1
|
Zhang Y, Zhou X, Zhong Y, Chen X, Li Z, Li R, Qin P, Wang S, Yin J, Liu S, Jiang M, Yu Q, Hou Y, Liu S, Wu L. Pan-cancer scRNA-seq analysis reveals immunological and diagnostic significance of the peripheral blood mononuclear cells. Hum Mol Genet 2024; 33:342-354. [PMID: 37944069 DOI: 10.1093/hmg/ddad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023] Open
Abstract
Peripheral blood mononuclear cells (PBMCs) reflect systemic immune response during cancer progression. However, a comprehensive understanding of the composition and function of PBMCs in cancer patients is lacking, and the potential of these features to assist cancer diagnosis is also unclear. Here, the compositional and status differences between cancer patients and healthy donors in PBMCs were investigated by single-cell RNA sequencing (scRNA-seq), involving 262,025 PBMCs from 68 cancer samples and 14 healthy samples. We observed an enhanced activation and differentiation of most immune subsets in cancer patients, along with reduction of naïve T cells, expansion of macrophages, impairment of NK cells and myeloid cells, as well as tumor promotion and immunosuppression. Based on characteristics including differential cell type abundances and/or hub genes identified from weight gene co-expression network analysis (WGCNA) modules of each major cell type, we applied logistic regression to construct cancer diagnosis models. Furthermore, we found that the above models can distinguish cancer patients and healthy donors with high sensitivity. Our study provided new insights into using the features of PBMCs in non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Yuanhang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research, Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xiaorui Zhou
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yu Zhong
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Xi Chen
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Zeyu Li
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Rui Li
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Pengfei Qin
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shanshan Wang
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shang Liu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Miaomiao Jiang
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Qichao Yu
- College of Life Sciences, University of Chinese Academy of Sciences, Yuquan Road, Shijingshan District, Beijing 100049, China
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Yong Hou
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Shiping Liu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
| | - Liang Wu
- BGI Research , Beishan Industrial Zone, Yantian District, Shenzhen 518083, China
- JFL-BGI STOmics Center, Jinfeng Laboratory , Gaoteng Avenue, Jiulongpo District, Chongqing 401329, China
| |
Collapse
|
2
|
Lavrador JP, Reisz Z, Sibtain N, Rajwani K, Baig Mirza A, Vergani F, Gullan R, Bhangoo R, Ashkan K, Bleil C, Zebian B, Clark B, Laxton R, King A, Bodi I, Al-Saraj S. H3 G34-mutant high-grade gliomas: integrated clinical, imaging and pathological characterisation of a single-centre case series. Acta Neurochir (Wien) 2023; 165:1615-1633. [PMID: 36929449 DOI: 10.1007/s00701-023-05545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Diffuse hemispheric glioma, H3 G34-mutant, is a novel paediatric tumour type in the fifth edition of the WHO classification of CNS tumours associated with an invariably poor outcome. We present a comprehensive clinical, imaging and pathological review of this entity. METHODS Patients with confirmed H3 G34R-mutant high-grade glioma were included in a single-centre retrospective cohort study and examined for clinical, radiological and histo-molecular data. RESULTS Twelve patients were enrolled in the study - 7 males/5 females; the mean age was 17.5 years (10-57 years). Most patients presented with signs of raised intracranial pressure (8/12). The frontal lobe (60%) was the prevalent location, with a mixed cystic-nodular appearance (10/12) and presence of vascular flow voids coursing through/being encased by the mass (8/12), and all tumours showed cortical invasion. Nine patients had subtotal resection limited by functional margins, two patients underwent supra-total resection, and one patient had biopsy only. 5-ALA was administered to 6 patients, all of whom showed positive fluorescence. Histologically, the tumours showed a marked heterogeneity and aggressive spread along pre-existing brain structures and leptomeninges. In addition to the diagnostic H3 G34R/V mutation, pathogenic variants in TP53 and ATRX genes were found in most cases. Potential targetable mutations in PDGFRA and PIK3CA genes were detected in five cases. The MGMT promoter was highly methylated in half of the samples. Methylation profiling was a useful diagnostic tool and highlighted recurrent structural chromosome abnormalities, such as PDGFRA amplification, CDKN2A/B deletion, PTEN loss and various copy number changes in the cyclin D-CDK4/Rb pathway. Radiochemotherapy was the most common adjuvant treatment (9/12), and the average survival was 19.3 months. CONCLUSIONS H3 G34R-mutant hemispheric glioma is a distinct entity with characteristic imaging and pathological features. Genomic landscaping of individual tumours can offer an opportunity to adapt individual therapies and improve patient management.
Collapse
Affiliation(s)
- José Pedro Lavrador
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Zita Reisz
- Department of Clinical Neuropathology, King's College Hospital Foundation Trust, London, UK
| | - Naomi Sibtain
- Department of Neuroradiology, King's College Hospital Foundation Trust, London, UK
| | - Kapil Rajwani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Asfand Baig Mirza
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK.
| | - Francesco Vergani
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Richard Gullan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Ranjeev Bhangoo
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Keyoumars Ashkan
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Cristina Bleil
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Bassel Zebian
- Department of Neurosurgery, King's College Hospital Foundation Trust, London, UK
| | - Barnaby Clark
- Molecular Neuropathology, Synnovis at King's College Hospital Foundation Trust, London, UK
| | - Ross Laxton
- Department of Clinical Neuropathology, King's College Hospital Foundation Trust, London, UK
- Molecular Neuropathology, Synnovis at King's College Hospital Foundation Trust, London, UK
| | - Andrew King
- Department of Clinical Neuropathology, King's College Hospital Foundation Trust, London, UK
| | - Istvan Bodi
- Department of Clinical Neuropathology, King's College Hospital Foundation Trust, London, UK
| | - Safa Al-Saraj
- Department of Clinical Neuropathology, King's College Hospital Foundation Trust, London, UK
| |
Collapse
|
3
|
Di Nunno V, Franceschi E, Gatto L, Tosoni A, Bartolini S, Brandes AA. How to treat histone 3 altered gliomas: molecular landscape and therapeutic developments. Expert Rev Clin Pharmacol 2023; 16:17-26. [PMID: 36576307 DOI: 10.1080/17512433.2023.2163385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Diffuse midline gliomas (DMG) and diffuse hemispheric glioma (DHG) are both rare tumors characterized and recognized for specific alterations of histone 3 including H3K27 (DMG) and H3G34 (DHG). Despite these tumors arising from alterations of the same gene their clinical, radiological, and molecular behaviors strongly diverge, requiring a personalized therapeutic approach. AREAS COVERED We performed a review on Medline/PudMed aiming to search papers relative to prospective trials, retrospective studies, case series, and case reports of interest in order to investigate current knowledge toward the main clinical and molecular characteristics, radiology, and diagnosis, loco-regional and systemic treatments of these tumors. Moreover, we also evaluated the novel treatments under investigation. EXPERT OPINION Thanks to an increased knowledge of the genomic landscape of these rare tumors, there are novels promising therapeutic targets for these malignancies. However, the majority of available trials allowed enrollment only in DMG, while few studies are focused on or allow the inclusion of DHG patients.
