1
|
Crestani M, Kakogiannos N, Iori S, Iannelli F, Dini T, Maderna C, Giannotta M, Pelicci G, Maiuri P, Monzo P, Gauthier NC. Biomimetic Approach of Brain Vasculature Rapidly Characterizes Inter- and Intra-Patient Migratory Diversity of Glioblastoma. SMALL METHODS 2024; 8:e2400210. [PMID: 38747088 PMCID: PMC11671864 DOI: 10.1002/smtd.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/04/2024] [Indexed: 12/28/2024]
Abstract
Glioblastomas exhibit remarkable heterogeneity at various levels, including motility modes and mechanoproperties that contribute to tumor resistance and recurrence. In a recent study using gridded micropatterns mimicking the brain vasculature, glioblastoma cell motility modes, mechanical properties, formin content, and substrate chemistry are linked. Now is presented, SP2G (SPheroid SPreading on Grids), an analytic platform designed to identify the migratory modes of patient-derived glioblastoma cells and rapidly pinpoint the most invasive sub-populations. Tumorspheres are imaged as they spread on gridded micropatterns and analyzed by this semi-automated, open-source, Fiji macro suite that characterizes migration modes accurately. SP2G can reveal intra-patient motility heterogeneity with molecular correlations to specific integrins and EMT markers. This system presents a versatile and potentially pan-cancer workflow to detect diverse invasive tumor sub-populations in patient-derived specimens and offers a valuable tool for therapeutic evaluations at the individual patient level.
Collapse
Affiliation(s)
- Michele Crestani
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Present address:
Laboratory of Applied MechanobiologyDepartment of Health Sciences and TechnologyInstitute of Translational MedicineETH ZurichZurichCH‐8093Switzerland
| | - Nikolaos Kakogiannos
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Institute of ImmunologyBiomedical Sciences Research Centre “Alexander Fleming”34 Fleming StreetVari16672Greece
| | - Simone Iori
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Fabio Iannelli
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Department of Experimental OncologyIEOEuropean Institute of Oncology IRCCSMilan20139Italy
| | - Tania Dini
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Claudio Maderna
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Monica Giannotta
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Giuliana Pelicci
- Department of Experimental OncologyIEOEuropean Institute of Oncology IRCCSMilan20139Italy
- Department of Translational MedicinePiemonte Orientale University ‘‘Amedeo Avogadro’’Novara28100Italy
| | - Paolo Maiuri
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
- Dipartimento di Medicina Molecolare e Biotecnologie MedicheUniversità degli Studi diNapoli Federico IIVia S. Pansini 5Naples80131Italy
| | - Pascale Monzo
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| | - Nils C. Gauthier
- IFOM ETS – The AIRC Institute of Molecular OncologyVia Adamello 16Milan20139Italy
| |
Collapse
|
2
|
Liu Y, Bie F, Bai G, Huai Q, Li Y, Chen X, Zhou B, Gao S. Prognostic model based on B cell marker genes for NSCLC patients under neoadjuvant immunotherapy by integrated analysis of single-cell and bulk RNA-sequencing data. Clin Transl Oncol 2024; 26:2025-2036. [PMID: 38563846 DOI: 10.1007/s12094-024-03428-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 02/25/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Neoadjuvant immunotherapy has evolved as an effective option to treat non-small cell lung cancer (NSCLC). B cells play essential roles in the immune system as well as cancer progression. However, the repertoire of B cells and its association with clinical outcomes remains unclear in NSCLC patients receiving neoadjuvant immunotherapy. METHODS Single-cell RNA sequencing (scRNA-seq) and bulk RNA sequencing data for LUAD samples were accessed from the TCGA and GEO databases. LUAD-related B cell marker genes were confirmed based on comprehensive analysis of scRNA-seq data. We then constructed the B cell marker gene signature (BCMGS) and validated it. In addition, we evaluated the association of BCGMS with tumor immune microenvironment (TIME) characteristics. Furthermore, we validated the efficacy of BCGMS in a cohort of NSCLC patients receiving neoadjuvant immunotherapy. RESULTS A BCMGS was constructed based on the TCGA cohort and further validated in three independent GSE cohorts. In addition, the BCMGS was proven to be significantly associated with TIME characteristics. Moreover, a relatively higher risk score indicated poor clinical outcomes and a worse immune response among NSCLC patients receiving neoadjuvant immunotherapy. CONCLUSIONS We constructed an 18-gene prognostic signature derived from B cell marker genes based on scRNA-seq data, which had the potential