1
|
Yoel A, Adjumain S, Liang Y, Daniel P, Firestein R, Tsui V. Emerging and Biological Concepts in Pediatric High-Grade Gliomas. Cells 2024; 13:1492. [PMID: 39273062 PMCID: PMC11394548 DOI: 10.3390/cells13171492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Primary central nervous system tumors are the most frequent solid tumors in children, accounting for over 40% of all childhood brain tumor deaths, specifically high-grade gliomas. Compared with pediatric low-grade gliomas (pLGGs), pediatric high-grade gliomas (pHGGs) have an abysmal survival rate. The WHO CNS classification identifies four subtypes of pHGGs, including Grade 4 Diffuse midline glioma H3K27-altered, Grade 4 Diffuse hemispheric gliomas H3-G34-mutant, Grade 4 pediatric-type high-grade glioma H3-wildtype and IDH-wildtype, and infant-type hemispheric gliomas. In recent years, we have seen promising advancements in treatment strategies for pediatric high-grade gliomas, including immunotherapy, CAR-T cell therapy, and vaccine approaches, which are currently undergoing clinical trials. These therapies are underscored by the integration of molecular features that further stratify HGG subtypes. Herein, we will discuss the molecular features of pediatric high-grade gliomas and the evolving landscape for treating these challenging tumors.
Collapse
Affiliation(s)
- Abigail Yoel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Shazia Adjumain
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Yuqing Liang
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Vanessa Tsui
- Centre for Cancer Research, Hudson Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia
- Department of Molecular and Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Kerashvili N, Gutmann DH. The management of neurofibromatosis type 1 (NF1) in children and adolescents. Expert Rev Neurother 2024; 24:409-420. [PMID: 38406862 DOI: 10.1080/14737175.2024.2324117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 02/27/2024]
Abstract
INTRODUCTION Neurofibromatosis type 1 (NF1) is a rare neurogenetic disorder characterized by multiple organ system involvement and a predisposition to benign and malignant tumor development. With revised NF1 clinical criteria and the availability of germline genetic testing, there is now an opportunity to render an early diagnosis, expedite medical surveillance, and initiate treatment in a prompt and targeted manner. AREAS COVERED The authors review the spectrum of medical problems associated with NF1, focusing specifically on children and young adults. The age-dependent appearance of NF1-associated features is highlighted, and the currently accepted medical treatments are discussed. Additionally, future directions for optimizing the care of this unique population of children are outlined. EXPERT OPINION The appearance of NF1-related medical problems is age dependent, requiring surveillance for those features most likely to occur at any given age during childhood. As such, we advocate a life stage-focused screening approach beginning in infancy and continuing through the transition to adult care. With early detection, it becomes possible to promptly institute therapies and reduce patient morbidity. Importantly, with continued advancement in our understanding of disease pathogenesis, future improvements in the care of children with NF1 might incorporate improved risk assessments and more personalized molecularly targeted treatments.
Collapse
Affiliation(s)
- Nino Kerashvili
- Department of Neurology, University of Oklahoma Health Science Center, Oklahoma City, OK, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Lam K, Kamiya-Matsuoka C, Slopis JM, McCutcheon IE, Majd NK. Therapeutic Strategies for Gliomas Associated With Cancer Predisposition Syndromes. JCO Precis Oncol 2024; 8:e2300442. [PMID: 38394467 DOI: 10.1200/po.23.00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/25/2024] Open
Abstract
PURPOSE The purpose of this article was to provide an overview of syndromic gliomas. DESIGN The authors conducted a nonsystematic literature review. RESULTS Cancer predisposition syndromes (CPSs) are genetic conditions that increase one's risk for certain types of cancer compared with the general population. Syndromes that can predispose one to developing gliomas include neurofibromatosis, Li-Fraumeni syndrome, Lynch syndrome, and tuberous sclerosis complex. The standard treatment for sporadic glioma may involve resection, radiation therapy, and/or alkylating chemotherapy. However, DNA-damaging approaches, such as radiation and alkylating agents, may increase the risk of secondary malignancies and other complications in patients with CPSs. In some cases, depending on genetic aberrations, targeted therapies or immunotherapeutic approaches may be considered. Data on clinical characteristics, therapeutic strategies, and prognosis of syndromic gliomas remain limited. CONCLUSION In this review, we provide an overview of syndromic gliomas with a focus on management for patients with CPSs and the role of novel treatments that can be considered.
Collapse
Affiliation(s)
- Keng Lam
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | | | - John M Slopis
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| | - Ian E McCutcheon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer, Houston, TX
| | - Nazanin K Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer, Houston, TX
| |
Collapse
|
4
|
Dias SF, Richards O, Elliot M, Chumas P. Pediatric-Like Brain Tumors in Adults. Adv Tech Stand Neurosurg 2024; 50:147-183. [PMID: 38592530 DOI: 10.1007/978-3-031-53578-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Pediatric brain tumors are different to those found in adults in pathological type, anatomical site, molecular signature, and probable tumor drivers. Although these tumors usually occur in childhood, they also rarely present in adult patients, either as a de novo diagnosis or as a delayed recurrence of a pediatric tumor in the setting of a patient that has transitioned into adult services.Due to the rarity of pediatric-like tumors in adults, the literature on these tumor types in adults is often limited to small case series, and treatment decisions are often based on the management plans taken from pediatric studies. However, the biology of these tumors is often different from the same tumors found in children. Likewise, adult patients are often unable to tolerate the side effects of the aggressive treatments used in children-for which there is little or no evidence of efficacy in adults. In this chapter, we review the literature and summarize the clinical, pathological, molecular profile, and response to treatment for the following pediatric tumor types-medulloblastoma, ependymoma, craniopharyngioma, pilocytic astrocytoma, subependymal giant cell astrocytoma, germ cell tumors, choroid plexus tumors, midline glioma, and pleomorphic xanthoastrocytoma-with emphasis on the differences to the adult population.