Collapse
Affiliation(s)
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Lidia Gatto
- Department of Oncology, AUSL Bologna, Bologna, Italy
| | - Alicia Tosoni
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Stefania Bartolini
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| | - Alba Ariela Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Italy
| |
Collapse
|
4
|
Da-Veiga MA, Rogister B, Lombard A, Neirinckx V, Piette C. Glioma Stem Cells in Pediatric High-Grade Gliomas: From Current Knowledge to Future Perspectives. Cancers (Basel) 2022; 14:cancers14092296. [PMID: 35565425 PMCID: PMC9099564 DOI: 10.3390/cancers14092296] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary Pediatric high-grade glioma (pHGG) has a dismal prognosis in which the younger the patient, the more restricted the treatments are, in regard to the incurred risks. Current therapies destroy many tumor cells but fail to target the highly malignant glioma stem cells (GSCs) that adapt quickly to give rise to recurring, treatment-resistant cancers. Despite a lack of consensus around an efficient detection, GSCs are well described in adult brain tumors but remain poorly investigated in pediatric cases, mostly due to their rarity. An improved knowledge about GSC roles in pediatric tumors would provide a key leverage towards the elimination of this sub-population, based on targeted treatments. The aim of this review is to sum up the state of art about GSCs in pHGG. Abstract In children, high-grade gliomas (HGG) and diffuse midline gliomas (DMG) account for a high proportion of death due to cancer. Glioma stem cells (GSCs) are tumor cells in a specific state defined by a tumor-initiating capacity following serial transplantation, self-renewal, and an ability to recapitulate tumor heterogeneity. Their presence was demonstrated several decades ago in adult glioblastoma (GBM), and more recently in pediatric HGG and DMG. In adults, we and others have previously suggested that GSCs nest into the subventricular zone (SVZ), a neurogenic niche, where, among others, they find shelter from therapy. Both bench and bedside evidence strongly indicate a role for the GSCs and the SVZ in GBM progression, fostering the development of innovative targeting treatments. Such new therapeutic approaches are of particular interest in infants, in whom standard therapies are often limited due to the risk of late effects. The aim of this review is to describe current knowledge about GSCs in pediatric HGG and DMG, i.e., their characterization, the models that apply to their development and maintenance, the specific signaling pathways that may underlie their activity, and their specific interactions with neurogenic niches. Finally, we will discuss the clinical relevance of these observations and the therapeutic advantages of targeting the SVZ and/or the GSCs in infants.
Collapse
Affiliation(s)
- Marc-Antoine Da-Veiga
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
| | - Bernard Rogister
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Neurology, CHU of Liège, 4000 Liège, Belgium
| | - Arnaud Lombard
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Neurosurgery, CHU of Liège, 4000 Liège, Belgium
| | - Virginie Neirinckx
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
| | - Caroline Piette
- Laboratory of Nervous System Disorders and Therapy, GIGA Institute, University of Liège, 4000 Liège, Belgium; (M.-A.D.-V.); (B.R.); (A.L.); (V.N.)
- Department of Pediatrics, Division of Hematology-Oncology, CHU Liège, 4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
5
|
Chia N, Wong A, Teo K, Tan AP, Vellayappan BA, Yeo TT, Oh SY, Tan CL. H3K27M-mutant, hemispheric diffuse glioma in an adult patient with prolonged survival. Neurooncol Adv 2021; 3:vdab135. [PMID: 34647024 PMCID: PMC8500686 DOI: 10.1093/noajnl/vdab135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Noel Chia
- Department of Pathology, National University Health System, Singapore
| | - Andrea Wong
- Department of Medical Oncology, National University Health System, Singapore
| | - Kejia Teo
- Division of Neurosurgery, Department of Surgery, National University Health System, Singapore
| | - Ai Peng Tan
- Department of Diagnostic Imaging, National University Health System, Singapore
| | | | - Tseng Tsai Yeo
- Division of Neurosurgery, Department of Surgery, National University Health System, Singapore
| | - Shoo Yi Oh
- Department of Pathology, National University Health System, Singapore
| | - Char Loo Tan
- Department of Pathology, National University Health System, Singapore
| |
Collapse
|
6
|
McCrea HJ, Ivanidze J, O'Connor A, Hersh EH, Boockvar JA, Gobin YP, Knopman J, Greenfield JP. Intraarterial delivery of bevacizumab and cetuximab utilizing blood-brain barrier disruption in children with high-grade glioma and diffuse intrinsic pontine glioma: results of a phase I trial. J Neurosurg Pediatr 2021; 28:371-379. [PMID: 34359048 DOI: 10.3171/2021.3.peds20738] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 03/09/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Delivery of drugs intraarterially to brain tumors has been demonstrated in adults. In this study, the authors initiated a phase I trial of superselective intraarterial cerebral infusion (SIACI) of bevacizumab and cetuximab in pediatric patients with refractory high-grade glioma (diffuse intrinsic pontine glioma [DIPG] and glioblastoma) to determine the safety and efficacy in this population. METHODS SIACI was used to deliver mannitol (12.5 ml of 20% mannitol) to disrupt the blood-brain barrier (BBB), followed by bevacizumab (15 mg/kg) and cetuximab (200 mg/m2) to target VEGF and EGFR, respectively. Patients with brainstem tumors had a balloon inflated in the distal basilar artery during mannitol infusion. RESULTS Thirteen patients were treated (10 with DIPG and 3 with high-grade glioma). Toxicities included grade I epistaxis (2 patients) and grade I rash (2 patients). There were no dose-limiting toxicities. Of the 10 symptomatic patients, 6 exhibited subjective improvement; 92% showed decreased enhancement on day 1 posttreatment MRI. Of 10 patients who underwent MRI at 1 month, 5 had progressive disease and 5 had stable disease on FLAIR, whereas contrast-enhanced scans demonstrated progressive disease in 4 patients, stable disease in 2, partial response in 2, and complete response in 1. The mean overall survival for the 10 DIPG patients was 519 days (17.3 months), with a mean posttreatment survival of 214.8 days (7.2 months). CONCLUSIONS SIACI of bevacizumab and cetuximab was well tolerated in all 13 children. The authors' results demonstrate safety of this method and warrant further study to determine efficacy. As molecular targets are clarified, novel means of bypassing the BBB, such as intraarterial therapy and convection-enhanced delivery, become more critical. Clinical trial registration no.: NCT01884740 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Heather J McCrea
- 1Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Jana Ivanidze
- 2Department of Radiology, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York
| | - Ashley O'Connor
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Eliza H Hersh
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - John A Boockvar
- 4Department of Neurosurgery, Lenox Hill Hospital/Hofstra Northwell School of Medicine, New York, New York
| | - Y Pierre Gobin
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Jared Knopman
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| | - Jeffrey P Greenfield
- 3Department of Neurosurgery, NewYork-Presbyterian Hospital-Weill Cornell Medicine, New York, New York; and
| |
Collapse
|
7
|
Banan R, Akbarian A, Samii M, Samii A, Bertalanffy H, Lehmann U, Hartmann C, Brüning R. Diffuse midline gliomas, H3 K27M-mutant are associated with less peritumoral edema and contrast enhancement in comparison to glioblastomas, H3 K27M-wildtype of midline structures. PLoS One 2021; 16:e0249647. [PMID: 34347774 PMCID: PMC8336828 DOI: 10.1371/journal.pone.0249647] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/23/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose The entity ‘diffuse midline glioma, H3 K27M-mutant (DMG)’ was introduced in the revised 4th edition of the 2016 WHO classification of brain tumors. However, there are only a few reports on magnetic resonance imaging (MRI) of these tumors. Thus, we conducted a retrospective survey focused on MRI features of DMG compared to midline glioblastomas H3 K27M-wildtype (mGBM-H3wt). Methods We identified 24 DMG cases and 19 mGBM-H3wt patients as controls. After being retrospectively evaluated for microscopic evidence of microvascular proliferations (MVP) and tumor necrosis by two experienced neuropathologists to identify the defining histological criteria of mGBM-H3wt, the samples were further analyzed by two experienced readers regarding imaging features such as shape, peritumoral edema and contrast enhancement. Results The DMG were found in the thalamus in 37.5% of cases (controls 63%), in the brainstem in 50% (vs. 32%) and spinal cord in 12.5% (vs. 5%). In MRI and considering MVP, DMG were found to be by far less likely to develop peritumoral edema (OR: 0.13; 95%-CL: 0.02–0.62) (p = 0.010). They, similarly, were associated with a significantly lower probability of developing strong contrast enhancement compared to mGBM-H3wt (OR: 0.10; 95%-CL: 0.02–0.47) (P = 0.003). Conclusion Despite having highly variable imaging features, DMG exhibited markedly less edema and lower contrast enhancement in MRI compared to mGBM-H3wt. Of these features, the enhancement level was associated with evidence of MVP.