to predict the prognosis and immune response of NSCLC patients receiving neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Yang Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Meng Y, Huang K, Shi M, Huo Y, Han L, Liu B, Li Y. Research Advances in the Role of the Tropomyosin Family in Cancer. Int J Mol Sci 2023; 24:13295. [PMID: 37686101 PMCID: PMC10488083 DOI: 10.3390/ijms241713295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Cancer is one of the most difficult diseases for human beings to overcome. Its development is closely related to a variety of factors, and its specific mechanisms have been a hot research topic in the field of scientific research. The tropomyosin family (Tpm) is a group of proteins closely related to the cytoskeleton and actin, and recent studies have shown that they play an important role in various cancers, participating in a variety of biological activities, including cell proliferation, invasion, and migration, and have been used as biomarkers for various cancers. The purpose of this review is to explore the research progress of the Tpm family in tumorigenesis development, focusing on the molecular pathways associated with them and their relevant activities involved in tumors. PubMed and Web of Science databases were searched for relevant studies on the role of Tpms in tumorigenesis and development and the activities of Tpms involved in tumors. Data from the literature suggest that the Tpm family is involved in tumor cell proliferation and growth, tumor cell invasion and migration, tumor angiogenesis, tumor cell apoptosis, and immune infiltration of the tumor microenvironment, among other correlations. It can be used as a potential biomarker for early diagnosis, follow-up, and therapeutic response of some tumors. The Tpm family is involved in cancer in a close relationship with miRNAs and LncRNAs. Tpms are involved in tumor tissue invasion and migration as a key link. On this basis, TPM is frequently used as a biomarker for various cancers. However, the specific molecular mechanism of its involvement in cancer progression has not been explained clearly, which remains an important direction for future research.
Collapse
Affiliation(s)
- Yucheng Meng
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Ke Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730030, China
| | - Mingxuan Shi
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yifei Huo
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Liang Han
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| | - Yi Li
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing, School of Stomatology, Lanzhou University, Lanzhou 730030, China; (Y.M.); (K.H.); (M.S.); (Y.H.); (L.H.)
| |
Collapse
|
4
|
Luo M, Huang M, Yang N, Zhu Y, Huang P, Xu Z, Wang W, Cai L. Impairment of rigidity sensing caused by mutant TP53 gain of function in osteosarcoma. Bone Res 2023; 11:28. [PMID: 37246175 DOI: 10.1038/s41413-023-00265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/23/2023] [Accepted: 04/18/2023] [Indexed: 05/30/2023] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant pediatric bone tumor and is characterized by high heterogeneity. Studies have revealed a wide range of phenotypic differences among OS cell lines in terms of their in vivo tumorigenicity and in vitro colony-forming abilities. However, the underlying molecular mechanism of these discrepancies remains unclear. The potential role of mechanotransduction in tumorigenicity is of particular interest. To this end, we tested the tumorigenicity and anoikis resistance of OS cell lines both in vitro and in vivo. We utilized a sphere culture model, a soft agar assay, and soft and rigid hydrogel surface culture models to investigate the function of rigidity sensing in the tumorigenicity of OS cells. Additionally, we quantified the expression of sensor proteins, including four kinases and seven cytoskeletal proteins, in OS cell lines. The upstream core transcription factors of rigidity-sensing proteins were further investigated. We detected anoikis resistance in transformed OS cells. The mechanosensing function of transformed OS cells was also impaired, with general downregulation of rigidity-sensing components. We identified toggling between normal and transformed growth based on the expression pattern of rigidity-sensing proteins in OS cells. We further uncovered a novel TP53 mutation (R156P) in transformed OS cells, which acquired gain of function to inhibit rigidity sensing, thus sustaining transformed growth. Our findings suggest a fundamental role of rigidity-sensing components in OS tumorigenicity as mechanotransduction elements through which cells can sense their physical microenvironment. In addition, the gain of function of mutant TP53 appears to serve as an executor for such malignant programs.