Collapse
Affiliation(s)
- Sandra Fernandes Dias
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pediatric Neurosurgery, University Children's Hospital of Zurich - Eleonor Foundation, Zurich, Switzerland
| | - Oliver Richards
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Martin Elliot
- Department of Paediatric Oncology and Haematology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Paul Chumas
- Department of Neurosurgery, Leeds Teaching Hospitals NHS Trust, Leeds, UK.
| |
Collapse
|
5
|
Goetsch Weisman A, Weiss McQuaid S, Radtke HB, Stoll J, Brown B, Gomes A. Neurofibromatosis- and schwannomatosis-associated tumors: Approaches to genetic testing and counseling considerations. Am J Med Genet A 2023; 191:2467-2481. [PMID: 37485904 DOI: 10.1002/ajmg.a.63346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/26/2023] [Accepted: 06/24/2023] [Indexed: 07/25/2023]
Abstract
Neurofibromatosis (NF) and schwannomatosis (SWN) are genetic conditions characterized by the risk of developing nervous system tumors. Recently revised diagnostic criteria include the addition of genetic testing to confirm a pathogenic variant, as well as to detect the presence of mosaicism. Therefore, the use and interpretation of both germline and tumor-based testing have increasing importance in the diagnostic approach, treatment decisions, and risk stratification of these conditions. This focused review discusses approaches to genetic testing of NF- and SWN-related tumor types, which are somewhat rare and perhaps lesser known to non-specialized clinicians. These include gastrointestinal stromal tumors, breast cancer, plexiform neurofibromas with or without transformation to malignant peripheral nerve sheath tumors, gliomas, and schwannomas, and emphasizes the need for inclusion of genetic providers in patient care and appropriate pre- and post-test education, genetic counseling, and focused evaluation by a medical geneticist or other healthcare provider familiar with clinical manifestations of these disorders.
Collapse
Affiliation(s)
- Allison Goetsch Weisman
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shelly Weiss McQuaid
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Heather B Radtke
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- Children's Tumor Foundation, New York, New York, USA
| | | | - Bryce Brown
- Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alicia Gomes
- Medical Genomics Laboratory, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
6
|
Romo CG, Piotrowski AF, Campian JL, Diarte J, Rodriguez FJ, Bale TA, Dahiya S, Gutmann DH, Lucas CHG, Prichett L, Mellinghoff I, Blakeley JO. Clinical, histological, and molecular features of gliomas in adults with neurofibromatosis type 1. Neuro Oncol 2023; 25:1474-1486. [PMID: 36840626 PMCID: PMC10398805 DOI: 10.1093/neuonc/noad033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND People with NF1 have an increased prevalence of central nervous system malignancy. However, little is known about the clinical course or pathologic features of NF1-associated gliomas in adults, limiting clinical care and research. METHODS Adults (≥18 years) with NF1 and histologically confirmed non-optic pathway gliomas (non-OPGs) at Johns Hopkins Hospital, Memorial Sloan Kettering Cancer Center, and Washington University presenting between 1990 and 2020 were identified. Retrospective data were collated, and pathology was reviewed centrally. RESULTS Forty-five patients, comprising 23 females (51%), met eligibility criteria, with a median of age 37 (18-68 years) and performance status of 80% (30%-100%). Tissue was available for 35 patients. Diagnoses included infiltrating (low-grade) astrocytoma (9), glioblastoma (7), high-grade astrocytoma with piloid features (4), pilocytic astrocytoma (4), high-grade astrocytoma (3), WHO diagnosis not reached (4) and one each of gliosarcoma, ganglioglioma, embryonal tumor, and diffuse midline glioma. Seventy-one percent of tumors were midline and underwent biopsy only. All 27 tumors evaluated were IDH1-wild-type, independent of histology. In the 10 cases with molecular testing, the most common genetic variants were NF1, EGFR, ATRX, CDKN2A/B, TP53, TERT, and MSH2/3 mutation. While the treatments provided varied, the median overall survival was 24 months [2-267 months] across all ages, and 38.5 [18-109] months in individuals with grade 1-2 gliomas. CONCLUSIONS Non-OPGs in adults with NF1, including low-grade tumors, often have an aggressive clinical course, indicating a need to better understand the pathobiology of these NF1-associated gliomas.
