1
|
Khan M, Nasim M, Feizy M, Parveen R, Gull A, Khan S, Ali J. Contemporary strategies in glioblastoma therapy: Recent developments and innovations. Neuroscience 2024; 560:211-237. [PMID: 39368608 DOI: 10.1016/j.neuroscience.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/30/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM) represents one of the most prevailing and aggressive primary brain tumors among adults. Despite advances in therapeutic approaches, the complex microenvironment of GBM poses significant challenges in its optimal therapy, which are attributed to immune evasion, tumor repopulation by stem cells, and limited drug penetration across the blood-brain barrier (BBB). Nanotechnology has emerged as a promising avenue for GBM treatment, offering biosafety, sustained drug release, enhanced solubility, and improved BBB penetrability. In this review, a comprehensive overview of recent advancements in nanocarrier-based drug delivery systems for GBM therapy is emphasized. The conventional and novel treatment modalities for GBM and the potential of nanocarriers to overcome existing limitations are comprehensively covered. Furthermore, the updates in the clinical landscape of GBM therapeutics are presented in addition to the current status of drugs and patents in the same context. Through a critical evaluation of existing literature, the therapeutic prospect and limitations of nanocarrier-based drug delivery strategies are highlighted offering insights into future research directions and clinical translation.
Collapse
Affiliation(s)
- Mariya Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Modassir Nasim
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Mohammadamin Feizy
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Rabea Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Azka Gull
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India
| | - Saba Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, Delhi, India.
| |
Collapse
|
2
|
Gkasdaris G, Berthiller J, Guyotat J, Jouanneau E, Gallet C, Meyronet D, Thomas L, Cartalat S, Seyve A, Honnorat J, Ducray F, Picart T. Is Carmustine Wafer Implantation in Progressive High-Grade Gliomas a Relevant Therapeutic Option? Complication Rate, Predictors of Complications and Onco-Functional Outcomes in a Series of 53 Cases. Cancers (Basel) 2024; 16:3465. [PMID: 39456559 PMCID: PMC11506748 DOI: 10.3390/cancers16203465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: The aim was to determine the complication rate and the predictors of complications and survival in high-grade glioma surgically managed at progression with implantation of Carmustine wafers. Methods: A retrospective series of 53 consecutive patients operated on between 2017 and 2022 was built. Results: The median age was 55 ± 10.9 years. The rates of global and infectious complications were 35.8% and 18.9%, respectively. In multivariate analysis, patients with a preoperative neurological deficit were more prone to develop a postoperative complication (HR = 5.35 95% CI 1.49-19.26, p = 0.01). No predictor of infectious complication was identified. In the grade 4 glioma subgroup (n = 44), progression-free and overall survival (calculated starting from the reresection) reached 3.95 months, 95% CI 2.92-5.21 and 11.51 months, 95% CI 9.11-17.18, respectively. Preoperative KPS > 80% (HR = 0.97 95% CI 0.93-0.99, p = 0.04), Gross Total Resection (HR = 0.38 95% CI 0.18-0.80, p = 0.01), and 3-month postoperative KPS > 80% (HR = 0.35 95% CI 0.17-0.72, p = 0.004) were predictors of prolonged overall survival. Conclusions: Surgical resection is a relevant option in high-grade gliomas at progression, especially in patients with a preoperative KPS > 80%, without preoperative neurological deficit, and amenable to complete resection. In patients elected for surgery, Carmustine wafer implantation is associated with a high rate of complications. It is consequently critical to closely monitor the patients for whom this option is chosen.
Collapse
Affiliation(s)
- Grigorios Gkasdaris
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
| | - Julien Berthiller
- Department of Research and Clinical Epidemiology—Public Health, Hospices Civils de Lyon, 69677 Bron, France;
| | - Jacques Guyotat
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
| | - Emmanuel Jouanneau
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
| | - Clémentine Gallet
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
| | - David Meyronet
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Neuropathology, Groupement Hospitalier Est, Hospices Civils de Lyon, 69677 Bron, France
| | - Laure Thomas
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Stéphanie Cartalat
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Antoine Seyve
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Jérôme Honnorat
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
- MELIS Institute—Team Synaptopathies and Autoantibodies, INSERM U1314, UMR CNRS 5284, 69677 Bron, France
| | - François Ducray
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
- Department of Neuro-Oncology, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (L.T.); (S.C.)
| | - Thiebaud Picart
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, 69677 Bron, France; (J.G.); (E.J.); (C.G.)
- Faculty of Medicine, University Claude Bernard Lyon I, 69100 Villeurbanne, France; (D.M.); (A.S.); (J.H.); (F.D.)
- Cancer Initiation and Tumoral Cell Identity Department, Cancer Research Centre of Lyon (CRCL) INSERM 1052, CNRS 5286, 69008 Lyon, France
| |
Collapse
|
3
|
Yonk MG, Lim MA, Thompson CM, Tora MS, Lakhina Y, Du Y, Hoang KB, Molinaro AM, Boulis NM, Hassaneen W, Lei K. Improving glioma drug delivery: A multifaceted approach for glioma drug development. Pharmacol Res 2024; 208:107390. [PMID: 39233056 PMCID: PMC11440560 DOI: 10.1016/j.phrs.2024.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Glioma is one of the most common central nervous system (CNS) cancers that can be found within the brain and the spinal cord. One of the pressing issues plaguing the development of therapeutics for glioma originates from the selective and semipermeable CNS membranes: the blood-brain barrier (BBB) and blood-spinal cord barrier (BSCB). It is difficult to bypass these membranes and target the desired cancerous tissue because the purpose of the BBB and BSCB is to filter toxins and foreign material from invading CNS spaces. There are currently four varieties of Food and Drug Administration (FDA)-approved drug treatment for glioma; yet these therapies have limitations including, but not limited to, relatively low transmission through the BBB/BSCB, despite pharmacokinetic characteristics that allow them to cross the barriers. Steps must be taken to improve the development of novel and repurposed glioma treatments through the consideration of pharmacological profiles and innovative drug delivery techniques. This review addresses current FDA-approved glioma treatments' gaps, shortcomings, and challenges. We then outline how incorporating computational BBB/BSCB models and innovative drug delivery mechanisms will help motivate clinical advancements in glioma drug delivery. Ultimately, considering these attributes will improve the process of novel and repurposed drug development in glioma and the efficacy of glioma treatment.
Collapse
Affiliation(s)
- Marybeth G Yonk
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; College of Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Megan A Lim
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA
| | - Charee M Thompson
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; College of Liberal Arts & Sciences, University of Illinois Urbana Champaign, Champaign, IL, USA
| | - Muhibullah S Tora
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yuliya Lakhina
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly B Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas M Boulis
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA; Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois Urbana Champaign, Champaign, IL, USA; Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, USA.
| | - Kecheng Lei
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Roux A, Elia A, Hudelist B, Benzakoun J, Dezamis E, Parraga E, Moiraghi A, Simboli GA, Chretien F, Oppenheim C, Zanello M, Pallud J. Prognostic significance of MRI contrast enhancement in newly diagnosed glioblastoma, IDH-wildtype according to WHO 2021 classification. J Neurooncol 2024; 169:445-455. [PMID: 38913230 DOI: 10.1007/s11060-024-04747-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND AND OBJECTIVES Contrast enhancement in glioblastoma, IDH-wildtype is common but not systematic. In the era of the WHO 2021 Classification of CNS Tumors, the prognostic impact of a contrast enhancement and the pattern of contrast enhancement is not clearly elucidated. METHODS We performed an observational, retrospective, single-centre cohort study at a tertiary neurosurgical oncology centre (January 2006 - December 2022). We screened adult patients with a newly-diagnosed glioblastoma, IDH-wildtype in order to assess the prognosis role of the contrast enhancement and the pattern of contrast enhancement. RESULTS We included 1149 glioblastomas, IDH-wildtype: 26 (2.3%) had a no contrast enhancement, 45 (4.0%) had a faint and patchy contrast enhancement, 118 (10.5%) had a nodular contrast enhancement, and 960 (85.5%) had a ring-like contrast enhancement. Overall survival was longer in non-contrast enhanced glioblastomas (26.7 months) than in contrast enhanced glioblastomas (10.9 months) (p < 0.001). In contrast enhanced glioblastomas, a ring-like pattern was associated with shorter overall survival than in faint and patchy and nodular patterns (10.0 months versus 13.0 months, respectively) (p = 0.033). Whatever the presence of a contrast enhancement and the pattern of contrast enhancement, surgical resection was an independent predictor of longer overall survival, while age ≥ 70 years, preoperative KPS score < 70, tumour volume ≥ 30cm3, and postoperative residual contrast enhancement were independent predictors of shorter overall survival. CONCLUSION A contrast enhancement is present in the majority (97.7%) of glioblastomas, IDH-wildtype and, regardless of the pattern, is associated with a shorter overall survival. The ring-like pattern of contrast enhancement is typical in glioblastomas, IDH-wildtype (85.5%) and remains an independent predictor of shorter overall survival compared to other patterns (faint and patchy and nodular).