Collapse
Affiliation(s)
- Rouzbeh Banan
- Department of Neuropathology, University of Heidelberg, Heidelberg, Germany
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Arash Akbarian
- Department of Neuroradiology, INI-Hannover, Hannover, Germany
| | - Majid Samii
- Department of Neurosurgery, INI-Hannover, Hannover, Germany
| | - Amir Samii
- Department of Neurosurgery, INI-Hannover, Hannover, Germany
| | | | - Ulrich Lehmann
- Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School, Hannover, Germany
| | - Roland Brüning
- Radiology and Neuroradiology, Asklepios Klinik Barmbek, Hamburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Wong QHW, Li KKW, Wang WW, Malta TM, Noushmehr H, Grabovska Y, Jones C, Chan AKY, Kwan JSH, Huang QJQ, Wong GCH, Li WC, Liu XZ, Chen H, Chan DTM, Mao Y, Zhang ZY, Shi ZF, Ng HK. Molecular landscape of IDH-mutant primary astrocytoma Grade IV/glioblastomas. Mod Pathol 2021; 34:1245-1260. [PMID: 33692446 DOI: 10.1038/s41379-021-00778-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/13/2022]
Abstract
WHO 2016 classified glioblastomas into IDH-mutant and IDH-wildtype with the former having a better prognosis but there was no study on IDH-mutant primary glioblastomas only, as previous series included secondary glioblastomas. We recruited a series of 67 IDH-mutant primary glioblastomas/astrocytoma IV without a prior low-grade astrocytoma and examined them using DNA-methylation profiling, targeted sequencing, RNA sequencing and TERT promoter sequencing, and correlated the molecular findings with clinical parameters. The median OS of 39.4 months of 64 cases and PFS of 25.9 months of 57 cases were better than the survival data of IDH-wildtype glioblastomas and IDH-mutant secondary glioblastomas retrieved from datasets. The molecular features often seen in glioblastomas, such as EGFR amplification, combined +7/-10, and TERT promoter mutations were only observed in 6/53 (11.3%), 4/53 (7.5%), and 2/67 (3.0%) cases, respectively, and gene fusions were found only in two cases. The main mechanism for telomere maintenance appeared to be alternative lengthening of telomeres as ATRX mutation was found in 34/53 (64.2%) cases. In t-SNE analyses of DNA-methylation profiles, with an exceptional of one case, a majority of our cases clustered to IDH-mutant high-grade astrocytoma subclass (40/53; 75.5%) and the rest to IDH-mutant astrocytoma subclass (12/53; 22.6%). The latter was also enriched with G-CIMP high cases (12/12; 100%). G-CIMP-high status and MGMT promoter methylation were independent good prognosticators for OS (p = 0.022 and p = 0.002, respectively) and TP53 mutation was an independent poor prognosticator (p = 0.013) when correlated with other clinical parameters. Homozygous deletion of CDKN2A/B was not correlated with OS (p = 0.197) and PFS (p = 0.278). PDGFRA amplification or mutation was found in 16/59 (27.1%) of cases and was correlated with G-CIMP-low status (p = 0.010). Aside from the three well-known pathways of pathogenesis in glioblastomas, chromatin modifying and mismatch repair pathways were common aberrations (88.7% and 20.8%, respectively), the former due to high frequency of ATRX involvement. We conclude that IDH-mutant primary glioblastomas have better prognosis than secondary glioblastomas and have major molecular differences from other commoner glioblastomas. G-CIMP subgroups, MGMT promoter methylation, and TP53 mutation are useful prognostic adjuncts.
Collapse
Affiliation(s)
- Queenie Hoi-Wing Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kay Ka-Wai Li
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wei-Wei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tathiane M Malta
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Yura Grabovska
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Chris Jones
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Aden Ka-Yin Chan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Johnny Sheung-Him Kwan
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Queenie Jun-Qi Huang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Gabriel Chun-Hei Wong
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Wen-Cai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Danny Tat-Ming Chan
- Division of Neurosurgery, Department of Surgery, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Zhi-Feng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ho-Keung Ng
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
9
|
Picart T, Barritault M, Poncet D, Berner LP, Izquierdo C, Tabouret E, Figarella-Branger D, Idbaïh A, Bielle F, Bourg V, Vandenbos FB, Moyal ECJ, Uro-Coste E, Guyotat J, Honnorat J, Gabut M, Meyronet D, Ducray F. Characteristics of diffuse hemispheric gliomas, H3 G34-mutant in adults. Neurooncol Adv 2021; 3:vdab061. [PMID: 34056608 PMCID: PMC8156974 DOI: 10.1093/noajnl/vdab061] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Diffuse hemispheric gliomas, H3 G34-mutant (DHG H3G34-mutant) constitute a distinct type of aggressive brain tumors. Although initially described in children, they can also affect adults. The aims of this study were to describe the characteristics of DHG H3G34-mutant in adults and to compare them to those of established types of adult WHO grade IV gliomas. Methods The characteristics of 17 adult DHG H3G34-mutant, 32 H3.3 K27M-mutant diffuse midline gliomas (DMG), 100 IDH-wildtype, and 36 IDH-mutant glioblastomas were retrospectively analyzed. Results Median age at diagnosis in adult DHG H3G34-mutant was 25 years (range: 19–33). All tumors were hemispheric. For 9 patients (56%), absent or faint contrast enhancement initially suggested another diagnosis than a high-grade glioma, and diffusion-weighted imaging seemed retrospectively more helpful to suspect an aggressive tumor than MR-spectroscopy and perfusion MRI. All cases were IDH-wildtype. Most cases were immunonegative for ATRX (93%) and Olig2 (100%) and exhibited MGMT promoter methylation (82%). The clinical and radiological presentations of adult DHG H3G34-mutant were different from those of established types of adult grade IV gliomas. Median overall survival of adult DHG H3G34-mutant was 12.4 months compared to 19.6 months (P = .56), 11.7 months (P = .45), and 50.5 months (P = .006) in H3.3 K27M-mutant DMG, IDH-wildtype, and IDH-mutant glioblastomas, respectively. Conclusions Adult DHG H3G34-mutant are associated with distinct characteristics compared to those of established types of adult WHO grade IV gliomas. This study supports considering these tumors as a new type of WHO grade IV glioma in future classifications.
