1
|
Kambe A, Kitao S, Ochiai R, Hosoya T, Fujii S, Kurosaki M. The utility of arterial spin labeling imaging for predicting prognosis after a recurrence of high-grade glioma in patients under bevacizumab treatment. J Neurooncol 2024; 166:175-183. [PMID: 38165552 DOI: 10.1007/s11060-023-04550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/20/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND AND PURPOSE Currently, the antiangiogenic agent bevacizumab (BVZ) is used as a treatment option for high-grade glioma (HGG) patients. However, BVZ restores disruptions of the blood-brain barrier, which leads to the disappearance of contrast enhancement during radiological examinations and therefore complicates evaluations of treatment efficacy. This study aimed to investigate the radio-morphological features of recurrent lesions that newly appeared under BVZ therapy, as well as the utility of arterial spin labeling (ASL) perfusion imaging for evaluating treatment response and prognosis in HGG patients receiving BVZ. METHODS Thirty-two patients (20 males, 12 females; age range, 35-84 years) with HGG who experienced a recurrence under BVZ therapy were enrolled. We measured the relative cerebral blood flow (rCBF) values of each recurrent lesion using ASL, and retrospectively investigated the correlation between rCBF values and prognosis. RESULTS The optimal rCBF cut-off value for predicting prognosis was defined as 1.67 using receiver operating characteristic curve analysis. The patients in the rCBF < 1.67 group had significantly longer overall survival (OS) and post-progression survival (PPS) than those in the rCBF ≥ 1.67 group (OS: 34.0 months vs. 13.0 months, p = 0.03 and PPS: 13.0 months vs. 6.0 months, p < 0.001, respectively). CONCLUSION The ASL-derived rCBF values of recurrent lesions may serve as an effective imaging biomarker for prognosis in HGG patients undergoing BVZ therapy. Low rCBF values may indicate that BVZ efficacy is sustainable, which will influence BVZ treatment strategies in HGG patients.
Collapse
Affiliation(s)
- Atsushi Kambe
- Department of Brain and Neurosciences, Division of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan.
| | - Shinichiro Kitao
- Department of Multidisciplinary Internal Medicine, Division of Radiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Ryoya Ochiai
- Department of Multidisciplinary Internal Medicine, Division of Radiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Tomohiro Hosoya
- Department of Brain and Neurosciences, Division of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Shinya Fujii
- Department of Multidisciplinary Internal Medicine, Division of Radiology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Masamichi Kurosaki
- Department of Brain and Neurosciences, Division of Neurosurgery, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
2
|
Moon HH, Park JE, Kim YH, Kim JH, Kim HS. Contrast enhancing pattern on pre-treatment MRI predicts response to anti-angiogenic treatment in recurrent glioblastoma: comparison of bevacizumab and temozolomide treatment. J Neurooncol 2022; 157:405-415. [PMID: 35275335 DOI: 10.1007/s11060-022-03980-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/04/2022] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To evaluate the value of the contrast enhancing pattern on pre-treatment MRI for predicting the response to anti-angiogenic treatment in patients with IDH-wild type recurrent glioblastoma. METHODS This retrospective study enrolled 65 patients with IDH wild-type recurrent glioblastoma who received standard therapy and then received either bevacizumab (46 patients) or temozolomide (19 patients) as a secondary treatment. The contrast enhancing pattern on pre-treatment MRI was visually analyzed and dichotomized into contrast enhancing lesion (CEL) dominant and non-enhancing lesion (NEL) dominant types. Quantitative volumetric analysis was used to support the dichotomization. The Kaplan-Meier method and Cox proportional hazards regression analysis were used to stratify progression free survival (PFS) according to the treatment in the entire patients, CEL dominant group, and NEL dominant group. RESULTS In all patients, the PFS of those treated with bevacizumab was not significantly different from those treated with temozolomide (log-rank test, P = 0.96). When the contrast enhancing pattern was considered, bevacizumab was associated with longer PFS in the CEL dominant group (P = 0.031), whereas temozolomide showed longer PFS in the NEL dominant group (P = 0.022). Quantitative analysis revealed mean values for the proportion of solid-enhancing tumor of 13.7% for the CEL dominant group and 4.3% for the NEL dominant group. CONCLUSION Patients with the CEL dominant type showed a better treatment response to bevacizumab, whereas NEL dominant types showed a better response to temozolomide. The contrast enhancing pattern on pre-treatment MRI can be used to stratify patients with IDH wild-type recurrent glioblastoma according to the effect of anti-angiogenic treatment.