Collapse
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France.
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France.
| | - Angela Elia
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Benoit Hudelist
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Joseph Benzakoun
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F- 75014, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Eduardo Parraga
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Giorgia Antonia Simboli
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, F- 75014, France
| | - Fabrice Chretien
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, F- 75014, France
| | - Catherine Oppenheim
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, F- 75014, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, 1, rue Cabanis, Paris Cedex 14, F-75014, France
- Institute of Psychiatry and Neuroscience of Paris (IPNP), Université Paris Cité, INSERM U1266, IMA-Brain, Paris, F-75014, France
| |
Collapse
|
5
|
Ius T, Somma T, Pasqualetti F, Berardinelli J, Vitulli F, Caccese M, Cella E, Cenciarelli C, Pozzoli G, Sconocchia G, Zeppieri M, Gerardo C, Caffo M, Lombardi G. Local therapy in glioma: An evolving paradigm from history to horizons (Review). Oncol Lett 2024; 28:440. [PMID: 39081966 PMCID: PMC11287108 DOI: 10.3892/ol.2024.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/14/2024] [Indexed: 08/02/2024] Open
Abstract
Despite the implementation of multimodal treatments after surgery, glioblastoma (GBM) remains an incurable disease, posing a significant challenge in neuro-oncology. In this clinical setting, local therapy (LT), a developing paradigm, has received significant interest over time due to its potential to overcome the drawbacks of conventional therapy options for GBM. The present review aimed to trace the historical development, highlight contemporary advances and provide insights into the future horizons of LT in GBM management. In compliance with the Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols criteria, a systematic review of the literature on the role of LT in GBM management was conducted. A total of 2,467 potentially relevant articles were found and, after removal of duplicates, 2,007 studies were screened by title and abstract (Cohen's κ coefficient=0.92). Overall, it emerged that 15, 10 and 6 clinical studies explored the clinical efficiency of intraoperative local treatment modalities, local radiotherapy and local immunotherapy, respectively. GBM recurrences occur within 2 cm of the radiation field in 80% of cases, emphasizing the significant influence of local factors on recurrence. This highlights the urgent requirement for LT strategies. In total, three primary reasons have thus led to the development of numerous LT solutions in recent decades: i) Intratumoral implants allow the blood-brain barrier to be bypassed, resulting in limited systemic toxicity; ii) LT facilitates bridging therapy between surgery and standard treatments; and iii) given the complexity of GBM, targeting multiple components of the tumor microenvironment through ligands specific to various elements could have a synergistic effect in treatments. Considering the spatial and temporal heterogeneity of GBM, the disease prognosis could be significantly improved by a combination of therapeutic strategies in the era of precision medicine.
Collapse
Affiliation(s)
- Tamara Ius
- Unit of Neurosurgery, Head-Neck and Neurosciences Department, University Hospital of Udine, I-33100 Udine, Italy
| | - Teresa Somma
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | | | - Jacopo Berardinelli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Francesca Vitulli
- Division of Neurosurgery, Department of Neurosciences, Reproductive and Odontostomatological Sciences, Federico II University, I-80128 Naples, Italy
| | - Mario Caccese
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| | - Eugenia Cella
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
- Medical Oncology 2, San Martino Hospital-IRCCS, I-16131 Genoa Italy
| | - Carlo Cenciarelli
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Giacomo Pozzoli
- Section of Pharmacology, Department of Healthcare Surveillance and Bioethics, Catholic University Medical School, Fondazione Policlinico Universitario A. Gemelli IRCCS, I-00168 Rome, Italy
| | - Giuseppe Sconocchia
- Institute of Translational Pharmacology, National Research Council, I-00133 Roma, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, I-33100 Udine, Italy
| | - Caruso Gerardo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Maria Caffo
- Unit of Neurosurgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University Hospital of Messina, I-98125 Messina, Italy
| | - Giuseppe Lombardi
- Medical Oncology 1, Veneto Institute of Oncology-IRCCS, I-35128 Padua, Italy
| |
Collapse
|
6
|
Norollahi SE, Yousefzadeh-Chabok S, Yousefi B, Nejatifar F, Rashidy-Pour A, Samadani AA. The effects of the combination therapy of chemotherapy drugs on the fluctuations of genes involved in the TLR signaling pathway in glioblastoma multiforme therapy. Biomed Pharmacother 2024; 177:117137. [PMID: 39018875 DOI: 10.1016/j.biopha.2024.117137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
One of the most lethal and aggressive types of malignancies with a high mortality rate and poor response to treatment is glioblastoma multiforme (GBM). This means that modernizing the medications used in chemotherapy, in addition to medicines licensed for use in other illnesses and chosen using a rationale process, can be beneficial in treating this illness. Meaningly, drug combination therapy with chemical or herbal originations or implanting a drug wafer in tumors to control angiogenesis is of great importance. Importantly, the primary therapeutic hurdles in GBM are the development of angiogenesis and the blood-brain barrier (BBB), which keeps medications from getting to the tumor. This malignancy can be controlled if the drug's passage through the BBB and the VEGF (vascular endothelial growth factor), which promotes angiogenesis, are inhibited. In this way, the effect of combination therapy on the genes of different main signaling pathways like TLRs may be indicated as an impressive therapeutic strategy for treating GBM. This article aims to discuss the effects of chemotherapeutic drugs on the expression of various genes and associated translational factors involved in the TLR signaling pathway.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Bahman Yousefi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nejatifar
- Department of Hematology and Oncology, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
7
|
Roux A, Elia A, Zanello M, Pallud J. In Reply: Efficacy and Safety of Carmustine Wafer Implantation After Ventricular Opening in Glioblastomas, Isocitrate Dehydrogenase-Wildtype, in Adults. Neurosurgery 2024; 95:e28. [PMID: 38712956 DOI: 10.1227/neu.0000000000002985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 05/08/2024] Open
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris , France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris , France
| | - Angela Elia
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris , France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris , France
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris , France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris , France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris , France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris , France
| |
Collapse
|
8
|
Rios SA, Oyervides S, Uribe D, Reyes AM, Fanniel V, Vazquez J, Keniry M. Emerging Therapies for Glioblastoma. Cancers (Basel) 2024; 16:1485. [PMID: 38672566 PMCID: PMC11048459 DOI: 10.3390/cancers16081485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is most commonly a primary brain tumor and the utmost malignant one, with a survival rate of approximately 12-18 months. Glioblastoma is highly heterogeneous, demonstrating that different types of cells from the same tumor can manifest distinct gene expression patterns and biological behaviors. Conventional therapies such as temozolomide, radiation, and surgery have limitations. As of now, there is no cure for glioblastoma. Alternative treatment methods to eradicate glioblastoma are discussed in this review, including targeted therapies to PI3K, NFKβ, JAK-STAT, CK2, WNT, NOTCH, Hedgehog, and TGFβ pathways. The highly novel application of oncolytic viruses and nanomaterials in combating glioblastoma are also discussed. Despite scores of clinical trials for glioblastoma, the prognosis remains poor. Progress in breaching the blood-brain barrier with nanomaterials and novel avenues for targeted and combination treatments hold promise for the future development of efficacious glioblastoma therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Megan Keniry
- School of Integrative Biological and Chemical Sciences, College of Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA; (S.A.R.); (D.U.); (A.M.R.)
| |
Collapse
|
9
|
Aebisher D, Przygórzewska A, Myśliwiec A, Dynarowicz K, Krupka-Olek M, Bożek A, Kawczyk-Krupka A, Bartusik-Aebisher D. Current Photodynamic Therapy for Glioma Treatment: An Update. Biomedicines 2024; 12:375. [PMID: 38397977 PMCID: PMC10886821 DOI: 10.3390/biomedicines12020375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Research on the development of photodynamic therapy for the treatment of brain tumors has shown promise in the treatment of this highly aggressive form of brain cancer. Analysis of both in vivo studies and clinical studies shows that photodynamic therapy can provide significant benefits, such as an improved median rate of survival. The use of photodynamic therapy is characterized by relatively few side effects, which is a significant advantage compared to conventional treatment methods such as often-used brain tumor surgery, advanced radiotherapy, and classic chemotherapy. Continued research in this area could bring significant advances, influencing future standards of treatment for this difficult and deadly disease.