Collapse
Affiliation(s)
- Carlos G Romo
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anna F Piotrowski
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jian L Campian
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jose Diarte
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Fausto J Rodriguez
- Department of Pathology, University of California Los Angeles, Los Angeles, California, USA
| | - Tejus A Bale
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sonika Dahiya
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - David H Gutmann
- Departments of Neurology and Pathology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura Prichett
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ingo Mellinghoff
- Departments of Neurology and Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
7
|
Carton C, Evans DG, Blanco I, Friedrich RE, Ferner RE, Farschtschi S, Salvador H, Azizi AA, Mautner V, Röhl C, Peltonen S, Stivaros S, Legius E, Oostenbrink R. ERN GENTURIS tumour surveillance guidelines for individuals with neurofibromatosis type 1. EClinicalMedicine 2023; 56:101818. [PMID: 36684394 PMCID: PMC9845795 DOI: 10.1016/j.eclinm.2022.101818] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a multisystem genetic disorder, predisposing development of benign and malignant tumours. Given the oncogenic potential, long-term surveillance is important in patients with NF1. Proposals for NF1 care and its specific manifestations have been developed, but lack integration within routine care. This guideline aims to assimilate available information on NF1 associated tumours (based on evidence and/or expert opinion) to assist healthcare professionals in undertaking tumour surveillance of NF1 individuals. METHODS By comprehensive literature review, performed March 18th 2020, guidelines were developed by a NF1 expert group and patient representatives, conversant with clinical care of the wide NF1 disease spectrum. We used a modified Delphi procedure to overcome issues of variability in recommendations for specific (national) health care settings, and to deal with recommendations based on indirect (scarce) evidence. FINDINGS We defined proposals for personalised and targeted tumour management in NF1, ensuring appropriate care for those in need, whilst reducing unnecessary intervention. We also incorporated the tumour-related psychosocial and quality of life impact of NF1. INTERPRETATION The guideline reflects the current care for NF1 in Europe. They are not meant to be prescriptive and may be adjusted to local available resources at the treating centre, both within and outside EU countries. FUNDING This guideline has been supported by the European Reference Network on Genetic Tumour Risk Syndromes (ERN GENTURIS). ERN GENTURIS is funded by the European Union. DGE is supported by the Manchester NIHRBiomedical Research Centre (IS-BRC-1215-20007).
Collapse
Affiliation(s)
- Charlotte Carton
- Laboratory for Neurofibromatosis Research, Department of Human Genetics, University of Leuven, KU Leuven, Belgium
| | - D. Gareth Evans
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, University of Manchester, MAHSC, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Ignacio Blanco
- Clinical Genetics Department, Hospital Germans Trias I Pujol, Barcelona, Spain
| | | | - Rosalie E. Ferner
- Neurofibromatosis Centre, Department of Neurology, Guy's & St Thomas' NHS Foundation Trust, London, UK
| | | | - Hector Salvador
- Sant Joan de Déu, Barcelona Children's Hospital, Barcelona, Spain
| | - Amedeo A. Azizi
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Austria
| | - Victor Mautner
- Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | | | - Sirkku Peltonen
- University of Turku and Turku University Hospital, Turku, Finland
- Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Stavros Stivaros
- Academic Unit of Paediatric Radiology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
- Geoffrey Jefferson Brain Research Centre, Northern Care Alliance NHS Group, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Eric Legius
- University Hospital Leuven, Department of Human Genetics, University of Leuven, KU Leuven, Belgium
| | - Rianne Oostenbrink
- ENCORE-NF1 Expertise Center, ErasmusMC-Sophia, Rotterdam, the Netherlands
- Corresponding author. Department General Pediatrics, ErasmusMC-Sophia, Room Sp 1549, Dr Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands.
| | | |
Collapse
|
8
|
Ji J, You Q, Zhang J, Wang Y, Cheng J, Huang X, Zhang Y. Downregulation of TET1 Promotes Glioma Cell Proliferation and Invasion by Targeting Wnt/ β-Catenin Pathway. Anal Cell Pathol (Amst) 2021; 2021:8980711. [PMID: 34926132 PMCID: PMC8677395 DOI: 10.1155/2021/8980711] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Glioma is the most common malignant tumor in adult brain characteristic with poor prognosis and low survival rate. Despite the application of advanced surgery, chemotherapy, and radiotherapy, the patients with glioma suffer poor treatment effects due to the complex molecular mechanisms of pathological process. In this paper, we conducted the experiments to prove the critical roles TET1 played in glioma and explored the downstream targets of TET1 in order to provide a novel theoretical basis for clinical glioma therapy. RT-qPCR was adopted to detect the RNA level of TET1 and β-catenin; Western blot was taken to determine the expression of proteins. CCK8 assay was used to detect the proliferation of glioma cells. Flow cytometry was used to test cell apoptosis and distribution of cell cycle. To detect the migration and invasion of glioma cells, wound healing assay and Transwell were performed. It was found that downregulation of TET1 could promote the proliferation migration and invasion of glioma cells and the concomitant upregulation of β-catenin, and its downstream targets like cyclinD1 and c-myc were observed. The further rescue experiments were performed, wherein downregulation of β-catenin markedly decreases glioma cell proliferation in vitro and in vivo. This study confirmed the tumor suppressive function of TET1 and illustrated the underlying molecular mechanisms regulated by TET1 in glioma.