Collapse
Affiliation(s)
- Hye Hyeon Moon
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea.
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, 43 Olympic-ro 88, Songpa-Gu, Seoul, 05505, South Korea
| |
Collapse
|
3
|
Gaudino S, Marziali G, Giordano C, Gigli R, Varcasia G, Magnani F, Chiesa S, Balducci M, Costantini AM, Della Pepa GM, Olivi A, Russo R, Colosimo C. Regorafenib in Glioblastoma Recurrence: How to Deal With MR Imaging Treatments Changes. FRONTIERS IN RADIOLOGY 2022; 1:790456. [PMID: 37492166 PMCID: PMC10365006 DOI: 10.3389/fradi.2021.790456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/29/2021] [Indexed: 07/27/2023]
Abstract
The treatment of recurrent high-grade gliomas remains a major challenge of daily neuro-oncology practice, and imaging findings of new therapies may be challenging. Regorafenib is a multi-kinase inhibitor that has recently been introduced into clinical practice to treat recurrent glioblastoma, bringing with it a novel panel of MRI imaging findings. On the basis of the few data in the literature and on our personal experience, we have identified the main MRI changes during regorafenib therapy, and then, we defined two different patterns, trying to create a simple summary line of the main changes of pathological tissue during therapy. We named these patterns, respectively, pattern A (less frequent, similar to classical progression disease) and pattern B (more frequent, with decreased diffusivity and decrease contrast-enhancement). We have also reported MR changes concerning signal intensity on T1-weighted and T2-weighted images, SWI, and perfusion imaging, derived from the literature (small series or case reports) and from our clinical experience. The clinical implication of these imaging modifications remains to be defined, taking into account that we are still at the dawn in the evaluation of such imaging modifications.
Collapse
Affiliation(s)
- Simona Gaudino
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica Sacro Cuore of Rome, Rome, Italy
| | - Giammaria Marziali
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Carolina Giordano
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Riccardo Gigli
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Varcasia
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Francesca Magnani
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Silvia Chiesa
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Mario Balducci
- Università Cattolica Sacro Cuore of Rome, Rome, Italy
- Department of Diagnostic Imaging, Oncological Radiotherapy, and Hematology, UOC di Radioterapia Oncologica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Alessandro Maria Costantini
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Giuseppe Maria Della Pepa
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, Rome, Italy
| | - Alessandro Olivi
- Università Cattolica Sacro Cuore of Rome, Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Catholic University, Rome, Italy
| | - Rosellina Russo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
| | - Cesare Colosimo
- Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Institute of Radiology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy
- Università Cattolica Sacro Cuore of Rome, Rome, Italy
| |
Collapse
|
4
|
Cho SJ, Kim HS, Suh CH, Park JE. Radiological Recurrence Patterns after Bevacizumab Treatment of Recurrent High-Grade Glioma: A Systematic Review and Meta-Analysis. Korean J Radiol 2020; 21:908-918. [PMID: 32524791 PMCID: PMC7289701 DOI: 10.3348/kjr.2019.0898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 03/05/2020] [Indexed: 12/28/2022] Open
Abstract