Collapse
Affiliation(s)
- Thiébaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France
| | - Marc Barritault
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France.,Department of Molecular Biology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - Delphine Poncet
- University Claude Bernard Lyon I, Villeurbanne, France.,Department of Molecular Biology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France.,INSERM 1052, CNRS 5286, Signaling, metabolism and tumor progression Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon Cedex 08, France
| | - Lise-Prune Berner
- Department of Neuroradiology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Cristina Izquierdo
- Department of Neurooncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Department of Neuroscience Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, BarcelonaSpain
| | - Emeline Tabouret
- Department of Neurooncology, AP-HM, Hôpital de la Timone, Marseille, France.,Aix-Marseille University, CNRS UMR 7051, Institut de Neurophysiopathologie, Marseille, France
| | - Dominique Figarella-Branger
- Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d'Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Ahmed Idbaïh
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Franck Bielle
- Department of Neuropathology, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France.,Sorbonne University, Inserm U1127, CNRS, UMR 7225, Université Paris 06 4 Place Jussieu, Paris, France
| | | | - Fanny Burel Vandenbos
- Department of Neuropathology, Hôpital Pasteur, Nice, France.,Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Elizabeth Cohen-Jonathan Moyal
- Department of Radiation Oncology, Institut Claudius Regaud/Institut Universitaire du Cancer de Toulouse - Oncopôle, Toulouse, France.,Centre de Recherches contre le Cancer de Toulouse, INSERM U1037, Toulouse, France
| | - Emmanelle Uro-Coste
- Centre de Recherches contre le Cancer de Toulouse, INSERM U1037, Toulouse, France.,Department of Pathology, CHU Toulouse, Institut Universitaire du Cancer-Oncopole, Toulouse, France
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| | - Jérôme Honnorat
- University Claude Bernard Lyon I, Villeurbanne, France.,Department of Neurooncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France.,Institut NeuroMyoGène - Equipe Synaptopathies et autoanticorps, INSERM U1217 / UMR CNRS 5310, Lyon, France
| | - Mathieu Gabut
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France
| | - David Meyronet
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France.,Department of Pathology and Neuropathology, Groupe Hospitalier Est, Hospices Civils de Lyon, Bron, France
| | - François Ducray
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, Lyon, France.,University Claude Bernard Lyon I, Villeurbanne, France.,Department of Neurooncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Bron, France
| |
Collapse
|
10
|
Minasi S, Baldi C, Gianno F, Antonelli M, Buccoliero AM, Pietsch T, Massimino M, Buttarelli FR. Alternative lengthening of telomeres in molecular subgroups of paediatric high-grade glioma. Childs Nerv Syst 2021; 37:809-818. [PMID: 33128602 PMCID: PMC7875853 DOI: 10.1007/s00381-020-04933-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/16/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE The maintenance of telomere length prevents cancer cell senescence and occurs via two mutually exclusive mechanisms: (a) reactivation of telomerase expression and (b) activation of alternative lengthening of telomeres (ALT). ALT is frequently related to alterations on ATRX, a chromatin-remodelling protein. Recent data have identified different molecular subgroups of paediatric high-grade glioma (pHGG) with mutations of H3F3A, TERTp and ATRX; however, differences in telomere length among these molecular subgroups were not thoroughly examined. METHODS We investigated which genetic alterations trigger the ALT mechanism in 52 IDH-wildtype, 1p/19q-wildtype pHGG. Samples were analysed for telomere length using Tel-FISH. ATRX nuclear loss of expression was assessed by IHC, H3F3A and TERTp mutations by DNA sequencing, and TERTp methylation by MS-PCR. RESULTS Mutant H3.3 was found in 21 cases (40.3%): 19.2% with K27M mutation and 21.1% with G34R mutation. All H3.3G34R-mutated cases showed the ALT phenotype (100%); on the opposite, only 40% of the H3.3K27M-mutated showed ALT activation. ATRX nuclear loss was seen in 16 cases (30.7%), associated sometimes with the G34R mutation, and never with the K27M mutation. ATRX nuclear loss was always related to telomere elongation. TERTp C250T mutations were rare (5.4%) and were not associated with high intensity Tel-FISH signals, as TERTp hyper-methylation detected in 21% of the cases. H3.3/ATRX/TERTp-wildtype pHGG revealed all basal levels of telomere length. CONCLUSION Our results show a strong association between H3.3 mutations and ALT, and highlight the different telomeric profiles in histone-defined subgroups: H3.3-G34R mutants always trigger ALT to maintain telomere length, irrespective of ATRX status, whereas only some H3.3-K27M tumours activate ALT. These findings suggest that acquiring the gly34 mutation on H3.3 might suffice to trigger the ALT mechanism.
Collapse
Affiliation(s)
- Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Baldi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Francesca Gianno
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumour Reference Centre, University of Bonn Medical Centre, Bonn, Germany
| | - Maura Massimino
- Paediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Francesca Romana Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy.
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
11
|
Beyond guidelines: analysis of current practice patterns of AANS/CNS tumor neurosurgeons. J Neurooncol 2021; 151:361-366. [PMID: 33611703 DOI: 10.1007/s11060-020-03389-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/02/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Evidence-based medicine guidelines are increasingly published and sanctioned by organized neurosurgery. However, implementation, interpretation, and use of clinical guidelines may vary substantially on a regional, national and international basis. Survey research can help bridge the gap by providing a snapshot of neurosurgeon attitudes, knowledge, and practices. The American Association of Neurological Surgeons/Congress of Neurological Surgeons (AANS/CNS) Section on Tumors formed a Survey Committee to formalize the process by which surveys are submitted and reviewed before distribution to our membership. The goal of this committee is to provide peer-review so that collected information will be scientifically robust and useful to the neurosurgical community. METHODS Surveys submitted to the AANS/CNS tumor section between 2015 and 2019 were reviewed and metrics such as response rate and publication status assessed. RESULTS Six surveys were submitted to the Survey Committee of the AANS/CNS section on tumors between 2015 and 2019. Four have been circulated to section members, of which three have been published. Response rate has averaged 19% (range 16-23%), a majority of respondents (mean 70%) practice in academic settings. CONCLUSIONS The AANS/CNS Section on Tumors Survey Committee has and continues to help promote and improve the practice of surveying our community to answer important questions that can advance future training, research, and practice. There remains significant room for improvement in response rates, but ongoing tumor section efforts to increase member engagement will likely improve these numbers.