Collapse
Affiliation(s)
- David Aebisher
- Department of Photomedicine and Physical Chemistry, Medical College of the Rzeszów University, 35-959 Rzeszów, Poland
| | - Agnieszka Przygórzewska
- English Division Science Club, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| | - Angelika Myśliwiec
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Klaudia Dynarowicz
- Center for Innovative Research in Medical and Natural Sciences, Medical College of the Rzeszów University, 35-310 Rzeszów, Poland; (A.M.); (K.D.)
| | - Magdalena Krupka-Olek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Andrzej Bożek
- Clinical Department of Internal Medicine, Dermatology and Allergology, Medical University of Silesia in Katowice, M. Sklodowskiej-Curie 10, 41-800 Zabrze, Poland; (M.K.-O.); (A.B.)
| | - Aleksandra Kawczyk-Krupka
- Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Medical University of Silesia in Katowice, Batorego 15 Street, 41-902 Bytom, Poland
| | - Dorota Bartusik-Aebisher
- Department of Biochemistry and General Chemistry, Medical College of the Rzeszów University, 35-025 Rzeszów, Poland;
| |
Collapse
|
10
|
Roux A, Elia A, Aboubakr O, Moiraghi A, Simboli GA, Tauziede-Espariat A, Dezamis E, Parraga E, Benevello C, Fathallah H, Chretien F, Oppenheim C, Zanello M, Pallud J. Efficacy and Safety of Carmustine Wafer Implantation After Ventricular Opening in Glioblastomas, Isocitrate Dehydrogenase-Wildtype, in Adults. Neurosurgery 2024:00006123-990000000-01012. [PMID: 38189433 DOI: 10.1227/neu.0000000000002817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND AND OBJECTIVES We assessed the impact of ventricular opening on postoperative complications and survival of carmustine wafer implantation during surgery of newly diagnosed supratentorial glioblastomas, isocitrate dehydrogenase (IDH)-wildtype in adults. METHODS We performed an observational, retrospective, single-center cohort study at a tertiary surgical neuro-oncological center between January 2006 and December 2021. RESULTS One hundred ninety-four patients who benefited from a first-line surgical resection with carmustine wafer implantation were included. Seventy patients (36.1%) had a ventricular opening. We showed that ventricular opening (1) did not increase overall postoperative complication rates (P = .201); (2) did not worsen the early postoperative Karnofsky Performance Status score (P = .068); (3) did not increase the time interval from surgery to adjuvant oncological treatment (P = .458); (4) did not affect the completion of the standard radiochemotherapy protocol (P = .164); (5) did not affect progression-free survival (P = .059); and (6) did not affect overall survival (P = .142). CONCLUSION In this study, ventricular opening during first-line surgical resection did not affect the survival and postoperative complications after use of carmustine wafer implantation in adult patients with a newly diagnosed supratentorial glioblastoma, IDH-wildtype. This warrants a prospective and multicentric study to clearly assess the impact of the ventricular opening after carmustine wafer implantation in glioblastoma, IDH-wildtype.
Collapse
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Angela Elia
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Oumaima Aboubakr
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Giorgia Antonia Simboli
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Arnault Tauziede-Espariat
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Eduardo Parraga
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Chiara Benevello
- Service de Neurochirurgie, Hôpital Européen de Paris - La Roseraie, Aubervilliers, France
| | - Houssem Fathallah
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Fabrice Chretien
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
- Service de Neuropathologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte-Anne, Paris, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
- Service de Neuroradiologie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Paris, France
| |
Collapse
|
11
|
Roux A, Aboubakr O, Elia A, Moiraghi A, Benevello C, Fathallah H, Parraga E, Oppenheim C, Chretien F, Dezamis E, Zanello M, Pallud J. Carmustine wafer implantation for supratentorial glioblastomas, IDH-wildtype in "extreme" neurosurgical conditions. Neurosurg Rev 2023; 46:140. [PMID: 37329341 DOI: 10.1007/s10143-023-02052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 06/19/2023]
Abstract
We assessed the feasibility of Carmustine wafer implantation in "extreme" conditions (i.e. patients > 80 years and Karnofsky Performance Status score < 50) and of implantation ≥ 12 Carmustine wafers in adult patients harbouring a newly diagnosed supratentorial glioblastoma, IDH-wildtype. We performed an observational, retrospective single-centre cohort study at a tertiary surgical neuro-oncological centre between January 2006 and December 2021. Four hundred eighty patients who benefited from a surgical resection at first-line treatment were included. We showed that Carmustine wafer implantation in patients > 80 years, in patients with a Karnofsky performance status score < 50, and that implantation ≥ 12 Carmustine wafers (1) did not increase overall postoperative complication rates, (2) did not affect the completion of standard radiochemotherapy protocol, (3) did not worsen the postoperative Karnofsky Performance Status scores, and (4) did not significantly affect the time to oncological treatment. We showed that the implantation of ≥ 12 Carmustine wafers improved progression-free survival (31.0 versus 10.0 months, p = 0.025) and overall survival (39.0 versus 16.5 months, p = 0.041) without increasing postoperative complication rates. Carmustine wafer implantation during the surgical resection of a newly diagnosed supratentorial glioblastoma, IDH-wildtype is safe and efficient in patients > 80 years and in patients with preoperative Karnofsky Performance Status score < 50. The number of Carmustine wafers should be adapted (up to 16 in our experience) to the resection cavity to improve survival without increasing postoperative overall complication rates.
Collapse
Affiliation(s)
- Alexandre Roux
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France.
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France.
| | - Oumaima Aboubakr
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Angela Elia
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Alessandro Moiraghi
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Chiara Benevello
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
| | - Houssem Fathallah
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
| | - Eduardo Parraga
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
| | - Catherine Oppenheim
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
- Service de Neuroradiologie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
| | - Fabrice Chretien
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
- Service de Neuropathologie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
| | - Edouard Dezamis
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
| | - Marc Zanello
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Johan Pallud
- Service de Neurochirurgie, GHU Paris Psychiatrie Et Neurosciences, Site Sainte Anne, 75014, Paris, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| |
Collapse
|
12
|
Champeaux-Depond C, Jecko V, Weller J, Constantinou P, Tuppin P, Metellus P. Newly Diagnosed High-Grade Glioma Surgery with Carmustine Wafers Implantation. A Long-Term Nationwide Retrospective Study. World Neurosurg 2023; 173:e778-e786. [PMID: 36906091 DOI: 10.1016/j.wneu.2023.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND Widespread use of carmustine wafers (CWs) to treat high-grade gliomas (HGG) has been limited by uncertainties about their efficacy. We sought to assess the outcome of patients after newly diagnosed HGG surgery with CW implantation and search for associated factors. METHODS We processed the French medico-administrative national database between 2008 and 2019 to retrieve ad hoc cases. Survival methods were implemented. RESULTS In total, 1608 patients who had CW implantation after HGG resection at 42 different institutions between 2008 and 2019 were identified; 36.7% were female and, median age at HGG resection with CW implantation was 61.5 years, interquartile range (IQR) [52.9-69.1]. A total of 1460 patients (90.8%) had died at data collection at a median age at death of 63.5 years, IQR [55.3-71.2]. Median overall survival (OS) was 1.42 years, 95% confidence interval [CI] 1.35-1.49, i.e., 16.8 months. Median age at death was 63.5 years, IQR [55.3-71.2]. OS at 1, 2, and, 5 years was 67.4%, 95% CI 65.1-69.7; 33.1%, 95% CI 30.9-35.5; and 10.7%, 95% CI 9.2-12.4, respectively. In the adjusted regression, sex (hazard ratio [HR] 0.82, 95% CI 0.74-0.92, P < 0.001), age at HGG surgery with CW implantation (HR 1.02, 95% CI 1.02-1.03, P < 0.001), adjuvant radiotherapy (HR 0.78, 95% CI 0.7-0.86, P < 0.001), chemotherapy by temozolomide (HR 0.7, 95% CI 0.63-0.79, P < 0.001), and redo surgery for HGG recurrence (HR 0.81, 95% CI 0.69-0.94, P = 0.005) remained significantly associated with the outcome. CONCLUSIONS OS of patients with newly diagnosed HGG who underwent surgery with CW implantation is better in young patients, those of the female sex, and for those who complete concomitant chemoradiotherapy. Redo surgery for HGG recurrence also was associated with prolonged survival.