Objective To categorize the radiological patterns of recurrence after bevacizumab treatment and to derive the pooled proportions of patients with recurrent malignant glioma showing the different radiological patterns. Materials and Methods A systematic literature search in the Ovid-MEDLINE and EMBASE databases was performed to identify studies reporting radiological recurrence patterns in patients with recurrent malignant glioma after bevacizumab treatment failure until April 10, 2019. The pooled proportions according to radiological recurrence patterns (geographically local versus non-local recurrence) and predominant tumor portions (enhancing tumor versus non-enhancing tumor) after bevacizumab treatment were calculated. Subgroup and meta-regression analyses were also performed. Results The systematic review and meta-analysis included 17 articles. The pooled proportions were 38.3% (95% confidence interval [CI], 30.6–46.1%) for a geographical radiologic pattern of non-local recurrence and 34.2% (95% CI, 27.3–41.5%) for a non-enhancing tumor-predominant recurrence pattern. In the subgroup analysis, the pooled proportion of non-local recurrence in the patients treated with bevacizumab only was slightly higher than that in patients treated with the combination with cytotoxic chemotherapy (34.9% [95% CI, 22.8–49.4%] versus 22.5% [95% CI, 9.5–44.6%]). Conclusion A substantial proportion of high-grade glioma patients show non-local or non-enhancing radiologic patterns of recurrence after bevacizumab treatment, which may provide insight into surrogate endpoints for treatment failure in clinical trials of recurrent high-grade glioma.
Collapse
Affiliation(s)
- Se Jin Cho
- Department of Radiology, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ho Sung Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea.
| | - Chong Hyun Suh
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
5
|
Kikuchi Z, Shibahara I, Yamaki T, Yoshioka E, Shofuda T, Ohe R, Matsuda KI, Saito R, Kanamori M, Kanemura Y, Kumabe T, Tominaga T, Sonoda Y. TERT promoter mutation associated with multifocal phenotype and poor prognosis in patients with IDH wild-type glioblastoma. Neurooncol Adv 2020; 2:vdaa114. [PMID: 33134923 PMCID: PMC7586143 DOI: 10.1093/noajnl/vdaa114] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Although mutations in the promoter region of the telomerase reverse transcriptase (TERTp) gene are the most common alterations in glioblastoma (GBM), their clinical significance remains unclear. Therefore, we investigated the impact of TERTp status on patient outcome and clinicopathological features in patients with GBM over a long period of follow-up. Methods We retrospectively analyzed 153 cases of GBM. Six patients with isocitrate dehydrogenase 1 (IDH1) or H3F3A gene mutations were excluded from this study. Among the 147 cases of IDH wild-type GBM, 92 (62.6%) had the TERTp mutation. Clinical, immunohistochemical, and genetic factors (BRAF, TP53 gene mutation, CD133, ATRX expression, O6-methylguanine-DNA methyltransferase [MGMT] promoter methylation) and copy number alterations (CNAs) were investigated. Results GBM patients with the TERTp mutation were older at first diagnosis versus those with TERTp wild type (66.0 vs. 60.0 years, respectively, P = .034), and had shorter progression-free survival (7 vs. 10 months, respectively, P = .015) and overall survival (16 vs. 24 months, respectively, P = .017). Notably, magnetic resonance imaging performed showed that TERTp-mutant GBM was strongly associated with multifocal/distant lesions (P = .004). According to the CNA analysis, TERTp mutations were positively correlated with EGFR amp/gain, CDKN2A deletion, and PTEN deletion; however, these mutations were negatively correlated with PDGFR amp/gain, CDK4 gain, and TP53 deletion. Conclusions TERTp mutations were strongly correlated with multifocal/distant lesions and poor prognosis in patients with IDH wild-type GBM. Less aggressive GBM with TERTp wild type may be a distinct clinical and molecular subtype of IDH wild-type GBM.
