negative regulator, p27, expression levels increased upon PHAP1 knock‐down and decreased when PHAP1 was overexpressed. As a result, the phosphorylated Akt (S473), an upstream regulator of p27, expression levels decreased upon silencing of PHAP1, but elevated after PHAP1 overexpression. Importantly, we demonstrate the p27 down‐regulation, stathmin up‐regulation and cell proliferation acceleration induced by PHAP1 overexpression were dependent on Akt activation. In conclusion, the above results suggest that PHAP1 expression is elevated in glioma patients, which may accelerate the proliferation of glioma cells by regulating the Akt/p27/stathmin pathway.
Collapse
Affiliation(s)
- Manyi Xie
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhe Ji
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Yaxing Bao
- Department of Orthopeadic Surgery, First People's Hospital, Xuzhou, Jiangsu, China
| | - Yufu Zhu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yang Xu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Lei Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhiyi Liu
- The Graduate School, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zilu Tian
- The Graduate School, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qingming Meng
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hengliang Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
10
|
Liu H, Hu J, Pan H, Luo D, Huang M, Xu W. CSN5 Promotes Hepatocellular Carcinoma Progression by SCARA5 Inhibition Through Suppressing β-Catenin Ubiquitination. Dig Dis Sci 2018; 63:155-165. [PMID: 29189991 DOI: 10.1007/s10620-017-4855-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/16/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increasing evidence has suggested that E3 Ubiquitin Ligase CSN5 is a newly characterized oncogene involved in various types of cancer. Scavenger receptor class A member 5 (SCARA5) is an important regulator of biological processes in cancer cells. However, the roles and relationship of CSN5 and SCARA5 in hepatocellular carcinoma (HCC) remain unclear. METHODS We used RT-PCR, Western blot, and immunohistochemistry to measure CSN5 and SCARA5 expression in HCC tissues and corresponding non-tumor tissues. The CSN5 gene was overexpressed or silenced with lentiviral vectors in HCC cells. Cell proliferation was measured using CCK8 assay. And, the cell migration and invasion were analyzed by transwell assay. RESULTS We found that the expressions of CSN5 and SCARA5 are inversely correlated in HCC tissues, and CSN5 expression levels were negatively correlated with the levels of SCARA5 in various HCC cells. Furthermore, we found that high level of CSN5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis, but low level of SCARA5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis. Additionally, survival of patients with lower expression of CNS5 was significantly better than that of higher expression group, but the survival of patients with higher expression of SCARA5 was significantly better than that of lower expression group. Moreover, knockdown of CSN5 increased SCARA5 expression and inhibited the proliferation and metastasis of HCC cells in vitro and in vivo. Finally, we found that CSN5 regulated SCARA5 expression by modulating β-catenin. Mechanistically, our results indicate that CSN5 can decrease β-catenin ubiquitination to enhance the protein expression of SCARA5 in HCC cells. CONCLUSIONS Our data identified CSN5 as a critical oncoprotein involved in progression of HCC cells, which could serve as a potential therapeutic target in HCC patients.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Junwen Hu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.,Department of General Surgery, The Third Affiliated Hospital of Nanchang University, No. 128 Xiangshan North Road, Nanchang, 330008, Jiangxi Province, China
| | - Hua Pan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Dilai Luo
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Mingwen Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China
| | - Wei Xu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Min De Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
11
|
Wang X, Wang S, Li X, Jin S, Xiong F, Wang X. The critical role of EGF-β-catenin signaling in the epithelial-mesenchymal transition in human glioblastoma. Onco Targets Ther 2017; 10:2781-2789. [PMID: 28615958 PMCID: PMC5460645 DOI: 10.2147/ott.s138908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
To date, β-catenin has been reported to be implicated in mediating the epithelial-mesenchymal transition (EMT) in a variety of human cancers, which can be triggered by EGF. However, the mechanisms underlying EGF-β-catenin pathway-induced EMT of glioblastoma multiforme (GBM) have not been reported previously. In the present study, immunohistochemistry, reverse transcription polymerase chain reaction, and Western blot were applied to investigate the effect of EGF-β-catenin pathway on EMT of GBM. Here, we identified that β-catenin mRNA and protein levels were up-regulated in GBM tissues and four kinds of glioblastoma cell lines, including T98G, A172, U87, and U251 cells, compared with normal brain tissue and astrocytes. In U87 cell line, inhibition of β-catenin by siRNA suppressed EGF-induced proliferation, migration, invasiveness, and the expression of EMT activators (Snail and Slug). In addition, the expression of epithelial markers (E-cadherin) was up-regulated and the expression of mesenchymal markers (N-cadherin and MMP9) was down-regulated. Finally, inhibitor of PI3K/Akt signaling pathways inactivated the EGF-β-catenin-induced EMT. In conclusion, β-catenin-EMT pathway induced by EGF is important for GBM progression by the PI3K/Akt pathways. Inhibition of β-catenin leads to suppression of EGF pathway-induced EMT, which provides a new way to treat GBM patients.
Collapse
Affiliation(s)
- Xingqiang Wang
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao, China
| | - Shanshi Wang
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao, China
| | - Xiaolong Li
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao, China
| | - Shigang Jin
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao, China
| | - Feng Xiong
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao, China
| | - Xin Wang
- Department of Neurosurgery, People's Hospital of Rizhao, Jining Medical University, Rizhao, China
| |
Collapse
|
12
|
Zhu Y, Zhang X, Wang L, Ji Z, Xie M, Zhou X, Liu Z, Shi H, Yu R. Loss of SH3GL2 promotes the migration and invasion behaviours of glioblastoma cells through activating the STAT3/MMP2 signalling. J Cell Mol Med 2017; 21:2685-2694. [PMID: 28470949 PMCID: PMC5661104 DOI: 10.1111/jcmm.13184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
SH3GL2 (Src homology 3 (SH3) domain GRB2‐like 2) is mainly expressed in the central nervous system and regarded as a tumour suppressor in human glioma. However, the molecular mechanism of the SH3GL2 protein involved in malignant behaviours of human glioma has not been elucidated. In this study, we tried to investigate the role of SH3GL2 in glioma cell migration and invasion and explore its underlined molecular mechanism. Firstly, we discovered that the protein level of SH3GL2 was widely decreased in the human glioma patients, especially in high‐grade glioma tissues. Then, we determined the role of SH3GL2 in migration and invasion of glioma cells upon SH3GL2 knocking down and overexpressing. It was showed that knocking down of SH3GL2 promoted the migration and invasion of glioma cells, whereas overexpression of SH3GL2 inhibited them. Further study on molecular mechanism disclosed that silencing of SH3GL2 obviously activated the STAT3 (signal transducer and activator of transcription 3) signalling thereby promoting the expression and secretion of MMP2. On the contrary, overexpression of SH3GL2 had opposite effect. Taken together, the above results suggest that SH3GL2 suppresses migration and invasion behaviours of glioma cells through negatively regulating STAT3/MMP2 signalling and that loss of SH3GL2 may intensify the STAT3/MMP2 signalling thereby contributing to the migration and invasion of glioma cells.
Collapse
Affiliation(s)
- Yufu Zhu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiang Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Lei Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhe Ji
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,The Graduate School, Xuzhou Medical University, Xuzhou, China
| | - Manyi Xie
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xinyu Zhou
- The Graduate School, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiyi Liu
- The Graduate School, Xuzhou Medical University, Xuzhou, China.,Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hengliang Shi
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|