Collapse
Affiliation(s)
| | - Vincent Jecko
- Department of Neurosurgery, Pellegrin Hospital, Bordeaux, France
| | | | - Panayotis Constantinou
- Direction de la Stratégie, des Etudes et des Statistiques, Caisse Nationale de L'Assurance Maladie, Paris, France
| | - Philippe Tuppin
- Direction de la Stratégie, des Etudes et des Statistiques, Caisse Nationale de L'Assurance Maladie, Paris, France
| | - Philippe Metellus
- Department of Neurosurgery, Hôpital privé Clairval - Ramsay Santé, Marseille, France; Institut de Neurophysiopathologie - CNRS UMR 7051, Aix-Marseille Université, Marseille, France
| |
Collapse
|
13
|
CRISPR/Cas9-induced knockout reveals the role of ABCB1 in the response to temozolomide, carmustine and lomustine in glioblastoma multiforme. Pharmacol Res 2022; 185:106510. [DOI: 10.1016/j.phrs.2022.106510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/22/2022]
|
14
|
Ricciardi L, Manini I, Cesselli D, Trungu S, Piazza A, Mangraviti A, Miscusi M, Raco A, Ius T. Carmustine Wafers Implantation in Patients With Newly Diagnosed High Grade Glioma: Is It Still an Option? Front Neurol 2022; 13:884158. [PMID: 35812101 PMCID: PMC9259966 DOI: 10.3389/fneur.2022.884158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
BackgroundThe implantation protocol for Carmustine Wafers (CWs) in high grade glioma (HGG) was developed to offer a bridge between surgical resection and adjuvant treatments, such as radio- and chemotherapy. In the last years, however, a widespread use of CWs has been limited due to uncertainties regarding efficacy, in addition to increased risk of infection and elevated costs of treatment.ObjectiveThe aims of our study were to investigate the epidemiology of patients that underwent surgery for HGG with CW implantation, in addition to the assessment of related complications, long-term overall survival (OS), and associated prognostic factors.MethodsThree different medical databases were screened for conducting a systematic review of the literature, according to the PRISMA statement guidelines, evaluating the role of BCNU wafer implantation in patients with newly diagnosed HGG. The search query was based on a combination of medical subject headings (MeSH): “high grade glioma” [MeSH] AND “Carmustine” [MeSH] and free text terms: “surgery” OR “BCNU wafer” OR “Gliadel” OR “systemic treatment options” OR “overall survival.”ResultsThe analysis of the meta-data demonstrated that there was a significant advantage in using CWs in newly diagnosed GBM in terms of OS, and a very low heterogeneity among the included studies [mean difference 2.64 (95% CI 0.85, 4.44); p = 0.004; I2149 = 0%]. Conversely, no significant difference between the two treatment groups in terms of PFS wad detected (p = 0.55). The analysis of complications showed a relatively higher rate in Carmustine implanted patients, although this difference was not significant (p = 0.53).ConclusionsThis meta-analysis seems to suggest that CWs implantation plays a significant role in improving the OS, when used in patients with newly diagnosed HGG. To minimize the risk of side effects, however, a carful patient selection based mainly on patient age and tumor volume should be desirable.
Collapse
Affiliation(s)
- Luca Ricciardi
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, Udine, Italy
| | - Daniela Cesselli
- Institute of Pathology, University Hospital of Udine, Udine, Italy
- Department of Pathology, University Hospital of Udine, Udine, Italy
| | - Sokol Trungu
- UO di Neurochirurgia, Azienda Ospedaliera Cardinal G. Panico, Tricase, Italy
| | - Amedeo Piazza
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Antonella Mangraviti
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Massimo Miscusi
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Antonino Raco
- UOC di Neurochirurgia, Department of NESMOS, Sapienza University of Rome, Rome, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, S. Maria della Misericordia University Hospital, Udine, Italy
- *Correspondence: Tamara Ius
| |
Collapse
|
15
|
Discriminating surgical bed cysts from bacterial brain abscesses after Carmustine wafer implantation in newly diagnosed IDH-wildtype glioblastomas. Neurosurg Rev 2021; 45:1501-1511. [PMID: 34651215 DOI: 10.1007/s10143-021-01670-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/16/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
Carmustine wafers can be implanted in the surgical bed of high-grade gliomas, which can induce surgical bed cyst formation, leading to clinically relevant mass effect. An observational retrospective monocentric study was conducted including 122 consecutive adult patients with a newly diagnosed supratentorial glioblastoma who underwent a surgical resection with Carmustine wafer implantation as first line treatment (2005-2018). Twenty-two patients (18.0%) developed a postoperative contrast-enhancing cyst within the surgical bed: 16 surgical bed cysts and six bacterial abscesses. All patients with a surgical bed cyst were managed conservatively, all resolved on imaging follow-up, and no patient stopped the radiochemotherapy. Independent risk factors of formation of a postoperative surgical bed cyst were age ≥ 60 years (p = 0.019), number of Carmustine wafers implanted ≥ 8 (p = 0.040), and partial resection (p = 0.025). Compared to surgical bed cysts, the occurrence of a postoperative bacterial abscess requiring surgical management was associated more frequently with a shorter time to diagnosis from surgery (p = 0.009), new neurological deficit (p < 0.001), fever (p < 0.001), residual air in the cyst (p = 0.018), a cyst diameter greater than that of the initial tumor (p = 0.027), and increased mass effect and brain edema compared to early postoperative MRI (p = 0.024). Contrast enhancement (p = 0.473) and diffusion signal abnormalities (p = 0.471) did not differ between postoperative bacterial abscesses and surgical bed cysts. Clinical and imaging findings help discriminate between surgical bed cysts and bacterial abscesses following Carmustine wafer implantation. Surgical bed cysts can be managed conservatively. Individual risk factors will help tailor their steroid therapy and imaging follow-up.
Collapse
|
16
|
Watts C, Ashkan K, Jenkinson MD, Price SJ, Santarius T, Matys T, Zhang TT, Finch A, Collins P, Allinson K, Jefferies SJ, Scoffings DJ, Zisakis A, Phillips M, Wanek K, Smith P, Clifton-Hadley L, Counsell N. An Evaluation of the Tolerability and Feasibility of Combining 5-Amino-Levulinic Acid (5-ALA) with BCNU Wafers in the Surgical Management of Primary Glioblastoma. Cancers (Basel) 2021; 13:cancers13133241. [PMID: 34209555 PMCID: PMC8267684 DOI: 10.3390/cancers13133241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary This reseach explored the safety and feasibility of combining local chemotherapy with fluorescence-guided resection in patients with a brain cancer, glioblastoma. The aim was to determine if the combination of fluorescence-guided surgery using 5-aminolevulinic acid and BCNU wafers left in the tumour cavity at the end of the operation was safe and did not prevent patients getting subsequent chemo-radiotherapy. The results showed that combining local chemotherapy with fluorescence-guided resection was tolerable in terms of surgical morbidity and overall toxicity. However, any potential therapeutic benefit requires further investigation, preferably with improved local delivery technologies. Abstract Background Glioblastoma (GBM) is the commonest primary malignant brain tumour in adults and effective treatment options are limited. Combining local chemotherapy with enhanced surgical resection using 5-aminolevulinic acid (5-ALA) could improve outcomes. Here we assess the safety and feasibility of combining BCNU wafers with 5-ALA-guided surgery. Methods We conducted a multicentre feasibility study of 5-ALA with BCNU wafers followed by standard-of-care chemoradiotherapy (chemoRT) in patients with suspected GBM. Patients judged suitable for radical resection were administered 5-ALA pre-operatively and BCNU wafers at the end resection. Post-operative treatment continued as per routine clinical practice. The primary objective was to establish if combining 5-ALA and BCNU wafers is safe without compromising patients from receiving standard chemoRT. Results Seventy-two patients were recruited, sixty-four (88.9%) received BCNU wafer implants, and fifty-nine (81.9%) patients remained eligible following formal histological diagnosis. Seven (11.9%) eligible patients suffered surgical complications but only two (3.4%) were not able to begin chemoRT, four (6.8%) additional patients did not begin chemoRT within 6 weeks of surgery due to surgical complications. Eleven (18.6%) patients did not begin chemoRT for other reasons (other toxicity (n = 3), death (n = 3), lost to follow-up/withdrew (n = 3), clinical decision (n = 1), poor performance status (n = 1)). Median progression-free survival was 8.7 months (95% CI: 6.4–9.8) and median overall survival was 14.7 months (95% CI: 11.7–16.8). Conclusions Combining BCNU wafers with 5-ALA-guided surgery in newly diagnosed GBM patients is both feasible and tolerable in terms of surgical morbidity and overall toxicity. Any potential therapeutic benefit for the sequential use of 5-ALA and BCNU with chemoRT requires further investigation with improved local delivery technologies.