Collapse
Affiliation(s)
- Zensho Kikuchi
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ichiyo Shibahara
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Tetsu Yamaki
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ema Yoshioka
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Tomoko Shofuda
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Rintaro Ohe
- Department of Pathological Diagnostics, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ken-Ichiro Matsuda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| | - Ryuta Saito
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Masayuki Kanamori
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Toshihiro Kumabe
- Department of Neurosurgery, Kitasato University School of Medicine, Sagamihara City, Kanagawa, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai City, Miyagi, Japan
| | - Yukihiko Sonoda
- Department of Neurosurgery, Faculty of Medicine, Yamagata University, Yamagata City, Yamagata, Japan
| |
Collapse
|
6
|
Mehrnahad M, Rostami S, Kimia F, Kord R, Taheri MS, Rad HS, Haghighatkhah H, Moradi A, Kord A. Differentiating glioblastoma multiforme from cerebral lymphoma: application of advanced texture analysis of quantitative apparent diffusion coefficients. Neuroradiol J 2020; 33:428-436. [PMID: 32628089 DOI: 10.1177/1971400920937382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
PURPOSE The purpose of this study was to differentiate glioblastoma multiforme from primary central nervous system lymphoma using the customised first and second-order histogram features derived from apparent diffusion coefficients.Methods and materials: A total of 82 patients (57 with glioblastoma multiforme and 25 with primary central nervous system lymphoma) were included in this study. The axial T1 post-contrast and fluid-attenuated inversion recovery magnetic resonance images were used to delineate regions of interest for the tumour and peritumoral oedema. The regions of interest were then co-registered with the apparent diffusion coefficient maps, and the first and second-order histogram features were extracted and compared between glioblastoma multiforme and primary central nervous system lymphoma groups. Receiver operating characteristic curve analysis was performed to calculate a cut-off value and its sensitivity and specificity to differentiate glioblastoma multiforme from primary central nervous system lymphoma. RESULTS Based on the tumour regions of interest, apparent diffusion coefficient mean, maximum, median, uniformity and entropy were higher in the glioblastoma multiforme group than the primary central nervous system lymphoma group (P ≤ 0.001). The most sensitive first and second-order histogram feature to differentiate glioblastoma multiforme from primary central nervous system lymphoma was the maximum of 2.026 or less (95% confidence interval (CI) 75.1-99.9%), and the most specific first and second-order histogram feature was smoothness of 1.28 or greater (84.0% CI 70.9-92.8%). Based on the oedema regions of interest, most of the first and second-order histogram features were higher in the glioblastoma multiforme group compared to the primary central nervous system lymphoma group (P ≤ 0.015). The most sensitive first and second-order histogram feature to differentiate glioblastoma multiforme from primary central nervous system lymphoma was the 25th percentile of 0.675 or less (100% CI 83.2-100%) and the most specific first and second-order histogram feature was the median of 1.28 or less (85.9% CI 66.3-95.8%). CONCLUSIONS Texture analysis using first and second-order histogram features derived from apparent diffusion coefficient maps may be helpful in differentiating glioblastoma multiforme from primary central nervous system lymphoma.