Collapse
|
12
|
Thust S, Micallef C, Okuchi S, Brandner S, Kumar A, Mankad K, Wastling S, Mancini L, Jäger HR, Shankar A. Imaging characteristics of H3 K27M histone-mutant diffuse midline glioma in teenagers and adults. Quant Imaging Med Surg 2021; 11:43-56. [PMID: 33392010 DOI: 10.21037/qims-19-954] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background To assess anatomical and quantitative diffusion-weighted MR imaging features in a recently classified lethal neoplasm, H3 K27M histone-mutant diffuse midline glioma [World Health Organization (WHO) IV]. Methods Fifteen untreated gliomas in teenagers and adults (median age 19, range, 14-64) with confirmed H3 K27M histone-mutant genotype were analysed at a national referral centre. Morphological characteristics including tumour epicentre(s), T2/FLAIR and Gadolinium enhancement patterns, calcification, haemorrhage and cyst formation were recorded. Multiple apparent diffusion coefficient (ADCmin, ADCmean) regions of interest were sited in solid tumour and normal appearing white matter (ADCNAWM) using post-processing software (Olea Sphere v2.3, Olea Medical). ADC histogram data (2nd, 5th, 10th percentile, median, mean, kurtosis, skewness) were calculated from volumetric tumour segmentations and tested against the regions of interest (ROI) data (Wilcoxon signed rank test). Results The median interval from imaging to tissue diagnosis was 9 (range, 0-74) days. The structural MR imaging findings varied between individuals and within tumours, often featuring signal heterogeneity on all MR sequences. All gliomas demonstrated contact with the brain midline, and 67% exhibited rim-enhancing necrosis. The mean ROI ADCmin value was 0.84 (±0.15 standard deviation, SD) ×10-3 mm2/s. In the largest tumour cross-section (excluding necrosis), an average ADCmean value of 1.12 (±0.25)×10-3 mm2/s was observed. The mean ADCmin/NAWM ratio was 1.097 (±0.149), and the mean ADCmean/NAWM ratio measured 1.466 (±0.299). With the exception of the 2nd centile, no statistical difference was observed between the regional and histogram derived ADC results. Conclusions H3 K27M-mutant gliomas demonstrate variable morphology and diffusivity, commonly featuring moderately low ADC values in solid tumour. Regional ADC measurements appeared representative of volumetric histogram data in this study.
Collapse
Affiliation(s)
- Stefanie Thust
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Caroline Micallef
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sachi Okuchi
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Atul Kumar
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology and Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Kshitij Mankad
- Department of Radiology, Great Ormond Street Hospital for Children, London, UK
| | - Stephen Wastling
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laura Mancini
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Hans Rolf Jäger
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, London, UK.,Lysholm Department of Neuroradiology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ananth Shankar
- Teenage and Young Persons' Cancer Unit, Department of Paediatric Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
13
|
da Silva GG, Morais KS, Arcanjo DS, de Oliveira DM. Clinical Relevance of Alternative Lengthening of Telomeres in Cancer. Curr Top Med Chem 2020; 20:485-497. [PMID: 31924155 DOI: 10.2174/1568026620666200110112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/22/2022]
Abstract
The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different - sometimes opposite - outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.
Collapse
Affiliation(s)
- Guilherme G da Silva
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Karollyne S Morais
- Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| | - Daniel S Arcanjo
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil
| | - Diêgo M de Oliveira
- Department of Biological Basis of Health Sciences, University of Brasilia, Ceilandia Campus, Federal District, Brazil.,Laboratory of Molecular Pathology of Cancer, University of Brasilia, Federal District, Brazil
| |
Collapse
|
14
|
Stasik S, Juratli TA, Petzold A, Richter S, Zolal A, Schackert G, Dahl A, Krex D, Thiede C. Exome sequencing identifies frequent genomic loss of TET1 in IDH-wild-type glioblastoma. Neoplasia 2020; 22:800-808. [PMID: 33142244 PMCID: PMC7642757 DOI: 10.1016/j.neo.2020.10.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is the most common and malignant brain tumor in adults. Genomic and epigenomic alterations of multiple cancer-driving genes are frequent in GBM. To identify molecular alterations associated with epigenetic aberrations, we performed whole exome sequencing-based analysis of DNA copy number variations in 55 adult patients with IDH-wild-type GBM. Beside mutations in common GBM driver genes such as TERTp (76%), TP53 (22%) and PTEN (20%), 67% of patients were affected by amplifications of genes associated with RTK/Rb/p53 cell signaling, including EGFR (45%), CDK4 (13%), and MDM2/4 (both 7%). The minimal deleted region at chromosome 10 was detected at the DNA demethylase TET1 (93%), mainly due to a loss-of-heterozygosity of complete chromosome 10 (53%) or by a mono-allelic microdeletion at 10q21.3 (7%). In addition, bi-allelic TET1 deletions, detected in 18 patients (33%), frequently co-occurred with EGFR amplification and were associated with low levels of TET1 mRNA expression, pointing at loss of TET1 activity. Bi-allelic TET1 loss was not associated with global concentrations of 5-hydroxymethylcytosine, indicating a site-specific effect of TET1 for DNA (de)methylation. Focal amplification of EGFR positively correlated with overall mutational burden, tumor size, and poor long-term survival. Bi-allelic TET1 loss was not an independent prognostic factor, but significantly associated with poor survival in patients with concomitant EGFR amplification. Rates of genomic TET1 deletion were significantly lower in a cohort of IDH1-mutated patients. Despite the relevance of TET1 for DNA demethylation and as potential therapeutic target, a frequent genomic loss of TET1 has not previously been reported in GBM.
Collapse
Affiliation(s)
- Sebastian Stasik
- Department of Medicine I, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Petzold
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Sven Richter
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Amir Zolal
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Department of Spine Surgery and Neurotraumatology, SRH Wald-Klinikum Gera, Gera, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andreas Dahl
- DRESDEN-Concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Thiede
- Department of Medicine I, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
15
|
Yang X, Brat D, Li J, Wang X, Tong L. A contemporary molecular view of diffuse gliomas with implications for diagnosis. GLIOMA 2020. [DOI: 10.4103/glioma.glioma_11_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Wood MD, Halfpenny AM, Moore SR. Applications of molecular neuro-oncology - a review of diffuse glioma integrated diagnosis and emerging molecular entities. Diagn Pathol 2019; 14:29. [PMID: 30967140 PMCID: PMC6457044 DOI: 10.1186/s13000-019-0802-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/12/2019] [Indexed: 11/10/2022] Open
Abstract
Insights into the molecular underpinnings of primary central nervous system tumors have radically changed the approach to tumor diagnosis and classification. Diagnostic emphasis has shifted from the morphology of a tumor under the microscope to an integrated approach based on morphologic and molecular features, including gene mutations, chromosomal copy number alterations, and gene rearrangements. In 2016, the World Health Organization provided guidelines for making an integrated diagnosis that incorporates both morphologic and molecular features in a subset of brain tumors. The integrated diagnosis now applies to infiltrating gliomas, a category that includes diffusely infiltrating astrocytoma grades II, III, and IV, and oligodendroglioma, grades II and III, thereby encompassing the most common primary intra-axial central nervous system tumors. Other neoplasms such as medulloblastoma, embryonal tumor with multilayered rosettes, certain supratentorial ependymomas, and atypical teratoid/rhabdoid tumor are also eligible for integrated diagnosis, which can sometimes be aided by characteristic immunohistochemical markers. Since 2016, advances in molecular neuro-oncology have resulted in periodic updates and clarifications to the integrated diagnostic approach. These advances reflect expanding knowledge on the molecular pathology of brain tumors, but raise a challenge in rapidly incorporating new molecular findings into diagnostic practice. This review provides a background on the molecular characteristics of primary brain tumors, emphasizing the molecular basis for classification of infiltrating gliomas, the most common entities that are eligible for an integrated diagnosis. We then discuss entities within the diffuse gliomas that do not receive an integrated diagnosis by WHO 2016 criteria, but have distinctive molecular features that are important to recognize because their clinical behavior can influence clinical management and prognosis. Particular attention is given to the histone H3 G34R/G34V mutant astrocytomas, an entity to consider when faced with an infiltrating glioma in the cerebral hemisphere of children and young adults, and to the group of histologically lower grade diffuse astrocytic gliomas with molecular features of glioblastoma, an important category of tumors to recognize due to their aggressive clinical behavior.