Collapse
Affiliation(s)
- Jianwen Ji
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Qiuxiang You
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jidong Zhang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Yutao Wang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Jing Cheng
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Xiangyun Huang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| | - Yundong Zhang
- Department of Neurological Center, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| |
Collapse
|
9
|
Packer RJ, Iavarone A, Jones DTW, Blakeley JO, Bouffet E, Fisher MJ, Hwang E, Hawkins C, Kilburn L, MacDonald T, Pfister SM, Rood B, Rodriguez FJ, Tabori U, Ramaswamy V, Zhu Y, Fangusaro J, Johnston SA, Gutmann DH. Implications of new understandings of gliomas in children and adults with NF1: report of a consensus conference. Neuro Oncol 2021; 22:773-784. [PMID: 32055852 PMCID: PMC7283027 DOI: 10.1093/neuonc/noaa036] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gliomas are the most common primary central nervous system tumors occurring in children and adults with neurofibromatosis type 1 (NF1). Over the past decade, discoveries of the molecular basis of low-grade gliomas (LGGs) have led to new approaches for diagnosis and treatments. However, these new understandings have not been fully applied to the management of NF1-associated gliomas. A consensus panel consisting of experts in NF1 and gliomas was convened to review the current molecular knowledge of NF1-associated low-grade “transformed” and high-grade gliomas; insights gained from mouse models of NF1-LGGs; challenges in diagnosing and treating older patients with NF1-associated gliomas; and advances in molecularly targeted treatment and potential immunologic treatment of these tumors. Next steps are recommended to advance the management and outcomes for NF1-associated gliomas.
Collapse
Affiliation(s)
- Roger J Packer
- Center for Neuroscience and Behavioral Medicine, Washington, DC, USA.,Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Antonio Iavarone
- Departments of Neurology and Pathology Institute for Cancer Genetics Columbia University Medical Center, New York, New York, USA
| | - David T W Jones
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Jaishri O Blakeley
- Departments of Neurology; Oncology; Neurosurgery, Baltimore, Maryland, USA
| | - Eric Bouffet
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Michael J Fisher
- Department of Pediatric Oncology; Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Eugene Hwang
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Cynthia Hawkins
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Lindsay Kilburn
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Tobey MacDonald
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stefan M Pfister
- Division of Pediatric Neuro-Oncology German Cancer Research Center Hopp Children's Cancer Center Heidelberg, Germany
| | - Brian Rood
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Fausto J Rodriguez
- Pathology; The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Uri Tabori
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Vijay Ramaswamy
- Pediatric Neuro-Oncology Program; Research Institute; and The Arthur and Sonia Labatt; Brain Tumor Research Centre, Hospital for Sick Children, Toronto, Canada
| | - Yuan Zhu
- Gilbert Family Neurofibromatosis Institute, Brain Tumor Institute, and Children's National Hospital, Washington, DC, USA
| | - Jason Fangusaro
- Department of Pediatrics; Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephen A Johnston
- Center for Innovations in Medicine; Biodesign Institute; Arizona State University, Tempe, Arizona, USA
| | - David H Gutmann
- Department of Neurology; Washington University, St Louis, Missouri, USA
| |
Collapse
|
10
|
Salles D, Laviola G, Malinverni ACDM, Stávale JN. Pilocytic Astrocytoma: A Review of General, Clinical, and Molecular Characteristics. J Child Neurol 2020; 35:852-858. [PMID: 32691644 DOI: 10.1177/0883073820937225] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Pilocytic astrocytomas are the primary tumors most frequently found in children and adolescents, accounting for approximately 15.6% of all brain tumors and 5.4% of all gliomas. They are mostly found in infratentorial structures such as the cerebellum and in midline cerebral structures such as the optic nerve, hypothalamus, and brain stem. The present study aimed to list the main characteristics about this tumor, to better understand the diagnosis and treatment of these patients, and was conducted on search of the published studies available in NCBI, PubMed, MEDLINE, Scielo, and Google Scholar. It was possible to define the main histologic findings observed in these cases, such as mitoses, necrosis, and Rosenthal fibers. We described the locations usually most affected by tumor development, and this was associated with the most frequent clinical features. The comparison between the molecular diagnostic methods showed great use of fluorescent in situ hybridization, polymerase chain reaction (PCR), and reverse transcriptase-PCR, important techniques for the detection of BRAF V600E mutation and BRAF-KIAA1549 fusion, characteristic molecular alterations in pilocytic astrocytomas.