Collapse
Affiliation(s)
- Colin Watts
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2WB, UK;
- Correspondence:
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital, London SE5 9RS, UK;
| | - Michael D. Jenkinson
- Department of Neurosurgery, The Walton Centre, Liverpool L9 7LJ, UK;
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Stephen J. Price
- Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, UK
| | - Thomas Santarius
- Academic Neurosurgery Department, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Tomasz Matys
- Department of Clinical Neurosciences, Cambridge University Hospitals Foundation Trust, Cambridge CB2 0QQ, UK; (T.S.); (P.C.)
| | - Ting Ting Zhang
- Department of Clinical Neurosciences, Cambridge University Hospitals Foundation Trust, Cambridge CB2 0QQ, UK; (T.S.); (P.C.)
| | - Alina Finch
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Peter Collins
- Academic Neurosurgery Department, University of Cambridge, Cambridge CB2 0QQ, UK;
| | - Kieren Allinson
- Department of Radiology, Addenbrooke’s Hospital, Cambridge University Hospitals Foundation Trust, Cambridge CB2 0QQ, UK; (T.M.); (T.T.Z.); (D.J.S.)
| | - Sarah J. Jefferies
- Department of Histopathology, Cambridge University Hospitals Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Daniel J. Scoffings
- Department of Clinical Neurosciences, Cambridge University Hospitals Foundation Trust, Cambridge CB2 0QQ, UK; (T.S.); (P.C.)
| | - Athanasios Zisakis
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham B15 2WB, UK;
| | - Mark Phillips
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK;
| | - Katharina Wanek
- Cancer Institute, University College London, London WC1E 6DD, UK;
| | - Paul Smith
- Cancer Institute, University College London, London WC1E 6DD, UK;
| | | | | |
Collapse
|
17
|
Bettag C, Hussein A, Sachkova A, Bock HC, Mielke D, Rohde V, Abboud T. Implantation of Carmustine wafers after resection of malignant glioma with and without opening of the ventricular system. J Neurooncol 2021; 153:519-525. [PMID: 34148163 DOI: 10.1007/s11060-021-03792-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Implantation of biodegradable Carmustine wafers in patients with malignant glioma is not generally recommended when the ventricular system is opened during tumor resection. Thrombin/fibrinogenn-covered collagen fleeces showed promising results in sufficiently closing ventricular defects. The aim of this study was to evaluate the postoperative morbidity in patients with implanted Carmustine wafers either with opened or intact ventricular system. METHODS A consecutive series of patients who underwent resection of malignant glioma with implantation of Carmustine wafers was analyzed. In case of opening of the ventricular system, the defect in the ventricle wall was sealed using a collagen sponge coated with fibrinogen and thrombin prior to the implantation of the wafers. Postoperative adverse events (AE) and Karnofsky performance status scale (KPS) at follow up were compared between both groups. RESULTS Fifty-four patients were included. The ventricular system was opened in 33 patients and remained intact in 21 patients. Both groups were comparable in terms of age, rate of primary and recurrent glioma, preoperative KPS, rate of gross total resection and number of implanted wafers. Postoperative AEs occurred in 9/33 patients (27.3%) with opened and in 5/21 patients (23.8%) with intact ventricular system (p = 0.13). At follow-up assessments, KPS was not significantly different between both groups (p = 0.18). Opened ventricular system was not associated with a higher incidence of postoperative AEs (p = 0.98). CONCLUSION Appropriate closure of opened ventricular system during resection of malignant glioma allows for a safe implantation of Carmustine wafers and is not associated with a higher incidence of postoperative AEs.
Collapse
Affiliation(s)
- Christoph Bettag
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany
| | - Abdelhalim Hussein
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany
| | - Alexandra Sachkova
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany
| | - Hans Christoph Bock
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany
| | - Dorothee Mielke
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany
| | - Veit Rohde
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany
| | - Tammam Abboud
- Department of Neurosurgery, University Medical Center Goettingen, University Hospital Göttingen, Georg-August-University, Goettingen, Germany.
| |
Collapse
|
18
|
De Witt Hamer PC, Klein M, Hervey-Jumper SL, Wefel JS, Berger MS. Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021; 88:720-732. [PMID: 33517431 PMCID: PMC7955971 DOI: 10.1093/neuros/nyaa365] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
Functional outcome following glioma surgery is defined as how the patient functions or feels. Functional outcome is a coprimary end point of surgery in patients with diffuse glioma, together with oncological outcome. In this review, we structure the functional outcome measurements following glioma surgery as reported in the last 5 yr. We review various perspectives on functional outcome of glioma surgery with available measures, and offer suggestions for their use. From the recent neurosurgical literature, 160 publications were retrieved fulfilling the selection criteria. In these publications, neurological outcomes were reported most often, followed by activities of daily living, seizure outcomes, neurocognitive outcomes, and health-related quality of life or well-being. In more than a quarter of these publications functional outcome was not reported. A minimum essential consensus set of functional outcome measurements would benefit comparison across neurosurgical reports. The consensus set should be based on a combination of clinician- and patient-reported outcomes, assessed at a predefined time before and after surgery. The selected measurements should have psychometric properties supporting the intended use including validity-related evidence, reliability, and sensitivity to detect meaningful change with minimal burden to ensure compliance. We circulate a short survey as a start towards reporting guidelines. Many questions remain to better understand, report, and improve functional outcome following glioma surgery.
Collapse
Affiliation(s)
- Philip C De Witt Hamer
- Correspondence: Philip C. De Witt Hamer, MD, PhD, Amsterdam UMC, Vrije Universiteit, Department of Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.
| | - Martin Klein
- Amsterdam UMC, Vrije Universiteit, Department of Medical Psychology, Neuroscience Campus, Amsterdam, Netherlands
| | - Shawn L Hervey-Jumper
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| | - Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology and Department of Radiation Oncology, Houston, Texas
| | - Mitchel S Berger
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| |
Collapse
|
19
|
Li J, Wang W, Wang J, Cao Y, Wang S, Zhao J. Viral Gene Therapy for Glioblastoma Multiforme: A Promising Hope for the Current Dilemma. Front Oncol 2021; 11:678226. [PMID: 34055646 PMCID: PMC8155537 DOI: 10.3389/fonc.2021.678226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/29/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma multiforme (GBM), as one of the most common malignant brain tumors, was limited in its treatment effectiveness with current options. Its invasive and infiltrative features led to tumor recurrence and poor prognosis. Effective treatment and survival improvement have always been a challenge. With the exploration of genetic mutations and molecular pathways in neuro-oncology, gene therapy is becoming a promising therapeutic approach. Therapeutic genes are delivered into target cells with viral vectors to act specific antitumor effects, which can be used in gene delivery, play an oncolysis effect, and induce host immune response. The application of engineering technology makes the virus vector used in genetics a more prospective future. Recent advances in viral gene therapy offer hope for treating brain tumors. In this review, we discuss the types and designs of viruses as well as their study progress and potential applications in the treatment of GBM. Although still under research, viral gene therapy is promising to be a new therapeutic approach for GBM treatment in the future.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China.,Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China.,Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Kommers I, Ackermans L, Ardon H, van den Brink WA, Bouwknegt W, Balvers RK, van der Gaag N, Bosscher L, Kloet A, Koopmans J, Laan MT, Tewarie RN, Robe PA, van der Veer O, Wagemakers M, Zwinderman AH, De Witt Hamer PC. Between-hospital variation in rates of complications and decline of patient performance after glioblastoma surgery in the dutch Quality Registry Neuro Surgery. J Neurooncol 2021; 152:289-298. [PMID: 33511509 PMCID: PMC7997839 DOI: 10.1007/s11060-021-03697-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/06/2021] [Indexed: 01/09/2023]
Abstract
Introduction For decisions on glioblastoma surgery, the risk of complications and decline in performance is decisive. In this study, we determine the rate of complications and performance decline after resections and biopsies in a national quality registry, their risk factors and the risk-standardized variation between institutions. Methods Data from all 3288 adults with first-time glioblastoma surgery at 13 hospitals were obtained from a prospective population-based Quality Registry Neuro Surgery in the Netherlands between 2013 and 2017. Patients were stratified by biopsies and resections. Complications were categorized as Clavien-Dindo grades II and higher. Performance decline was considered a deterioration of more than 10 Karnofsky points at 6 weeks. Risk factors were evaluated in multivariable logistic regression analysis. Patient-specific expected and observed complications and performance declines were summarized for institutions and analyzed in funnel plots. Results For 2271 resections, the overall complication rate was 20 % and 16 % declined in performance. For 1017 biopsies, the overall complication rate was 11 % and 30 % declined in performance. Patient-related characteristics were significant risk factors for complications and performance decline, i.e. higher age, lower baseline Karnofsky, higher ASA classification, and the surgical procedure. Hospital characteristics, i.e. case volume, university affiliation and biopsy percentage, were not. In three institutes the observed complication rate was significantly less than expected. In one institute significantly more performance declines were observed than expected, and in one institute significantly less. Conclusions Patient characteristics, but not case volume, were risk factors for complications and performance decline after glioblastoma surgery. After risk-standardization, hospitals varied in complications and performance declines. Supplementary Information The online version contains supplementary material available at 10.1007/s11060-021-03697-8.