Collapse
Affiliation(s)
- Ming Luo
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mingyang Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ningning Yang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yufan Zhu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Peng Huang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhujun Xu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wengang Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
5
|
Wu Z, Ge L, Ma L, Lu M, Song Y, Deng S, Duan P, Du T, Wu Y, Zhang Z, Zhang S. TPM2 attenuates progression of prostate cancer by blocking PDLIM7-mediated nuclear translocation of YAP1. Cell Biosci 2023; 13:39. [PMID: 36823643 PMCID: PMC9948342 DOI: 10.1186/s13578-023-00993-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/18/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is a common malignant tumor of the genitourinary system. Clinical intervention in advanced PCa remains challenging. Tropomyosins 2 (TPM2) are actin-binding proteins and have been found as a biomarker candidate for certain cancers. However, no studies have explored the role of TPM2 in PCa and its regulatory mechanism. METHODS TPM2 expression was assessed in Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) PCa patient dataset. The effect of TPM2 on PCa progression was assessed in vitro and in vivo by quantifying proliferation, migration, invasion and tumor growth assays, and the mechanism of TPM2 in PCa progression was gradually revealed by Western blotting, immunoprecipitation, and immunofluorescence staining arrays. RESULTS TPM2 was found to be severely downregulated in tumor tissues of PCa patients compared with tumor-adjacent normal tissues. In vitro experiments revealed that TPM2 overexpression inhibited PCa cell proliferation, invasion and androgen-independent proliferation. Moreover, TPM2 overexpression inhibited the growth of subcutaneous xenograft tumors in vivo. Mechanistically, this effect was noted to be dependent on PDZ-binding motif of TPM2. TPM2 competed with YAP1 for binding to PDLIM7 through the PDZ-binding motif. The binding of TPM2 to PDLIM7 subsequently inhibited the nuclear transport function of PDLIM7 for YAP1. YAP1 sequestered in the cytoplasm phosphorylated at S127, resulting in its inactivation or degradation which in turn inhibited the expression of YAP1 downstream target genes. CONCLUSIONS This study investigated the role of TPM2, PDLIM7, and YAP1 in PCa progression and castration resistance. TPM2 attenuates progression of PCa by blocking PDLIM7-mediated nuclear translocation of YAP1. Accordingly, targeting the expression or functional modulation of TPM2, PDLIM7, or YAP1 has the potential to be an effective therapeutic approach to reduce PCa proliferation and prevent the progression of castration-resistant prostate cancer (CRPC).
Collapse
Affiliation(s)
- Zonglong Wu
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Liyuan Ge
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Lulin Ma
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Min Lu
- grid.11135.370000 0001 2256 9319Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing, China
| | - Yimeng Song
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Shaohui Deng
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Peichen Duan
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Tan Du
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Yaqian Wu
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Zhanyi Zhang
- grid.411642.40000 0004 0605 3760Department of Urology, Peking University Third Hospital, Beijing, 100191 People’s Republic of China
| | - Shudong Zhang
- Department of Urology, Peking University Third Hospital, Beijing, 100191, People's Republic of China.
| |
Collapse
|
6
|
Bradbury P, Nader CP, Cidem A, Rutting S, Sylvester D, He P, Rezcallah MC, O'Neill GM, Ammit AJ. Tropomyosin 2.1 collaborates with fibronectin to promote TGF-β 1-induced contraction of human lung fibroblasts. Respir Res 2021; 22:129. [PMID: 33910572 PMCID: PMC8080347 DOI: 10.1186/s12931-021-01730-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 04/22/2021] [Indexed: 12/20/2022] Open
Abstract
Many lung diseases are characterized by fibrosis, leading to impaired tissue patency and reduced lung function. Development of fibrotic tissue depends on two-way interaction between the cells and the extra-cellular matrix (ECM). Concentration-dependent increased stiffening of the ECM is sensed by the cells, which in turn increases intracellular contraction and pulling on the matrix causing matrix reorganization and further stiffening. It is generally accepted that the inflammatory cytokine growth factor β1 (TGF-β1) is a major driver of lung fibrosis through the stimulation of ECM production. However, TGF-β1 also regulates the expression of members of the tropomyosin (Tm) family of actin associating proteins that mediate ECM reorganization through intracellular-generated forces. Thus, TGF-β1 may mediate the bi-directional signaling between cells and the ECM that promotes tissue fibrosis. Using combinations of cytokine stimulation, mRNA, protein profiling and cellular contractility assays with human lung fibroblasts, we show that concomitant induction of key Tm isoforms and ECM by TGF-β1, significantly accelerates fibrotic phenotypes. Knocking down Tpm2.1 reduces fibroblast-mediated collagen gel contraction. Collectively, the data suggest combined ECM secretion and actin cytoskeleton contractility primes the tissue for enhanced fibrosis. Our study suggests that Tms are at the nexus of inflammation and tissue stiffening. Small molecules targeting specific Tm isoforms have recently been designed; thus targeting Tpm2.1 may represent a novel therapeutic target in lung fibrosis.