Collapse
Affiliation(s)
- Débora Salles
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Gabriela Laviola
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - Andréa Cristina de Moraes Malinverni
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Laboratory of Molecular and Experimental Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| | - João Norberto Stávale
- Department of Pathology, 28105Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil
| |
Collapse
|
11
|
Garibotto F, Madia F, Milanaccio C, Verrico A, Piccardo A, Tortora D, Piatelli G, Diana MC, Capra V, Garrè ML, Rossi A, Morana G. Pediatric Diffuse Midline Gliomas H3 K27M-Mutant and Non-Histone Mutant Midline High-Grade Gliomas in Neurofibromatosis Type 1 in Comparison With Non-Syndromic Children: A Single-Center Pilot Study. Front Oncol 2020; 10:795. [PMID: 32582540 PMCID: PMC7283930 DOI: 10.3389/fonc.2020.00795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Pediatric neurofibromatosis type 1 (NF1) patients rarely develop aggressive central nervous system tumors. Among high-grade gliomas (HGGs), histone mutant diffuse midline gliomas (DMGs H3 K27M-mutant) have exceptionally been reported. The aim of this retrospectives single-center study was to compare the clinical behavior of DMGs H3 K27M-mutant and non-histone mutant midline HGGs in NF1 vs. non-syndromic children and to report imaging features of NF1 HGGs. Method: We conducted a retrospective review of cerebral DMGs H3 K27M-mutant or non-histone mutant HGGs in 18 patients with or without NF1 followed at our institution between 2010 and 2018. Differences in outcomes, notably progression-free survival (PFS) and overall survival (OS), were evaluated. Results: Two patients were identified with genetically confirmed diagnosis of NF1 and cerebral HGGs (one DMG H3 K27M-mutant and one histone wild type). Both subjects presented with midline mass lesions with imaging features of aggressive biological activity on advanced MRI or amino-acid PET. During the same time period, 16 non-NF1 patients (11 subjects with DMGs H3 K27M-mutant and 5 with non-histone mutant midline HGGs) were treated at our institution. The two patients with NF1 and HGGs presented a PFS of 3 months and an OS of 5 and 7 months. Median PFS and OS of children without NF1 were respectively 6 and 10 months in DMGs H3 K27M-mutant, and 6 and 11 months in H3 K27M wild-type tumors. Seventy-five percent of subjects with non-NF1 HGGs presented a PFS >4 months compared to 0% in NF1 patients. The 8-month OS of patients with non-NF1 HGGs was 81% compared to 0% in NF1 patients. Conclusions: Cerebral HGGs arising in midline structures rarely occur in pediatric patients with NF1 and present with extremely poor prognosis, worse than HGGs developing in non-NF1 patients, independent of the presence or absence of H3 K27M mutation. Imaging features of aggressive biological activity on advanced MRI or amino-acid PET imaging suggest prompt neuropathological and molecular investigations.
Collapse
Affiliation(s)
| | - Francesca Madia
- Laboratory of Neurogenetics and Neuroscience, IRCCS Istituto G. Gaslini, Genova, Italy
| | | | - Antonio Verrico
- Neuro-oncology Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Arnoldo Piccardo
- Nuclear Medicine Unit, Ente Ospedaliero Ospedali Galliera, Genova, Italy
| | | | | | - Maria Cristina Diana
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Valeria Capra
- Neurosurgery Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | | | - Andrea Rossi
- Neuroradiology Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| | - Giovanni Morana
- Neuroradiology Unit, IRCCS Istituto G. Gaslini, Genova, Italy
| |
Collapse
|
12
|
Santoro C, Picariello S, Palladino F, Spennato P, Melis D, Roth J, Cirillo M, Quaglietta L, D’Amico A, Gaudino G, Meucci MC, Ferrara U, Constantini S, Perrotta S, Cinalli G. Retrospective Multicentric Study on Non-Optic CNS Tumors in Children and Adolescents with Neurofibromatosis Type 1. Cancers (Basel) 2020; 12:E1426. [PMID: 32486389 PMCID: PMC7353051 DOI: 10.3390/cancers12061426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/22/2020] [Accepted: 05/28/2020] [Indexed: 02/01/2023] Open
Abstract
s: The natural history of non-optic central nervous system (CNS) tumors in neurofibromatosis type 1 (NF1) is largely unknown. Here, we describe prevalence, clinical presentation, treatment, and outcome of 49 non-optic CNS tumors observed in 35 pediatric patients (0-18 years). Patient- and tumor-related data were recorded. Overall survival (OS) and progression-free survival (PFS) were evaluated. Eighteen patients (51%) harbored an optic pathway glioma (OPG) and eight (23%) had multiple non-optic CNS lesions. The majority of lesions (37/49) were managed with a wait-and-see strategy, with one regression and five reductions observed. Twenty-one lesions (42.9%) required surgical treatment. Five-year OS was 85.3%. Twenty-four patients progressed with a 5-year PFS of 41.4%. Patients with multiple low-grade gliomas progressed earlier and had a lower 5-year PFS than those with one lesion only (14.3% vs. 57.9%), irrespective of OPG co-presence. Non-optic CNS tumors are common in young patients with NF1. Neither age and symptoms at diagnosis nor tumor location influenced time to progression in our series. Patients with multiple lesions tended to have a lower age at onset and to progress earlier, but with a good OS.