Collapse
Affiliation(s)
- Ivar Kommers
- Department of Neurosurgery, Location VUmc, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands
| | - Linda Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - Hilko Ardon
- Department of Neurosurgery, St Elisabeth Hospital, Tilburg, Netherlands
| | | | - Wim Bouwknegt
- Department of Neurosurgery, Medical Center Slotervaart, Amsterdam, Netherlands
| | - Rutger K Balvers
- Department of Neurosurgery, Erasmus University Medical Centre, Rotterdam, Netherlands
| | - Niels van der Gaag
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Lisette Bosscher
- Department of Neurosurgery, Northwest Clinics, Alkmaar, Netherlands
| | - Alfred Kloet
- Department of Neurosurgery, Medical Center Haaglanden, The Hague, Netherlands
| | - Jan Koopmans
- Department of Neurosurgery, Martini Hospital, Groningen, Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rishi Nandoe Tewarie
- Department of Neurosurgery, Leiden University Medical Center, Leiden, Netherlands
| | - Pierre A Robe
- Department of Neurology & Neurosurgery, University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Michiel Wagemakers
- Department of Neurosurgery, University Medical Center Groningen, Groningen, Netherlands
| | - Aeilko H Zwinderman
- Department of Clinical Epidemiology and Biostatistics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Philip C De Witt Hamer
- Department of Neurosurgery, Location VUmc, Cancer Center Amsterdam, Amsterdam University Medical Centers, De Boelelaan 1117, 1081 HV, Amsterdam, Netherlands.
| |
Collapse
|
21
|
Farrell C, Shi W, Bodman A, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of emerging developments in the management of newly diagnosed glioblastoma. J Neurooncol 2020; 150:269-359. [PMID: 33215345 DOI: 10.1007/s11060-020-03607-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 12/12/2022]
Abstract
TARGET POPULATION These recommendations apply to adult patients with newly diagnosed or suspected glioblastoma. IMAGING Question What imaging modalities are in development that may be able to provide improvements in diagnosis, and therapeutic guidance for individuals with newly diagnosed glioblastoma? RECOMMENDATION Level III: It is suggested that techniques utilizing magnetic resonance imaging for diffusion weighted imaging, and to measure cerebral blood and magnetic spectroscopic resonance imaging of N-acetyl aspartate, choline and the choline to N-acetyl aspartate index to assist in diagnosis and treatment planning in patients with newly diagnosed or suspected glioblastoma. SURGERY Question What new surgical techniques can be used to provide improved tumor definition and resectability to yield better tumor control and prognosis for individuals with newly diagnosed glioblastoma? RECOMMENDATIONS Level II: The use of 5-aminolevulinic acid is recommended to improve extent of tumor resection in patients with newly diagnosed glioblastoma. Level II: The use of 5-aminolevulinic acid is recommended to improve median survival and 2 year survival in newly diagnosed glioblastoma patients with clinical characteristics suggesting poor prognosis. Level III: It is suggested that, when available, patients be enrolled in properly designed clinical trials assessing the value of diffusion tensor imaging in improving the safety of patients with newly diagnosed glioblastoma undergoing surgery. NEUROPATHOLOGY Question What new pathology techniques and measurement of biomarkers in tumor tissue can be used to provide improved diagnostic ability, and determination of therapeutic responsiveness and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: Assessment of tumor MGMT promoter methylation status is recommended as a significant predictor of a longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level II: Measurement of tumor expression of neuron-glia-2, neurofilament protein, glutamine synthetase and phosphorylated STAT3 is recommended as a predictor of overall survival in patients with newly diagnosed with glioblastoma. Level III: Assessment of tumor IDH1 mutation status is suggested as a predictor of longer progression free survival and overall survival in patients with newly diagnosed with glioblastoma. Level III: Evaluation of tumor expression of Phosphorylated Mitogen-Activated Protein Kinase protein, EGFR protein, and Insulin-like Growth Factor-Binding Protein-3 is suggested as a predictor of overall survival in patients with newly diagnosed with glioblastoma. RADIATION Question What radiation therapy techniques are in development that may be used to provide improved tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level III: It is suggested that patients with newly diagnosed glioblastoma undergo pretreatment radio-labeled amino acid tracer positron emission tomography to assess areas at risk for tumor recurrence to assist in radiation treatment planning. Level III: It is suggested that, when available, patients be with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of radiation dose escalation, altered fractionation, or new radiation delivery techniques. CHEMOTHERAPY Question What emerging chemotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no emerging chemotherapeutic agents or techniques were identified in this review that improved tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of chemotherapy. MOLECULAR AND TARGETED THERAPY Question What new targeted therapy agents are available to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no new molecular and targeted therapies have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of molecular and targeted therapies IMMUNOTHERAPY: Question What emerging immunotherapeutic agents or techniques are available to provide better tumor control and prognosis for patients with newly diagnosed glioblastomas? RECOMMENDATION Level III: As no immunotherapeutic agents have clearly provided better tumor control and prognosis it is suggested that, when available, patients with newly diagnosed glioblastomas be enrolled in properly designed clinical trials of immunologically-based therapies. NOVEL THERAPIES Question What novel therapies or techniques are in development to provide better tumor control and prognosis for individuals with newly diagnosed glioblastomas? RECOMMENDATIONS Level II: The use of tumor-treating fields is recommended for patients with newly diagnosed glioblastoma who have undergone surgical debulking and completed concurrent chemoradiation without progression of disease at the time of tumor-treating field therapy initiation. Level II: It is suggested that, when available, enrollment in properly designed studies of vector containing herpes simplex thymidine kinase gene and prodrug therapies be considered in patients with newly diagnosed glioblastoma.
Collapse
Affiliation(s)
- Christopher Farrell
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
22
|
Redjal N, Nahed BV, Dietrich J, Kalkanis SN, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines update on the role of chemotherapeutic management and antiangiogenic treatment of newly diagnosed glioblastoma in adults. J Neurooncol 2020; 150:165-213. [PMID: 33215343 DOI: 10.1007/s11060-020-03601-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/08/2020] [Indexed: 12/01/2022]
Abstract
QUESTION What is the role of temozolomide in the management of adult patients (aged 65 and under) with newly diagnosed glioblastoma? TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level I: Concurrent and post-irradiation Temozolomide (TMZ) in combination with radiotherapy and post-radiotherapy as described by Stupp et al. is recommended to improve both PFS and OS in adult patients with newly diagnosed GBM. There is no evidence that alterations in the dosing regimen have additional beneficial effect. QUESTION Is there benefit to adjuvant temozolomide treatment in elderly patients (> 65 years old?). TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level III: Adjuvant TMZ treatment is suggested as a treatment option to improve PFS and OS in adult patients (over 70 years of age) with newly diagnosed GBM. QUESTION What is the role of local regional chemotherapy with BCNU biodegradable polymeric wafers in adult patients with newly diagnosed glioblastoma? TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level III: There is insufficient evidence for the use of BCNU wafers following resection in patients with newly diagnosed glioblastoma who undergo the Stupp protocol after surgery. Further studies of higher quality are suggested to understand the role of BCNU wafer and other locoregional therapy in the setting of Stupp Protocol. QUESTION What is the role of bevacizumab in the adult patient with newly diagnosed glioblastoma? TARGET POPULATION These recommendations apply to adult patients diagnosed with newly diagnosed glioblastoma. RECOMMENDATION Level I: Bevacizumab in general is not recommended in the initial treatment of adult patients with newly diagnosed GBM. It continues to be strongly recommended that patients with newly diagnosed GBM be enrolled in properly designed clinical trials to assess the benefit of novel chemotherapeutic agents compared to standard therapy.