Collapse
Affiliation(s)
- Mehrsad Mehrnahad
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Iran
| | - Sara Rostami
- Department of Radiology, University of Illinois College of Medicine, USA
| | - Farnaz Kimia
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Iran
| | - Reza Kord
- Department of Radiology, Shahid Beheshti University of Medical Sciences, Iran
| | | | | | | | - Afshin Moradi
- Department of Pathology, Shahid Beheshti University of Medical Sciences, Iran
| | - Ali Kord
- Department of Radiology, University of Illinois College of Medicine, USA
| |
Collapse
|
7
|
Relationships between recurrence patterns and subventricular zone involvement or CD133 expression in glioblastoma. J Neurooncol 2020; 146:489-499. [PMID: 32020479 DOI: 10.1007/s11060-019-03381-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/23/2019] [Indexed: 01/07/2023]
Abstract
INTRODUCTION We previously reported that CD133 expression correlated with the recurrence pattern of glioblastoma (GBM). Subventricular zone (SVZ) involvement may also be associated with distant recurrence in GBM. Therefore, we herein investigated whether the combined analysis of SVZ involvement and CD133 expression is useful for predicting the pattern of GBM recurrence. MATERIALS AND METHODS We retrospectively analyzed 167 cases of GBM. Tumors were divided into four groups based on spatial relationships between contrast-enhanced lesions (CEL) and the SVZ or cortex (Ctx) on MRI. The initial recurrence pattern (local/distant) was obtained from medical records. To identify factors predictive of recurrence, we examined CD133 expression by immunohistochemical, clinical (age, sex, KPS, Ki-67 labeling index, surgery, and MRI characteristics), and genetic (IDH1, MGMT, and BRAF) factors. RESULTS The CD133 expression rate was higher in SVZ-positive tumors than in SVZ-negative tumors (P = 0.046). Distant recurrence was observed in 21% of patients, and no significant difference was noted in recurrence patterns among the four groups. However, strong CD133 expression was associated with a shorter time to distant recurrence in univariate, multivariate, and propensity-matched scoring analyses (P < 0.0001, P = 0.001, and P = 0.0084, respectively). In the combined analysis, distant recurrence was the most frequent (70%) in group III (SVZ-negative, Ctx-positive) GBM and those with high CD133 expression rates (≥ 15%). CONCLUSION An integrated analysis of CD133 expression and MRI-based tumor classification may be useful for predicting the recurrence pattern of GBM.
Collapse
|
8
|
Jakola AS, Bouget D, Reinertsen I, Skjulsvik AJ, Sagberg LM, Bø HK, Gulati S, Sjåvik K, Solheim O. Spatial distribution of malignant transformation in patients with low-grade glioma. J Neurooncol 2020; 146:373-380. [PMID: 31915981 PMCID: PMC6971181 DOI: 10.1007/s11060-020-03391-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 01/03/2020] [Indexed: 12/19/2022]
Abstract
Background Malignant transformation represents the natural evolution of diffuse low-grade gliomas (LGG). This is a catastrophic event, causing neurocognitive symptoms, intensified treatment and premature death. However, little is known concerning the spatial distribution of malignant transformation in patients with LGG. Materials and methods Patients histopathological diagnosed with LGG and subsequent radiological malignant transformation were identified from two different institutions. We evaluated the spatial distribution of malignant transformation with (1) visual inspection and (2) segmentations of longitudinal tumor volumes. In (1) a radiological transformation site < 2 cm from the tumor on preceding MRI was defined local transformation. In (2) overlap with pretreatment volume after importation into a common space was defined as local transformation. With a centroid model we explored if there were particular patterns of transformations within relevant subgroups. Results We included 43 patients in the clinical evaluation, and 36 patients had MRIs scans available for longitudinal segmentations. Prior to malignant transformation, residual radiological tumor volumes were > 10 ml in 93% of patients. The transformation site was considered local in 91% of patients by clinical assessment. Patients treated with radiotherapy prior to transformation had somewhat lower rate of local transformations (83%). Based upon the segmentations, the transformation was local in 92%. We did not observe any particular pattern of transformations in examined molecular subgroups. Conclusion Malignant transformation occurs locally and within the T2w hyperintensities in most patients. Although LGG is an infiltrating disease, this data conceptually strengthens the role of loco-regional treatments in patients with LGG.
Collapse
Affiliation(s)
- Asgeir S Jakola
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway. .,Department of Neurosurgery, Sahlgrenska University Hospital, Blå Stråket 5, vån 3, 41345, Gothenburg, Sweden. .,Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Box 430, 40530, Gothenburg, Sweden.