Collapse
Affiliation(s)
- Claudia Santoro
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
- Clinic of Child and Adolescent Neuropsychiatry, Department of Mental and Physical Health, and Preventive Medicine, “Luigi Vanvitelli” University of Campania, Largo Madonna delle Grazie 1, 80138 Naples, Italy
| | - Stefania Picariello
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
- Department of Advanced Medical and Surgical Sciences, “Luigi Vanvitelli” University of Campania, P.zza L. Miraglia 2, 80138 Naples, Italy
| | - Federica Palladino
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
| | - Pietro Spennato
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy; (P.S.); (M.C.M.); (G.C.)
| | - Daniela Melis
- Department of Medicine, Surgery and Dentistry, “Scuola Medica Salernitana”, Via Salvador Allende, Baronissi, 84081 Salerno, Italy;
| | - Jonathan Roth
- Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (J.R.); (S.C.)
| | - Mario Cirillo
- Department of Medicine, Surgery, Neurology, Metabolism and Geriatrics, “Luigi Vanvitelli” University of Campania, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Lucia Quaglietta
- Department of Pediatric Oncology, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy;
| | - Alessandra D’Amico
- Department of Advanced Biomedical Sciences, “Federico II” University of Naples, Via Sergio Pansini 5, 80100 Naples, Italy;
| | - Giuseppina Gaudino
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
| | - Maria Chiara Meucci
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy; (P.S.); (M.C.M.); (G.C.)
| | - Ursula Ferrara
- Section of Pediatrics, Department of Translational Medical Science, “Federico II” University of Naples, Via Sergio Pansini 5, 80100 Naples, Italy;
| | - Shlomi Constantini
- Department of Pediatric Neurosurgery, Dana Children’s Hospital, Tel Aviv Sourasky Medical Center, 6 Weizmann St., Tel Aviv 6423906, Israel; (J.R.); (S.C.)
| | - Silverio Perrotta
- Neurofibromatosis Referral Center, Department of Women’s and Children’s Health, and General and Specialized Surgery, “Luigi Vanvitelli” University of Campania, Via Luigi de Crecchio 2, 80138 Naples, Italy; (S.P.); (F.P.); (G.G.); (S.P.)
| | - Giuseppe Cinalli
- Department of Pediatric Neurosurgery, Santobono-Pausilipon Children’s Hospital, Via Mario Fiore 6, 80129 Naples, Italy; (P.S.); (M.C.M.); (G.C.)
| |
Collapse
|
13
|
Bayat M, Bayat A. Neurological manifestations of neurofibromatosis: a review. Neurol Sci 2020; 41:2685-2690. [PMID: 32358705 DOI: 10.1007/s10072-020-04400-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/06/2020] [Indexed: 12/01/2022]
Abstract
Neurofibromatosis type 1(NF1) is a dominantly inherited genetic disorder caused by a mutation in the NF1 tumor-suppressor gene. Patients are prone to develop benign and malignant tumors not only in the central and peripheral nervous system but also in other parts of the body. Apart from tumors, neurofibromatosis may also be associated with neurological symptoms and disorders such as cerebrovascular disease, epilepsy, neuropathy, and headache. This article seeks to review the different neurological manifestations of neurofibromatosis.
Collapse
Affiliation(s)
- Michael Bayat
- Department of Neurology & Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark.
| | | |
Collapse
|
14
|
Mahdi J, Goyal MS, Griffith J, Morris SM, Gutmann DH. Nonoptic pathway tumors in children with neurofibromatosis type 1. Neurology 2020; 95:e1052-e1059. [PMID: 32300062 DOI: 10.1212/wnl.0000000000009458] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/26/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVE To define the radiologic features and natural history of nonoptic pathway tumors (non-OPTs) in children with neurofibromatosis type 1 (NF1). METHODS We performed a retrospective cross-sectional analysis of 64 children with NF1 harboring 100 probable non-OPTs. Age at diagnosis, sex, tumor location, number of tumors, symptomology, concurrent OPT, radiographic progression (defined as qualitative and quantitative increases in size), and treatment were assessed. Tumor volumes were measured from initial presentation until treatment or end of disease progression. RESULTS Sixty-three percent of probable non-OPTs progressed over time, where radiographic progression was concomitantly associated with clinical progression. Fifty-two percent of patients had incidentally identified probable non-OPTs. Twenty-five percent of patients were symptomatic at initial diagnosis, all of whom harbored tumors that grew on subsequent scans and required tumor-directed therapy. There were no clinical differences between probable non-OPTs localized to the brainstem vs other locations with respect to age, sex, concurrent optic pathway glioma, symptomology, and treatment. The average time from diagnosis to stabilization or decrease in tumor size was 2.34 years (SD, 2.15 years). Nineteen biopsied lesions were all histopathologically confirmed as tumor. Six children (9%) had deep extensive tumors, who presented earlier (mean age at diagnosis, 3.88 years), required multiple treatments, and had a shorter mean progression-free survival (48 months). CONCLUSIONS Over half of children with NF1 in this study developed probable non-OPTs, the majority of which were clinically and radiographically progressive. While brainstem and nonbrainstem gliomas share similar clinical features and natural history, deep extensive tumors comprise a distinct aggressive group of tumors that warrant close attention.