Collapse
Affiliation(s)
- Matthew D Wood
- OHSU Department of Pathology, Division of Anatomic Pathology, Section of Neuropathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97213, USA.
| | - Aaron M Halfpenny
- OHSU Department of Pathology, Division of Anatomic Pathology, Section of Neuropathology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, L-113, Portland, OR, 97213, USA
| | - Stephen R Moore
- Knight Diagnostic Laboratories and Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
17
|
Konovalov NA, Asyutin DS, Shayhaev EG, Kaprovoy SV, Timonin SY. Molecular Biomarkers of Brain and Spinal Cord Astrocytomas. Acta Naturae 2019; 11:17-27. [PMID: 31413876 PMCID: PMC6643348 DOI: 10.32607/20758251-2019-11-2-17-27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/24/2022] Open
Abstract
Spinal cord astrocytomas are rare diseases of the central nervous system. The localization of these tumors and their infiltrative growth complicate their surgical resection, increase the risk of postoperative complications, and require more careful use of radio- and chemotherapy. The information on the genetic mutations associated with the onset and development of astrocytomas provides a more accurate neoplasm diagnosis and classification. In some cases, it also allows one to determine the optimal methods for treating the neoplasm, as well as to predict the treatment outcomes and the risks of relapse. To date, a number of molecular markers that are associated with brain astrocytomas and possess prognostic value have been identified and described. Due to the significantly lower incidence of spinal cord astrocytomas, the data on similar markers are much more sparse and are presented with a lesser degree of systematization. However, due to the retrospective studies of clinical material that have been actively conducted abroad in recent years, the formation of statistically significant genetic landscapes for various types of tumors, including intradural spinal cord tumors, has begun. In this regard, the purpose of this review is to analyze and systematize the information on the most significant genetic mutations associated with various types of astrocytomas, as well as discuss the prospects for using the corresponding molecular markers for diagnostic and prognostic purposes.
Collapse
Affiliation(s)
- N. A. Konovalov
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - D. S. Asyutin
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - E. G. Shayhaev
- FGBU Russian Research Center for X-ray Radiology of the Ministry of Health of the Russian Federation Profsouznaya Str. 86, Moscow, 117485, Russia
| | - S. V. Kaprovoy
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| | - S. Yu. Timonin
- National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation Acad. N.N. Burdenko, 4th Tverskaya-Yamskaya Str. 16, Moscow, 125047, Russia
| |
Collapse
|
18
|
Minasi S, Baldi C, Pietsch T, Donofrio V, Pollo B, Antonelli M, Massimino M, Giangaspero F, Buttarelli FR. Telomere elongation via alternative lengthening of telomeres (ALT) and telomerase activation in primary metastatic medulloblastoma of childhood. J Neurooncol 2019; 142:435-444. [PMID: 30830680 DOI: 10.1007/s11060-019-03127-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/14/2019] [Indexed: 01/06/2023]
Abstract
PURPOSE Elongation of telomeres is necessary for tumor cell immortalization and senescence escape; neoplastic cells use to alternative pathways to elongate telomeres: telomerase reactivation or a telomerase-independent mechanism termed alternative lengthening of telomeres (ALT). Telomerase and ALT pathway has been explored in adult and pediatric gliomas and medulloblastomas (MDBs); however, these mechanisms were not previously investigated in MDBs metastatic at the onset. Therefore, we analyzed the activation of telomerase and ALT pathway in a homogenous cohort of 43 pediatric metastatic medulloblastomas, to investigate whether telomere elongation could play a role in the biology of metastatic MDB. METHODS We evaluated telomeres length via telomere-specific fluorescence in situ hybridization (Telo-FISH); we assessed nuclear expression of ATRX by immunohistochemistry (IHC). H3F3A and TERT promoter mutations were analyzed by pyrosequencing, while UTSS methylation status was analyzed via methylation-specific-PCR (MS-PCR). RESULTS H3F3A mutations were absent in all MDBs, 30% of samples showed ATRX nuclear loss, 18.2% of cases were characterized by TERT promoter mutations, while 60.9% harboured TERT promoter hyper-methylation in the UTSS region. Elongation of telomeres was found in 42.8% of cases. Metastatic MDBs control telomere elongation via telomerase activation (10.7%), induced by TERT promoter mutations in association with UTSS hyper-methylation, and ALT mechanism (32.1%), triggered by ATRX inactivation. Among non-metastatic MDBs, only 5.9% (1/17) showed ATRX nuclear loss with activation of ALT. CONCLUSIONS Our metastatic cases frequently activate ALT pathway, suggesting that it is a common process for senescence escape in primary metastatic medulloblastomas. Furthermore, the activation of mechanisms for telomere elongation is not restricted to certain molecular subgroups in this high-risk group of MDBs.
Collapse
Affiliation(s)
- Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Caterina Baldi
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Torsten Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Bianca Pollo
- Neuropathology Unit, IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Maura Massimino
- Pediatric Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
19
|
Stögbauer L, Stummer W, Senner V, Brokinkel B. Telomerase activity, TERT expression, hTERT promoter alterations, and alternative lengthening of the telomeres (ALT) in meningiomas – a systematic review. Neurosurg Rev 2019; 43:903-910. [DOI: 10.1007/s10143-019-01087-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 10/27/2022]
|
20
|
Cacchione S, Biroccio A, Rizzo A. Emerging roles of telomeric chromatin alterations in cancer. J Exp Clin Cancer Res 2019; 38:21. [PMID: 30654820 PMCID: PMC6337846 DOI: 10.1186/s13046-019-1030-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022] Open
Abstract
Telomeres, the nucleoprotein structures that cap the ends of eukaryotic chromosomes, play important and multiple roles in tumorigenesis. Functional telomeres need the establishment of a protective chromatin structure based on the interplay between the specific complex named shelterin and a tight nucleosomal organization. Telomere shortening in duplicating somatic cells leads eventually to the destabilization of the telomere capping structure and to the activation of a DNA damage response (DDR) signaling. The final outcome of this process is cell replicative senescence, which constitute a protective barrier against unlimited proliferation. Cells that can bypass senescence checkpoint continue to divide until a second replicative checkpoint, crisis, characterized by chromosome fusions and rearrangements leading to massive cell death by apoptosis. During crisis telomere dysfunctions can either inhibit cell replication or favor tumorigenesis by the accumulation of chromosomal rearrangements and neoplastic mutations. The acquirement of a telomere maintenance mechanism allows fixing the aberrant phenotype, and gives the neoplastic cell unlimited replicative potential, one of the main hallmarks of cancer.Despite the crucial role that telomeres play in cancer development, little is known about the epigenetic alterations of telomeric chromatin that affect telomere protection and are associated with tumorigenesis. Here we discuss the current knowledge on the role of telomeric chromatin in neoplastic transformation, with a particular focus on H3.3 mutations in alternative lengthening of telomeres (ALT) cancers and sirtuin deacetylases dysfunctions.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Roma, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Annamaria Biroccio
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy
| | - Angela Rizzo
- Oncogenomic and Epigenetic Unit, IRCCS-Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
21
|
Abstract
Recent advances in molecular pathology have reshaped the practice of brain tumor diagnostics. The classification of gliomas has been restructured with the discovery of isocitrate dehydrogenase (IDH) 1/2 mutations in the vast majority of lower grade infiltrating gliomas and secondary glioblastomas (GBM), with IDH-mutant astrocytomas further characterized by TP53 and ATRX mutations. Whole-arm 1p/19q codeletion in conjunction with IDH mutations now define oligodendrogliomas, which are also enriched for CIC, FUBP1, PI3K, NOTCH1, and TERT-p mutations. IDH-wild-type (wt) infiltrating astrocytomas are mostly primary GBMs and are characterized by EGFR, PTEN, TP53, NF1, RB1, PDGFRA, and CDKN2A/B alterations, TERT-p mutations, and characteristic copy number alterations including gains of chromosome 7 and losses of 10. Other clinically and genetically distinct infiltrating astrocytomas include the aggressive H3K27M-mutant midline gliomas, and smaller subsets that occur in the setting of NF1 or have BRAF V600E mutations. Low-grade pediatric gliomas are both genetically and biologically distinct from their adult counterparts and often harbor a single driver event often involving BRAF, FGFR1, or MYB/MYBL1 genes. Large scale genomic and epigenomic analyses have identified distinct subgroups of ependymomas tightly linked to tumor location and clinical behavior. The diagnosis of embryonal neoplasms also integrates molecular testing: (I) 4 molecularly defined, biologically distinct subtypes of medulloblastomas are now recognized; (II) 3 histologic entities have now been reclassified under a diagnosis of "embryonal tumor with multilayered rosettes (ETMR), C19MC-altered"; and (III) atypical teratoid/rhabdoid tumors (AT/RT) now require SMARCB1 (INI1) or SMARCA4 (BRG1) alterations for their diagnosis. We discuss the practical use of contemporary biomarkers for an integrative diagnosis of central nervous system neoplasia.