| | - David Bouget
- Department of Health Research, SINTEF Digital, Trondheim, Norway
| | | | - Anne J Skjulsvik
- Department of Pathology, St. Olavs University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Lisa Millgård Sagberg
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| | - Hans Kristian Bø
- Department of Diagnostic Imaging, Nordland Hospital Trust, Bodø, Norway
| | - Sasha Gulati
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| | - Kristin Sjåvik
- Department of Neurosurgery, University Hospital of North Norway, Tromsö, Norway
| | - Ole Solheim
- Department of Neuromedicine and Movement Science, NTNU, Trondheim, Norway.,Department of Neurosurgery, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
9
|
Zeiner PS, Kinzig M, Divé I, Maurer GD, Filipski K, Harter PN, Senft C, Bähr O, Hattingen E, Steinbach JP, Sörgel F, Voss M, Steidl E, Ronellenfitsch MW. Regorafenib CSF Penetration, Efficacy, and MRI Patterns in Recurrent Malignant Glioma Patients. J Clin Med 2019; 8:jcm8122031. [PMID: 31766326 PMCID: PMC6947028 DOI: 10.3390/jcm8122031] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/28/2019] [Accepted: 11/18/2019] [Indexed: 12/13/2022] Open
Abstract
(1) Background: The phase 2 Regorafenib in Relapsed Glioblastoma (REGOMA) trial indicated a survival benefit for patients with first recurrence of a glioblastoma when treated with the multikinase inhibitor regorafenib (REG) instead of lomustine. The aim of this retrospective study was to investigate REG penetration to cerebrospinal fluid (CSF), treatment efficacy, and effects on magnetic resonance imaging (MRI) in patients with recurrent high-grade gliomas. (2) Methods: Patients were characterized by histology, adverse events, steroid treatment, overall survival (OS), and MRI growth pattern. REG and its two active metabolites were quantified by liquid chromatography/tandem mass spectrometry in patients’ serum and CSF. (3) Results: 21 patients mainly with IDH-wildtype glioblastomas who had been treated with REG were retrospectively identified. Thirteen CFS samples collected from 3 patients of the cohort were available for pharmacokinetic testing. CSF levels of REG and its metabolites were significantly lower than in serum. Follow-up MRI was available in 19 patients and showed progressive disease (PD) in all but 2 patients. Two distinct MRI patterns were identified: 7 patients showed classic PD with progression of contrast enhancing lesions, whereas 11 patients showed a T2-dominant MRI pattern characterized by a marked reduction of contrast enhancement. Median OS was significantly better in patients with a T2-dominant growth pattern (10 vs. 27 weeks respectively, p = 0.003). Diffusion restrictions were observed in 13 patients. (4) Conclusion: REG and its metabolites were detectable in CSF. A distinct MRI pattern that might be associated with an improved OS was observed in half of the patient cohort. Treatment response in the total cohort was poor.
Collapse
Affiliation(s)
- Pia S. Zeiner
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Martina Kinzig
- IBMP—Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany; (M.K.); (F.S.)
| | - Iris Divé
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Gabriele D. Maurer
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
| | - Katharina Filipski
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Patrick N. Harter
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
- Institute of Neurology (Edinger-Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Christian Senft
- Department of Neurosurgery, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany;
| | - Oliver Bähr
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- Department of Neurology, Klinikum Aschaffenburg-Alzenau, 63739 Aschaffenburg, Germany
| | - Elke Hattingen
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Department of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Joachim P. Steinbach
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Fritz Sörgel
- IBMP—Institute for Biomedical and Pharmaceutical Research, 90562 Nürnberg-Heroldsberg, Germany; (M.K.); (F.S.)
- Institute of Pharmacology, University Duisburg-Essen, 45141 Essen, Germany
| | - Martin Voss
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
| | - Eike Steidl
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Department of Neuroradiology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany
| | - Michael W. Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, University Hospital Frankfurt, Goethe University, 60528 Frankfurt am Main, Germany; (P.S.Z.); (I.D.); (G.D.M.); (O.B.); (J.P.S.); (M.V.)
- University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany; (K.F.); (P.N.H.); (E.H.); (E.S.)