Collapse
Affiliation(s)
- Jasia Mahdi
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - Manu S Goyal
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - Jennifer Griffith
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - Stephanie M Morris
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO
| | - David H Gutmann
- From the Department of Neurology (J.M., M.S.G., J.G., S.M.M., D.H.G.) and Mallinckrodt Institute of Radiology (M.S.G.), Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
15
|
Nix JS, Blakeley J, Rodriguez FJ. An update on the central nervous system manifestations of neurofibromatosis type 1. Acta Neuropathol 2020; 139:625-641. [PMID: 30963251 DOI: 10.1007/s00401-019-02002-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/30/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Neurofibromatosis 1 (NF1) is an autosomal dominant genetic disorder that presents with variable phenotypes as a result of mutations in the neurofibromatosis type 1 (NF1) gene and subsequently, abnormal function of the protein product, neurofibromin. Patients with NF1 are at increased risk for central nervous system (CNS) manifestations including structural, functional, and neoplastic disease. The mechanisms underlying the varied manifestations of NF1 are incompletely understood, but the loss of functional neurofibromin, resulting in sustained activation of the oncoprotein RAS, is responsible for tumorigenesis throughout the body, including the CNS. Much of our understanding of NF1-related CNS manifestations is from a combination of data from animal models and natural history studies of people with NF1 and CNS disease. Data from animal models suggest the importance of both Nf1 mutations and somatic genetic alterations, such as Tp53 loss, for development of neoplasms, as well as the role of the timing of the acquisition of such alterations on the variability of CNS manifestations. A variety of non-neoplastic structural (macrocephaly, hydrocephalus, aqueductal stenosis, and vasculopathy) and functional (epilepsy, impaired cognition, attention deficits, and autism spectrum disorder) abnormalities occur with variable frequency in individuals with NF1. In addition, there is increasing evidence that similar appearing CNS neoplasms in people with and without the NF1 syndrome are due to distinct oncogenic pathways. Gliomas in people with NF1 show alterations in the RAS/MAPK pathway, generally in the absence of BRAF alterations (common to sporadic pilocytic astrocytomas) or IDH or histone H3 mutations (common to diffuse gliomas subsets). A subset of low-grade astrocytomas in these patients remain difficult to classify using standard criteria, and occasionally demonstrate morphologic features resembling subependymal giant cell astrocytomas that afflict patients with tuberous sclerosis complex ("SEGA-like astrocytomas"). There is also emerging evidence that NF1-associated high-grade astrocytomas have frequent co-existing alterations such as ATRX mutations and an alternative lengthening of telomeres (ALT) phenotype responsible for unique biologic properties. Ongoing efforts are seeking to improve diagnostic accuracy for CNS neoplasms in the setting of NF1 versus sporadic tumors. In addition, MEK inhibitors, which act on the RAS/MAPK pathway, continue to be studied as rational targets for the treatment of NF1-associated tumors, including CNS tumors.
Collapse
|
16
|
Schmidt BT, Hanna A. Deadly Proliferation and Transformation of Pilocytic Astrocytoma in Pregnancy. World Neurosurg 2020; 133:99-103. [DOI: 10.1016/j.wneu.2019.09.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
|
17
|
Jacquinet A, Bonnard A, Capri Y, Martin D, Sadzot B, Bianchi E, Servais L, Sacré JP, Cavé H, Verloes A. Oligo-astrocytoma in LZTR1-related Noonan syndrome. Eur J Med Genet 2020; 63:103617. [DOI: 10.1016/j.ejmg.2019.01.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/12/2019] [Accepted: 01/12/2019] [Indexed: 02/06/2023]
|
18
|
Abstract
As a cancer predisposition syndrome, individuals with neurofibromatosis type 1 (NF1) are at increased risk for the development of both benign and malignant tumors. One of the most common locations for these cancers is the central nervous system, where low-grade gliomas predominate in children. During early childhood, gliomas affecting the optic pathway are most frequently encountered, whereas gliomas of the brainstem and other locations are observed in slightly older children. In contrast, the majority of gliomas arising in adults with NF1 are malignant cancers, typically glioblastoma, involving the cerebral hemispheres. Our understanding of the pathogenesis of NF1-associated gliomas has been significantly advanced through the use of genetically engineered mice, yielding new targets for therapeutic drug design and evaluation. In addition, Nf1 murine glioma models have served as instructive platforms for defining the cell of origin of these tumors, elucidating the critical role of the tumor microenvironment in determining tumor growth and vision loss, and determining how cancer risk factors (sex, germline NF1 mutation) impact on glioma formation and progression. Moreover, these preclinical models have permitted early phase analysis of promising drugs that reduce tumor growth and attenuate vision loss, as an initial step prior to translation to human clinical trials.
Collapse
Affiliation(s)
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
19
|
Asa SL, Mete O. Hypothalamic Endocrine Tumors: An Update. J Clin Med 2019; 8:E1741. [PMID: 31635149 PMCID: PMC6833118 DOI: 10.3390/jcm8101741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/05/2019] [Accepted: 10/10/2019] [Indexed: 01/10/2023] Open
Abstract
The hypothalamus is the site of synthesis and secretion of a number of endocrine peptides that are involved in the regulation of hormonal activity of the pituitary and other endocrine targets. Tumors of the hypothalamus have been recognized to have both structural and functional effects including hormone hypersecretion. The classification of these tumors has advanced over the last few years, and biomarkers are now available to classify these tumors and provide accurate structure-function correlations. This review provides an overview of tumors in this region that is critical to metabolic homeostasis with a focus on advances in the diagnosis of gangliocytomas, neurocytomas, and pituicytomas that are unique to this region.