Collapse
Affiliation(s)
- Peta Bradbury
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Cassandra P Nader
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Aylin Cidem
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Sandra Rutting
- Respiratory Cellular and Molecular Biology, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and University of Newcastle, Newcastle, Australia
| | - Dianne Sylvester
- Children's Cancer Research Unit, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Sydney, Australia
| | - Patrick He
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Maria C Rezcallah
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Geraldine M O'Neill
- Children's Cancer Research Unit, Kids Research Institute, Children's Hospital at Westmead, Sydney, NSW, Australia.,Children's Hospital at Westmead Clinical School, Sydney, Australia.,School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Alaina J Ammit
- Woolcock Emphysema Centre, Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia. .,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Chen TY, Liu Y, Chen L, Luo J, Zhang C, Shen XF. Identification of the potential biomarkers in patients with glioma: a weighted gene co-expression network analysis. Carcinogenesis 2020; 41:743-750. [PMID: 31761927 PMCID: PMC7351128 DOI: 10.1093/carcin/bgz194] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/13/2019] [Accepted: 11/22/2019] [Indexed: 12/11/2022] Open
Abstract
Glioma is the most common brain tumor with high mortality. However, there are still challenges for the timely and accurate diagnosis and effective treatment of the tumor. One hundred and twenty-one samples with grades II, III and IV from the Gene Expression Omnibus database were used to construct gene co-expression networks to identify hub modules closely related to glioma grade, and performed pathway enrichment analysis on genes from significant modules. In gene co-expression network constructed by 2345 differentially expressed genes from 121 gene expression profiles for glioma, we identified the black and blue modules that associated with grading. The module preservation analysis based on 118 samples indicates that the two modules were replicable. Enrichment analysis showed that the extracellular matrix genes were enriched for blue module, while cell division genes were enriched for black module. According to survival analysis, 21 hub genes were significantly up-regulated and one gene was significantly down-regulated. What’s more, IKBIP, SEC24D, and FAM46A are the genes with little attention among the 22 hub genes. In this study, IKBIP, SEC24D, and FAM46A related to glioma were mentioned for the first time to the current knowledge, which might provide a new idea for us to study the disease in the future. IKBIP, SEC24D and FAM46A among the 22 hub genes identified that are related to the malignancy degree of glioma might be used as new biomarkers to improve the diagnosis, treatment and prognosis of glioma.
Collapse
Affiliation(s)
- Ting-Yu Chen
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China
| | - Yang Liu
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China
| | - Liang Chen
- Department of Neurosurgery, Shiyan, China
| | - Jie Luo
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China.,Department of Neurosurgery, Shiyan, China
| | - Chao Zhang
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China
| | - Xian-Feng Shen
- Center for Evidence-Based Medicine and Clinical Research, Shiyan, China.,Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| |
Collapse
|
8
|
Pouliquen DL, Boissard A, Coqueret O, Guette C. Biomarkers of tumor invasiveness in proteomics (Review). Int J Oncol 2020; 57:409-432. [PMID: 32468071 PMCID: PMC7307599 DOI: 10.3892/ijo.2020.5075] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades, quantitative proteomics has emerged as an important tool for deciphering the complex molecular events involved in cancers. The number of references involving studies on the cancer metastatic process has doubled since 2010, while the last 5 years have seen the development of novel technologies combining deep proteome coverage capabilities with quantitative consistency and accuracy. To highlight key findings within this huge amount of information, the present review identified a list of tumor invasive biomarkers based on both the literature and data collected on a biocollection of experimental cell lines, tumor models of increasing invasiveness and tumor samples from patients with colorectal or breast cancer. Crossing these different data sources led to 76 proteins of interest out of 1,245 mentioned in the literature. Information on these proteins can potentially be translated into clinical prospects, since they represent potential targets for the development and evaluation of innovative therapies, alone or in combination. Herein, a systematical review of the biology of each of these proteins, including their specific subcellular/extracellular or multiple localizations is presented. Finally, as an important advantage of quantitative proteomics is the ability to provide data on all these molecules simultaneously in cell pellets, body fluids or paraffin‑embedded sections of tumors/invaded tissues, the significance of some of their interconnections is discussed.
Collapse
Affiliation(s)
| | - Alice Boissard
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| | | | - Catherine Guette
- Paul Papin ICO Cancer Center, CRCINA, Inserm, Université d'Angers, F‑44000 Nantes, France
| |
Collapse
|
9
|
Impact of the actin cytoskeleton on cell development and function mediated via tropomyosin isoforms. Semin Cell Dev Biol 2019; 102:122-131. [PMID: 31630997 DOI: 10.1016/j.semcdb.2019.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 01/07/2023]
Abstract
The physiological function of actin filaments is challenging to dissect because of the pleiotropic impact of global disruption of the actin cytoskeleton. Tropomyosin isoforms have provided a unique opportunity to address this issue. A substantial fraction of actin filaments in animal cells consist of co-polymers of actin with specific tropomyosin isoforms which determine the functional capacity of the filament. Genetic manipulation of the tropomyosins has revealed isoform specific roles and identified the physiological function of the different actin filament types based on their tropomyosin isoform composition. Surprisingly, there is remarkably little redundancy between the tropomyosins resulting in highly penetrant impacts of both ectopic overexpression and knockout of isoforms. The physiological roles of the tropomyosins cover a broad range from development and morphogenesis to cell migration and specialised tissue function and human diseases.
Collapse
|