Collapse
|
22
|
Barthel FP, Wesseling P, Verhaak RGW. Reconstructing the molecular life history of gliomas. Acta Neuropathol 2018; 135:649-670. [PMID: 29616301 PMCID: PMC5904231 DOI: 10.1007/s00401-018-1842-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 12/20/2022]
Abstract
At the time of their clinical manifestation, the heterogeneous group of adult and pediatric gliomas carries a wide range of diverse somatic genomic alterations, ranging from somatic single-nucleotide variants to structural chromosomal rearrangements. Somatic abnormalities may have functional consequences, such as a decrease, increase or change in mRNA transcripts, and cells pay a penalty for maintaining them. These abnormalities, therefore, must provide cells with a competitive advantage to become engrained into the glioma genome. Here, we propose a model of gliomagenesis consisting of the following five consecutive phases that glioma cells have traversed prior to clinical manifestation: (I) initial growth; (II) oncogene-induced senescence; (III) stressed growth; (IV) replicative senescence/crisis; (V) immortal growth. We have integrated the findings from a large number of studies in biology and (neuro)oncology and relate somatic alterations and other results discussed in these papers to each of these five phases. Understanding the story that each glioma tells at presentation may ultimately facilitate the design of novel, more effective therapeutic approaches.
Collapse
Affiliation(s)
- Floris P Barthel
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA.
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center/Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Princess Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Roel G W Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06030, USA
| |
Collapse
|
23
|
Abstract
PURPOSE OF REVIEW High-throughput genomic sequencing has identified alterations in the gene encoding human telomerase reverse transcriptase (TERT) as points of interest for elucidating the oncogenic mechanism of multiple different cancer types, including gliomas. In gliomas, the TERT promoter mutation (TPM) and resultant overexpression of TERT are observed mainly in the most aggressive (primary glioblastoma/grade IV astrocytoma) and the least aggressive (grade II oligodendroglioma) cases. This article reviews recent research on (1) the mechanism of TERT activation in glioma, (2) downstream consequences of TERT overexpression on glioma pathogenesis, and (3) targeting TPMs as a therapeutic strategy. RECENT FINDINGS New molecular classifications for gliomas include using TPMs, where the mutant group demonstrates the worst prognosis. Though a canonical function of TERT is established in regard to telomere maintenance, recent studies on non-canonical functions of TERT explore varied roles of telomerase in tumor progression and maintenance. Somatic alterations of the TERT promoter present a promising target for novel therapeutics development in primary glioma treatment.
Collapse
|
24
|
Bozkurt SU, Dagcinar A, Tanrikulu B, Comunoglu N, Meydan BC, Ozek M, Oz B. Significance of H3K27M mutation with specific histomorphological features and associated molecular alterations in pediatric high-grade glial tumors. Childs Nerv Syst 2018; 34:107-116. [PMID: 29063957 DOI: 10.1007/s00381-017-3633-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/16/2017] [Indexed: 01/07/2023]
Abstract
PURPOSE Pediatric high-grade gliomas (pHGGs) constitute almost 15% of all childhood brain tumors. Recurrent mutations such as H3K27M mutation in H3F3A and HIST1H3B genes encoding histone H3 and its variants were identified in approximately 30% of pediatric glioblastomas. This study aimed to ascertain the morphological and molecular characteristics of pHGGs with H3K27M mutation. METHODS In total, 61 cases of pHGGs (anaplastic astrocytoma, 12; glioblastomas, 49) from four university hospitals were studied. The histomorphological features were examined and immunohistochemistry was performed to evaluate the mutation status of H3K27M, ATRX, IDH1, BRAF V600E, and p53 genes. RESULTS The study comprised 25 females and 36 males (age range, 1-18 years) with a clinical follow-up of up to 108 months. From the total, 31 patients were positive for H3K27M mutation located in the midline, mostly in the pons and thalamus. H3K27M mutation was commonly associated with ATRX loss (32.3%) and p53 (74.2%) immunoreactivity with a co-expression rate of 25.8%. While IDH1 mutation was not detected in pHGGs with H3K27M mutation, BRAFV600E mutation was rarely observed. Among the various histomorphological features, increased number of mitosis, increased Ki-67 proliferation index, and palisading and geographical necrosis along with small cell patterns were significantly associated with the H3K27M wild-type tumors. Focal infarct-like necrosis and pilomyxoid morphology was significantly associated with these tumors. CONCLUSION H3K27M mutation occurs exclusively in pHGGs arising from the midline and presents with varied histomorphological features ranging from low-grade pilomyxoid astrocytoma to highly pleomorphic glioblastoma along with ATRX loss and p53 mutations.