Collapse
Affiliation(s)
- Sylvia L Asa
- Department of Pathology, Case Western University and University Hospitals, Cleveland, OH 44106, USA.
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada.
| | - Ozgur Mete
- Department of Pathology, University Health Network, Toronto, ON M5G 2C4, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada.
| |
Collapse
|
20
|
Raffalli-Ebezant H, George K, Burkitt-Wright E, Roncaroli F, Evans G, Soh C, Ealing J, Vassallo G, Elloo J, Karabatsou K. Neurosurgical contribution within a complex NF1 supraregional service. Clin Neurol Neurosurg 2019; 180:18-24. [DOI: 10.1016/j.clineuro.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 01/19/2023]
|
21
|
Spyris CD, Castellino RC, Schniederjan MJ, Kadom N. High-Grade Gliomas in Children with Neurofibromatosis Type 1: Literature Review and Illustrative Cases. AJNR Am J Neuroradiol 2018; 40:366-369. [PMID: 30573459 DOI: 10.3174/ajnr.a5888] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/19/2018] [Indexed: 11/07/2022]
Abstract
High-grade gliomas in patients with neurofibromatosis type 1 are rare and may therefore not be considered in the differential of brain lesions. Here, we describe 5 children with neurofibromatosis type 1; four of them developed various types of high-grade gliomas. The fifth patient had imaging features concerning for a high-grade lesion, but tissue diagnosis showed a low-grade glioma. The cases and literature summary provided here are to raise awareness for the occurrence of high-grade gliomas in children with neurofibromatosis type 1 and the limited ability of imaging features alone to predict a high-grade malignancy.
Collapse
Affiliation(s)
- C D Spyris
- From the Departments of Radiology and Imaging Sciences (C.D.S., N.K.)
| | - R C Castellino
- Pediatrics (R.C.C.).,Aflac Cancer & Blood Disorders Center (R.C.C.), Children's Healthcare of Atlanta, Atlanta, Georgia
| | - M J Schniederjan
- Pathology and Laboratory Medicine (M.J.S.), Emory University School of Medicine, Atlanta, Georgia
| | - N Kadom
- From the Departments of Radiology and Imaging Sciences (C.D.S., N.K.) .,Department of Radiology (N.K.), Children's Healthcare of Atlanta, Egleston Campus, Atlanta, Georgia
| |
Collapse
|
22
|
Tunvirachaisakul C, Supasitthumrong T, Tangwongchai S, Hemrunroj S, Chuchuen P, Tawankanjanachot I, Likitchareon Y, Phanthumchinda K, Sriswasdi S, Maes M. Characteristics of Mild Cognitive Impairment Using the Thai Version of the Consortium to Establish a Registry for Alzheimer's Disease Tests: A Multivariate and Machine Learning Study. Dement Geriatr Cogn Disord 2018; 45:38-48. [PMID: 29617684 DOI: 10.1159/000487232] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/28/2018] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) developed a neuropsychological battery (CERAD-NP) to screen patients with Alzheimer's dementia. Mild cognitive impairment (MCI) has received attention as a pre-dementia stage. OBJECTIVES To delineate the CERAD-NP features of MCI and their clinical utility to externally validate MCI diagnosis. METHODS The study included 60 patients with MCI, diagnosed using the Clinical Dementia Rating, and 63 normal controls. Data were analysed employing receiver operating characteristic analysis, Linear Support Vector Machine, Random Forest, Adaptive Boosting, Neural Network models, and t-distributed stochastic neighbour embedding (t-SNE). RESULTS MCI patients were best discriminated from normal controls using a combination of Wordlist Recall, Wordlist Memory, and Verbal Fluency Test. Machine learning showed that the CERAD features learned from MCI patients and controls were not strongly predictive of the diagnosis (maximal cross-validation 77.2%), whilst t-SNE showed that there is a considerable overlap between MCI and controls. CONCLUSIONS The most important features of the CERAD-NP differentiating MCI from normal controls indicate impairments in episodic and semantic memory and recall. While these features significantly discriminate MCI patients from normal controls, the tests are not predictive of MCI.
Collapse
Affiliation(s)
| | | | | | - Solaphat Hemrunroj
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Phenphichcha Chuchuen
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Itthipol Tawankanjanachot
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yuthachai Likitchareon
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kamman Phanthumchinda
- Division of Neurology, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
23
|
Razek AAKA. MR imaging of neoplastic and non-neoplastic lesions of the brain and spine in neurofibromatosis type I. Neurol Sci 2018; 39:821-827. [PMID: 29455398 DOI: 10.1007/s10072-018-3284-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/10/2018] [Indexed: 12/14/2022]
Abstract
The aim of this work is to review the MR imaging of neoplastic and non-neoplastic lesions of the brain and spine in neurofibromatosis type I. Neoplastic lesions are optic pathway gliomas, brain stem gliomas, other gliomas of the brain, and peripheral nerve sheath tumors. Structural changes in the brain include unidentified bright objects, macrocephaly, and enlarged corpus callosum. Bony dysplasia changes as sphenoid ridge dysplasia, spinal scalloping, dural ectasia, and meningoceles. Vasculopathy and cortical cerebral and cerebellar malformations of the brain have been reported.
Collapse
|