- German Cancer Consortium (DKTK), 60590 Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), University Hospital Frankfurt, Goethe University, 60590 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-87711; Fax: +49-69-6301-87713
| |
Collapse
|
10
|
The Brain Penetrating and Dual TORC1/TORC2 Inhibitor, RES529, Elicits Anti-Glioma Activity and Enhances the Therapeutic Effects of Anti-Angiogenetic Compounds in Preclinical Murine Models. Cancers (Basel) 2019; 11:cancers11101604. [PMID: 31640252 PMCID: PMC6826425 DOI: 10.3390/cancers11101604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022] Open
Abstract
Background. Glioblastoma multiforme (GBM) is a devastating disease showing a very poor prognosis. New therapeutic approaches are needed to improve survival and quality of life. GBM is a highly vascularized tumor and as such, chemotherapy and anti-angiogenic drugs have been combined for treatment. However, as treatment-induced resistance often develops, our goal was to identify and treat pathways involved in resistance to treatment to optimize the treatment strategies. Anti-angiogenetic compounds tested in preclinical and clinical settings demonstrated recurrence associated to secondary activation of the phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR pathway. Aims. Here, we determined the sensitizing effects of the small molecule and oral available dual TORC1/TORC2 dissociative inhibitor, RES529, alone or in combination with the anti-VEGF blocking antibody, bevacizumab, or the tyrosine kinase inhibitor, sunitinib, in human GBM models. Results. We observed that RES529 effectively inhibited dose-dependently the growth of GBM cells in vitro counteracting the insurgence of recurrence after bevacizumab or sunitinib administration in vivo. Combination strategies were associated with reduced tumor progression as indicated by the analysis of Time to Tumor Progression (TTP) and disease-free survival (DSF) as well as increased overall survival (OS) of tumor bearing mice. RES529 was able to reduce the in vitro migration of tumor cells and tubule formation from both brain-derived endothelial cells (angiogenesis) and tumor cells (vasculogenic mimicry). Conclusions. In summary, RES529, the first dual TORC1/TORC2 dissociative inhibitor, lacking affinity for ABCB1/ABCG2 and having good brain penetration, was active in GBM preclinical/murine models giving credence to its use in clinical trial for patients with GBM treated in association with anti-angiogenetic compounds.
Collapse
|
11
|
Piper RJ, Senthil KK, Yan JL, Price SJ. Neuroimaging classification of progression patterns in glioblastoma: a systematic review. J Neurooncol 2018; 139:77-88. [PMID: 29603080 DOI: 10.1007/s11060-018-2843-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 03/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND Our primary objective was to report the current neuroimaging classification systems of spatial patterns of progression in glioblastoma. In addition, we aimed to report the terminology used to describe 'progression' and to assess the compliance with the Response Assessment in Neuro-Oncology (RANO) Criteria. METHODS We conducted a systematic review to identify all neuroimaging studies of glioblastoma that have employed a categorical classification system of spatial progression patterns. Our review was registered with Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) registry. RESULTS From the included 157 results, we identified 129 studies that used labels of spatial progression patterns that were not based on radiation volumes (Group 1) and 50 studies that used labels that were based on radiation volumes (Group 2). In Group 1, we found 113 individual labels and the most frequent were: local/localised (58%), distant/distal (51%), diffuse (20%), multifocal (15%) and subependymal/subventricular zone (15%). We identified 13 different labels used to refer to 'progression', of which the most frequent were 'recurrence' (99%) and 'progression' (92%). We identified that 37% (n = 33/90) of the studies published following the release of the RANO classification were adherent compliant with the RANO criteria. CONCLUSIONS Our review reports significant heterogeneity in the published systems used to classify glioblastoma spatial progression patterns. Standardization of terminology and classification systems used in studying progression would increase the efficiency of our research in our attempts to more successfully treat glioblastoma.