Collapse
Affiliation(s)
- Navid Redjal
- Department of Neurosurgery, Capital Health Institute for Neurosciences, Capital Health Institute for Neurosciences, Two Capital Way, Pennington, NJ, 08534, USA.
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jorg Dietrich
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Steven N Kalkanis
- Department of Neurosurgery, Henry Ford Health System, Detroit, MI, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
23
|
Xiao ZZ, Wang ZF, Lan T, Huang WH, Zhao YH, Ma C, Li ZQ. Carmustine as a Supplementary Therapeutic Option for Glioblastoma: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:1036. [PMID: 33041980 PMCID: PMC7527463 DOI: 10.3389/fneur.2020.01036] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Background: Glioblastoma (GBM) is the most aggressive type of primary malignant brain tumor. Carmustine is used by intravenous injection or local implantation in the resection cavity for gliomas, including GBMs. However, the therapeutic potential of carmustine is not well-recognized. This analysis aimed to evaluate the survival benefits of carmustine in glioma patients, especially those with GBM. Methods: Randomized controlled trials (RCTs) and cohort studies regarding carmustine for glioma treatment were searched in PubMed, the Cochrane Library, and Embase from January 1979 to March 2020. Quality assessment was conducted with Jadad and Newcastle-Ottawa scales (NOS). Statistical analysis was conducted by the Revman 5.3 software. Results: Twenty-two eligible RCTs and cohort studies involving 5,821 glioma patients were included. Overall, glioma patients receiving carmustine as an adjuvant therapy had better progression-free survival [PFS; hazard ratio (HR) = 0.85, 95% CI = 0.77-0.94, P = 0.002] and overall survival (OS; HR = 0.85, 95% CI = 0.79-0.92, P < 0.0001) than those without carmustine treatment. Subgroup analysis showed that the OS benefit was observed in GBM (HR = 0.84, 95% CI = 0.78-0.91, P < 0.00001) but not in anaplastic glioma patients (HR = 1.20, 95% CI = 0.70-2.07, P = 0.50). Additionally, both newly diagnosed and recurrent GBM patients who received carmustine treatment showed better OS (HR = 0.86, 95% CI = 0.79-0.95, P = 0.002; HR = 0.77, 95% CI = 0.67-0.89, P = 0.0002, respectively). Both carmustine implantation in resection cavity and intravenous administration significantly prolonged OS (HR = 0.84, 95% CI = 0.78-0.92, P < 0.0001; HR = 0.86, 95% CI = 0.75-0.99, P = 0.04, respectively). Moreover, GBM patients receiving a combined carmustine and temozolomide (TMZ) therapy had longer OS than those receiving TMZ alone (HR = 0.78, 95% CI = 0.63-0.97, P = 0.03). Conclusion: Carmustine implantation in resection cavity provides survival benefit for GBM patients, and it may be a promising supplement to standard therapeutic protocol by offering a bridge between surgical resection and onset of TMZ therapy.
Collapse
Affiliation(s)
- Zhi-Ze Xiao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wen-Hong Huang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu-Hang Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
- Laboratory of Neuro-Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
24
|
Inoue A, Ohnishi T, Kohno S, Ohue S, Nishikawa M, Suehiro S, Matsumoto S, Ozaki S, Fukushima M, Kurata M, Kitazawa R, Shigekawa S, Watanabe H, Kunieda T. Met-PET uptake index for total tumor resection: identification of 11C-methionine uptake index as a goal for total tumor resection including infiltrating tumor cells in glioblastoma. Neurosurg Rev 2020; 44:587-597. [PMID: 32060762 DOI: 10.1007/s10143-020-01258-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/02/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Glioblastoma multiforme (GBM) is largely due to glioma stem cells (GSCs) that escape from total resection of gadolinium (Gd)-enhanced tumor on MRI. The aim of this study is to identify the imaging requirements for maximum resection of GBM with infiltrating GSCs. We investigated the relationship of tumor imaging volume between MRI and 11C-methionine (Met)-PET and also the relationship between Met uptake index and tumor activity. In ten patients, tumor-to-contralateral normal brain tissue ratio (TNR) was calculated to evaluate metabolic activity of Met uptake areas which were divided into five subareas by the degrees of TNR. In each GBM, tumor tissue was obtained from subareas showing the positive Met uptake. Immunohistochemistry was performed to examine the tumor proliferative activity and existence of GSCs. In all patients, the volume of Met uptake area at TNR ≦ 1.4 was larger than that of the Gd-enhanced area. The Met uptake area at TNR 1.4 beyond the Gd-enhanced tumor was much wider in high invasiveness-type GBMs than in those of low invasiveness type, and survival was much shorter in the former than the latter types. Immunohistochemistry revealed the existence of GSCs in the area showing Met uptake at TNR 1.4 and no Gd enhancement. Areas at TNR > 1.4 included active tumor cells with relatively high Ki-67 labeling index. In addition, it was demonstrated that GSCs could exist beyond the border of Gd-enhanced tumor. Therefore, to obtain maximum resection of GBMs, including infiltrating GSCs, aggressive surgical excision that includes the Met-positive area at TNR 1.4 should be considered.
Collapse
Affiliation(s)
- Akihiro Inoue
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan.
| | - Takanori Ohnishi
- Department of Neurosurgery, Washoukai Sadamoto Hospital, 1-6-1 Takehara, Matsuyama, Ehime, 790-0052, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Masahiro Nishikawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Shirabe Matsumoto
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mana Fukushima
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Analytical Pathology, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University School of Medicine, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
25
|
Implantation of carmustine wafers (Gliadel ®) for high-grade glioma treatment. A 9-year nationwide retrospective study. J Neurooncol 2020; 147:159-169. [PMID: 31974802 DOI: 10.1007/s11060-020-03410-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/20/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Carmustine wafers (CW) are approved to treat newly or recurrent high-grade gliomas (HGG). Widespread use has been limited regarding some doubtful uncertainties about their efficacy, related increased risk of infection and expensive cost. OBJECTIVE To describe the epidemiology of CW implantation, search for related complications, long-term survival and associated prognostic factors. METHODS We processed the French medico-administrative national database to retrieve appropriate cases operated between 2010 and 2018. A survival analysis was conducted. RESULTS We identified 1659 patients treated in 39 institutions. Median age at CW implantation was 61 years and there was an over-representation of male (63.5%). 491 patients (29.6%) had previous diagnosis of glioma. Time between the first surgery and CW implantation was 0.9 years, IQR[0.6, 1.6]. The frontal lobe was the most frequently involved 29%. 131 patients (7.9%) had to be re operated on for a complication of which 121 for surgical site infection. At one year, 514 patients (31%) had died. Median overall survival (OS) was 1.4 years, 95% CI [1.3, 1.5]. OS at 1 and 2 year was 66%, 95%CI [63.7, 68.5], 32.3%, 95%CI [29.9, 35]. In the adjusted Cox regression, male gender & age at CW implantation were established as independent factors of OS in all three groups. Patients with recurrent HGG have a significant worse prognosis (HR = 0.71, 95% CI [0.62, 0.80] p < 0.001). A post-operative diagnosis of infection or intracranial bleeding eventually leading to a redo surgery was not associated with a decrease OS. CONCLUSION Over the past 9 years, there is a significant decrease utilisation of CW in France. OS after CW implantation is significantly variable as influenced by many factors such as age, gender or recurrent disease but not by post-operative complications. Compare to previous results, CW may increase the OS and this effect seems more pronounced when adjuvant RT/TMZ is given.
Collapse
|
26
|
Cawrse BM, Robinson NM, Lee NC, Wilson GM, Seley-Radtke KL. Structural and Biological Investigations for a Series of N-5 Substituted Pyrrolo[3,2- d]pyrimidines as Potential Anti-Cancer Therapeutics. Molecules 2019; 24:E2656. [PMID: 31340431 PMCID: PMC6680647 DOI: 10.3390/molecules24142656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 11/18/2022] Open
Abstract
Pyrrolo[3,2-d]pyrimidines have been studied for many years as potential lead compounds for the development of antiproliferative agents. Much of the focus has been on modifications to the pyrimidine ring, with enzymatic recognition often modulated by C2 and C4 substituents. In contrast, this work focuses on the N5 of the pyrrole ring by means of a series of novel N5-substituted pyrrolo[3,2-d]pyrimidines. The compounds were screened against the NCI-60 Human Tumor Cell Line panel, and the results were analyzed using the COMPARE algorithm to elucidate potential mechanisms of action. COMPARE analysis returned strong correlation to known DNA alkylators and groove binders, corroborating the hypothesis that these pyrrolo[3,2-d]pyrimidines act as DNA or RNA alkylators. In addition, N5 substitution reduced the EC50 against CCRF-CEM leukemia cells by up to 7-fold, indicating that this position is of interest in the development of antiproliferative lead compounds based on the pyrrolo[3,2-d]pyrimidine scaffold.