Collapse
Affiliation(s)
- Süheyla Uyar Bozkurt
- Department of Pathology, Marmara University Training and Research Hospital, Fevzi Cakmak Mah. Mimar Sinan Cad. No: 41 Ust Kaynarca Pendik, Istanbul, Turkey.
| | - A Dagcinar
- Department of Neurosurgery, Marmara University, Istanbul, Turkey
| | - B Tanrikulu
- Department of Neurosurgery, Acibadem University, Istanbul, Turkey
| | - N Comunoglu
- Department of Pathology, Cerrahpasa Faculty, Istanbul University, Istanbul, Turkey
| | - B C Meydan
- Department of Pathology, Ondokuzmayis University, Samsun, Turkey
| | - M Ozek
- Department of Neurosurgery, Acibadem University, Istanbul, Turkey
| | - B Oz
- Department of Pathology, Cerrahpasa Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
25
|
Mutant RUNX1 and histone tales. Blood 2017; 130:2156-2157. [DOI: 10.1182/blood-2017-09-805382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
26
|
Wang XP, Shan C, Deng XL, Li LY, Ma W. Long non-coding RNA PAR5 inhibits the proliferation and progression of glioma through interaction with EZH2. Oncol Rep 2017; 38:3177-3186. [PMID: 29048683 DOI: 10.3892/or.2017.5986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 09/01/2017] [Indexed: 11/06/2022] Open
Abstract
Emerging evidence suggests that long non-coding RNAs (lncRNAs) may be involved in modulating various aspects of tumor biology and serve as potential therapeutic targets as well as novel biomarkers in the treatment of glioma. The present study investigated the role of lncRNA, Prader Willi/Angelman region RNA 5 (PAR5; also known as PWAR5), in glioma and its clinical significance in glioma cases. The expression levels of PAR5 were determined in clinical samples and U87, U251 cells using real-time reverse transcription quantitative polymerase chain reaction (qRT-PCR) analysis. The effects of PAR5 on cell proliferation, migration and invasion were determined using in vitro assays. RNA immunoprecipitation (RIP) and RNA pull-down assays, as well as the evauation of the expression of various oncogenes were carried out to reveal the underlying mechanisms. We found that PAR5 was significantly downregulated in glioma tissues and cell lines. Furthermore, PAR5 expression was negatively correlated with tumor size, World Health Organization (WHO) grade and Karnofsky performance score (KPS). Patients with low PAR5 expression in tumors had a worse overall survival compared to those with higher expression. Finally, in vitro restoration of PAR5 expression inhibited human glioma cell proliferation, invasion and migration by binding to EZH2 and regulating oncogene expression. This finding may provide a therapeutic approach for the future treatment of glioma.
Collapse
Affiliation(s)
- Xiang-Peng Wang
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Cai Shan
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Xing-Li Deng
- Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Li-Yan Li
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| | - Wei Ma
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650050, P.R. China
| |
Collapse
|
27
|
Hewer E, Prebil N, Berezowska S, Gutt-Will M, Schucht P, Dettmer MS, Vassella E. Diagnostic implications of TERT promoter mutation status in diffuse gliomas in a routine clinical setting. Virchows Arch 2017; 471:641-649. [PMID: 28823044 DOI: 10.1007/s00428-017-2216-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 07/21/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
IDH (isocitrate dehydrogenase) gene mutations are present in most diffuse low-grade gliomas and define the clinico-pathological core of the respective morphologically defined entities. Conversely, according to the 2016 WHO classification, the majority of glioblastomas belong to the IDH-wildtype category, which is defined by exclusion. TERT (telomerase reverse transcriptase gene) promoter mutations have been suggested as a molecular marker for primary glioblastomas. We analyzed molecular, histopathological, and clinical profiles of a series of 110 consecutive diffuse gliomas (WHO grades II-IV) diagnosed at our institution, in which TERT promoter mutation analysis had been performed as part of diagnostic work-up. A diagnostic algorithm based on IDH, TERT, ATRX, H3F3A, and 1p19q co-deletion status resulted in a consistent molecular classification with only 14 (13%) marker-negative tumors. TERT promoter mutations were present in 77% of IDH-wildtype tumors. The TERT/IDH-wildtype category was highly enriched for tumors with unconventional clinical or histological features. Molecular classes were associated with distinct rates of MGMT promoter methylation. We conclude that, in a routine diagnostic setting, TERT promoter mutations define a relatively homogeneous core group among IDH-wildtype diffuse gliomas that includes the majority of primary glioblastomas as well as their putative precursor lesions.
Collapse
Affiliation(s)
- Ekkehard Hewer
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Nadine Prebil
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| | - Sabina Berezowska
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| | - Marielena Gutt-Will
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Philippe Schucht
- Department of Neurosurgery, Inselspital, Bern University Hospital, University of Bern, 3010, Bern, Switzerland
| | - Matthias S Dettmer
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| | - Erik Vassella
- Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland
| |
Collapse
|
28
|
Naderlinger E, Holzmann K. Epigenetic Regulation of Telomere Maintenance for Therapeutic Interventions in Gliomas. Genes (Basel) 2017; 8:E145. [PMID: 28513547 PMCID: PMC5448019 DOI: 10.3390/genes8050145] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 02/07/2023] Open
Abstract
High-grade astrocytoma of WHO grade 4 termed glioblastoma multiforme (GBM) is a common human brain tumor with poor patient outcome. Astrocytoma demonstrates two known telomere maintenance mechanisms (TMMs) based on telomerase activity (TA) and on alternative lengthening of telomeres (ALT). ALT is associated with lower tumor grades and better outcome. In contrast to ALT, regulation of TA in tumors by direct mutation and epigenetic activation of the hTERT promoter is well established. Here, we summarize the genetic background of TMMs in non-malignant cells and in cancer, in addition to clinical and pathological features of gliomas. Furthermore, we present new evidence for epigenetic mechanisms (EMs) involved in regulation of ALT and TA with special emphasis on human diffuse gliomas as potential therapeutic drug targets. We discuss the role of TMM associated telomeric chromatin factors such as DNA and histone modifying enzymes and non-coding RNAs including microRNAs and long telomeric TERRA transcripts.
Collapse
Affiliation(s)
- Elisabeth Naderlinger
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| | - Klaus Holzmann
- Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, Vienna 1090, Austria.
| |
Collapse
|
29
|
Williams MJ, Singleton WGB, Lowis SP, Malik K, Kurian KM. Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma. Front Oncol 2017; 7:45. [PMID: 28401060 PMCID: PMC5368219 DOI: 10.3389/fonc.2017.00045] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Recent exciting work partly through The Cancer Genome Atlas has implicated epigenetic mechanisms including histone modifications in the development of both pediatric and adult high-grade glioma (HGG). Histone lysine methylation has emerged as an important player in regulating gene expression and chromatin function. Lysine (K) 27 (K27) is a critical residue in all seven histone 3 variants and the subject of posttranslational histone modifications, as it can be both methylated and acetylated. In pediatric HGG, two critical single-point mutations occur in the H3F3A gene encoding the regulatory histone variant H3.3. These mutations occur at lysine (K) 27 (K27M) and glycine (G) 34 (G34R/V), both of which are involved with key regulatory posttranscriptional modifications. Therefore, these mutations effect gene expression, cell differentiation, and telomere maintenance. In recent years, alterations in histone acetylation have provided novel opportunities to explore new pharmacological targeting, with histone deacetylase (HDAC) overexpression reported in high-grade, late-stage proliferative tumors. HDAC inhibitors have shown promising therapeutic potential in many malignancies. This review focuses on the epigenetic mechanisms propagating pediatric and adult HGGs, as well as summarizing the current advances in clinical trials using HDAC inhibitors.
Collapse
Affiliation(s)
- Maria J. Williams
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Will G. B. Singleton
- Functional Neurosurgery Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Stephen P. Lowis
- Department of Paediatric and Adolescent Oncology, Bristol Royal Hospital for Children, Bristol, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| |
Collapse
|