Collapse
Affiliation(s)
- Rory J Piper
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK.
| | - Keerthi K Senthil
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| | - Jiun-Lin Yan
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Hill's Road, Cambridge, CB2 0QQ, UK
| |
Collapse
|
12
|
Galldiks N, Dunkl V, Ceccon G, Tscherpel C, Stoffels G, Law I, Henriksen OM, Muhic A, Poulsen HS, Steger J, Bauer EK, Lohmann P, Schmidt M, Shah NJ, Fink GR, Langen KJ. Early treatment response evaluation using FET PET compared to MRI in glioblastoma patients at first progression treated with bevacizumab plus lomustine. Eur J Nucl Med Mol Imaging 2018; 45:2377-2386. [PMID: 29982845 DOI: 10.1007/s00259-018-4082-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
Abstract
BACKGROUND The goal of this prospective study was to compare the value of both conventional MRI and O-(2-18F-fluoroethyl)-L-tyrosine (FET) PET for response evaluation in glioblastoma patients treated with bevacizumab plus lomustine (BEV/LOM) at first progression. METHODS After chemoradiation with concomitant and adjuvant temozolomide, 21 IDH wild-type glioblastoma patients at first progression (age range, 33-75 years; MGMT promoter unmethylated, 81%) were treated with BEV/LOM. Contrast-enhanced MRI and FET-PET scans were performed at baseline and after 8-10 weeks. We obtained FET metabolic tumor volumes (MTV) and tumor/brain ratios. Threshold values of FET-PET parameters for treatment response were established by ROC analyses using the post-progression overall survival (OS) ≤/>9 months as the reference. MRI response assessment was based on RANO criteria. The predictive ability of FET-PET thresholds and MRI changes on early response assessment was evaluated subsequently concerning OS using uni- and multivariate survival estimates. RESULTS Early treatment response as assessed by RANO criteria was not predictive for an OS>9 months (P = 0.203), whereas relative reductions of all FET-PET parameters significantly predicted an OS>9 months (P < 0.05). The absolute MTV at follow-up enabled the most significant OS prediction (sensitivity, 85%; specificity, 88%; P = 0.001). Patients with an absolute MTV below 5 ml at follow-up survived significantly longer (12 vs. 6 months, P < 0.001), whereas early responders defined by RANO criteria lived only insignificantly longer (9 vs. 6 months; P = 0.072). The absolute MTV at follow-up remained significant in the multivariate survival analysis (P = 0.006). CONCLUSIONS FET-PET appears to be useful for identifying responders to BEV/LOM early after treatment initiation.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany. .,Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany. .,Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, Cologne, Germany.
| | - Veronika Dunkl
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany
| | - Caroline Tscherpel
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Ian Law
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Otto M Henriksen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Aida Muhic
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hans S Poulsen
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Jan Steger
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany
| | - Elena K Bauer
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Matthias Schmidt
- Dept. of Nuclear Medicine, University Hospital Cologne, Cologne, Germany
| | - Nadim J Shah
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital Cologne, Josef-Stelzmann St. 9, 50937, Cologne, Germany.,Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Forschungszentrum Juelich, Leo-Brandt-St. 5, 52425, Juelich, Germany.,Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| |
Collapse
|
13
|
Nandu H, Wen PY, Huang RY. Imaging in neuro-oncology. Ther Adv Neurol Disord 2018; 11:1756286418759865. [PMID: 29511385 PMCID: PMC5833173 DOI: 10.1177/1756286418759865] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/18/2018] [Indexed: 12/11/2022] Open
Abstract
Imaging plays several key roles in managing brain tumors, including diagnosis, prognosis, and treatment response assessment. Ongoing challenges remain as new therapies emerge and there are urgent needs to find accurate and clinically feasible methods to noninvasively evaluate brain tumors before and after treatment. This review aims to provide an overview of several advanced imaging modalities including magnetic resonance imaging and positron emission tomography (PET), including advances in new PET agents, and summarize several key areas of their applications, including improving the accuracy of diagnosis and addressing the challenging clinical problems such as evaluation of pseudoprogression and anti-angiogenic therapy, and rising challenges of imaging with immunotherapy.
Collapse
Affiliation(s)
- Hari Nandu
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02445, USA
| |
Collapse
|