Collapse
Affiliation(s)
- Brian M Cawrse
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Nia'mani M Robinson
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Nina C Lee
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Gerald M Wilson
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Katherine L Seley-Radtke
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, MD 21250, USA.
| |
Collapse
|
27
|
Roux A, Zanello M, Zah-Bi G, Pallud J. Letter to the Editor. How safe is Carmustine wafer implantation? Rev Neurol (Paris) 2019; 175:577-578. [PMID: 31202441 DOI: 10.1016/j.neurol.2018.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 12/11/2018] [Indexed: 11/18/2022]
Affiliation(s)
- A Roux
- Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Inserm, U894, IMA-Brain, Institute of Psychiatry and Neurosciences of Paris, 75014 Paris, France
| | - M Zanello
- Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Inserm, U894, IMA-Brain, Institute of Psychiatry and Neurosciences of Paris, 75014 Paris, France
| | - G Zah-Bi
- Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France
| | - J Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, 75014 Paris, France; Paris Descartes University, Sorbonne Paris Cité, 75014 Paris, France; Inserm, U894, IMA-Brain, Institute of Psychiatry and Neurosciences of Paris, 75014 Paris, France.
| |
Collapse
|
28
|
Zhao YH, Wang ZF, Pan ZY, Péus D, Delgado-Fernandez J, Pallud J, Li ZQ. A Meta-Analysis of Survival Outcomes Following Reoperation in Recurrent Glioblastoma: Time to Consider the Timing of Reoperation. Front Neurol 2019; 10:286. [PMID: 30984099 PMCID: PMC6448034 DOI: 10.3389/fneur.2019.00286] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background: Glioblastoma multiforme (GBM) inevitably recurs, but no standard regimen has been established for recurrent patients. Reoperation at recurrence alleviates mass effects, and the survival benefit has been reported in many studies. However, in most studies, the effect of reoperation timing on survival benefit was ignored. The aim of this meta-analysis was to investigate whether reoperation provided similar survival benefits in recurrent GBM patients when it was analyzed as a fixed or time-dependent covariate. Methods: A systematic literature search of PubMed, EMBASE, and Cochrane databases was performed to identify original articles that evaluated the associations between reoperation and prognosis in recurrent GBM patients. Results: Twenty-one articles involving 8,630 patients were included. When reoperation was considered as a fixed covariate, it was associated with better overall survival (OS) and post-progression survival (PPS) (OS: HR = 0.66, 95% CI 0.61-0.71, p < 0.001, I2 = 0%; PPS: HR = 0.70, 95% CI 0.57–0.88, p < 0.01, I2 = 70.2%). However, such a survival benefit was not observed when reoperation was considered as a time-dependent covariate (OS: HR = 2.19, 95% CI 1.47–3.27, p < 0.001; PPS: HR = 0.95, 95% CI 0.82–1.10, p = 0.51, I2 = 0%). The estimate bias caused by ignoring the time-dependent nature of reoperation was further demonstrated by the re-analysis of survival data in three included studies. Conclusions: The timing of reoperation may have an impact on the survival outcome in recurrent GBM patients, and survival benefits of reoperation in recurrent GBM may be overestimated when analyzed as fixed covariates. Proper analysis methodology should be used in future work to confirm the clinical benefits of reoperation.
Collapse
Affiliation(s)
- Yu-Hang Zhao
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Ze-Fen Wang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi-Yong Pan
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Dominik Péus
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
| | | | - Johan Pallud
- Department of Neurosurgery, Sainte-Anne Hospital, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Byun J, Kim YH, Nam SJ, Park JE, Cho YH, Kim HS, Hong SH, Kim JH, Kim SJ, Kim CJ. Comparison of Survival Outcomes Between Partial Resection and Biopsy for Primary Glioblastoma: A Propensity Score-Matched Study. World Neurosurg 2018; 121:e858-e866. [PMID: 30315970 DOI: 10.1016/j.wneu.2018.09.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/28/2018] [Accepted: 09/29/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES Gross total resection for glioblastoma (GBM) has been associated with better prognosis. However, it is not always feasible, and the threshold for the extent of resection required for better prognosis has been controversial. Therefore, we compared the survival and clinical outcomes of patients with GBM who had undergone partial resection (PR) or biopsy. METHODS Of the 110 patients, 32 and 78, who had undergone PR and biopsy, respectively, were enrolled to identify any differences in clinical outcomes. No differences were found in patient demographics between the 2 groups, except for tumor location and mean tumor volume (P = 0.02 and P < 0.01, respectively). Propensity score matching between the PR and biopsy groups was performed, in which 20 patients each in the PR and biopsy groups were matched. RESULTS The overall survival (OS) and progression-free survival (PFS) did not differ significantly between the PR and biopsy groups (P = 0.84 and P = 0.48, respectively). After propensity score matching, the differences in OS and PFS between the 2 groups were still not statistically significant (P = 0.51 and P = 0.75, respectively). The hazard ratios for OS and PFS for the PR group compared with biopsy were 0.98 and 0.73, respectively; however, the difference was not statistically significant (P = 0.96 and P = 0.39, respectively). The surgical complication rate was greater in the PR group (14 of 32; 43.7%) than in the biopsy group (9 of 78; 11.5%; P < 0.01). CONCLUSIONS PR failed to improve survival compared with biopsy for patients with GBM. Moreover, the surgical complication rate in the PR group was greater than that in the biopsy group.
Collapse
Affiliation(s)
- Joonho Byun
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young-Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Soo Jung Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji Eun Park
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Young Hyun Cho
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ho Sung Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seok Ho Hong
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jeong Hoon Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang Joon Kim
- Department of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Chang Jin Kim
- Department of Neurological Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
30
|
Comments on Results of Carroll et al's Study on Survival Benefits of Gross Total Resection. World Neurosurg 2018; 116:478. [PMID: 30049032 DOI: 10.1016/j.wneu.2018.02.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 11/21/2022]
|
31
|
Roux A, Zanello M, Pallud J. Letter to the editor: local alkylating chemotherapy applied immediately after 5-ALA guided resection of glioblastoma does not provide additional benefit. J Neurooncol 2018; 138:217-218. [DOI: 10.1007/s11060-018-2770-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/18/2018] [Indexed: 11/24/2022]
|
32
|
Ius T, Cesselli D, Isola M, Toniato G, Pauletto G, Sciacca G, Fabbro S, Pegolo E, Rizzato S, Beltrami AP, di Loreto C, Skrap M. Combining Clinical and Molecular Data to Predict the Benefits of Carmustine Wafers in Newly Diagnosed High-Grade Gliomas. Curr Treat Options Neurol 2018; 20:3. [PMID: 29476361 DOI: 10.1007/s11940-018-0489-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The purpose of this study was to retrospectively evaluate the use of carmustine wafers (CWs) in the management of high-grade gliomas (HGGs). The data from our monoinstitutional series was compared with studies reported in the literature. Special emphasis was placed on the evaluation of side effects and the analysis of extent of resection and molecular profile as risk factors. RECENT FINDINGS The implantation of CWs into the resection cavity during HGG treatment to deliver localized chemotherapy, followed by the Stupp protocol, remains debated in a clinical setting, largely due to the lack of appropriate phase III studies. Given the high expense and poorly characterized side effects associated with CW treatment, identification of patients most likely to benefit from this therapy could be clinically relevant. CWs may represent an effective and safe first-line treatment for patients with HGG that exhibit complete tumor resection and harboring a methylated MGMT promoter. Our investigation showed a much larger group of patients exhibiting long-term survival (> = 36 months), strongly supporting a potential survival benefit conferred via CW treatment. The pre-surgical definition of the MGMT promoter status could be of clinical use in identifying "good responders" to CW implantation.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy.
| | | | - Miriam Isola
- Department of Medicine, University of Udine, Udine, Italy
| | - Giovanni Toniato
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sciacca
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Sara Fabbro
- Department of Medicine, University of Udine, Udine, Italy
| | - Enrico Pegolo
- Department of Medicine, University of Udine, Udine, Italy
| | - Simona Rizzato
- Department of Oncology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | | | - Carla di Loreto
- Department of Medicine, University of Udine, Udine, Italy.,Institute of Pathology, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| |
Collapse
|