1
|
Suero Molina E, Bruneau M, Reuter G, Shahein M, Cavallo LM, Daniel RT, Kasper EM, Froelich S, Jouanneau E, Manet R, Messerer M, Mazzatenta D, Meling TR, Roche PH, Schroeder HWS, Tatagiba M, Visocchi M, Prevedello DM, Stummer W, Cornelius JF. Fluorescence guidance in skull base surgery: Applications and limitations - A systematic review. BRAIN & SPINE 2024; 4:103328. [PMID: 39309550 PMCID: PMC11416557 DOI: 10.1016/j.bas.2024.103328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
Introduction Intraoperative fluorescence guidance is a well-established surgical adjunct in high-grade glioma surgery. In contrast, the clinical use of such dyes and technology has been scarcely reported in skull base surgery. Research question We aimed to systematically review the clinical applications of different fluorophores in both open and endonasal skull base surgery. Material and methods We performed a systematic review and discussed the current literature on fluorescence guidance in skull base surgery. Results After a comprehensive literature search, 77 articles on skull base fluorescence guidance were evaluated. A qualitative analysis of the articles is presented, discussing clinical indications and current controversies. The use of intrathecal fluorescein was the most frequently reported in the literature. Beyond that, 5-ALA and ICG were two other fluorescent dyes most extensively discussed, with some experimental fluorophore applications in skull base surgery. Discussion and conclusion Intraoperative fluorescence imaging can serve as an adjunct technology in skull base surgery. The scope of initial indications of these fluorophores has expanded beyond malignant glioma resection alone. We discuss current use and controversies and present an extensive overview of additional indications for fluorescence imaging in skull base pathologies. Further quantitative studies will be needed in the future, focusing on tissue selectivity and time-dependency of the different fluorophores currently commercially available, as well as the development of new compounds to expand applications and facilitate skull base surgeries.
Collapse
Affiliation(s)
- Eric Suero Molina
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Michael Bruneau
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Gilles Reuter
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
| | | | - Luigi M. Cavallo
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, Federico II University of Naples, Policlinico Federico II University Hospital, Italy
| | - Roy T. Daniel
- Department of Neurosurgery, Department of Neuroscience, Centre Hospitalier Universitaire Vaudois, University Hospital Lausanne, Switzerland
| | - Ekkehard M. Kasper
- Department of Neurosurgery, Boston University Medical School, MA and Steward Medical Group, Brighton, MA/USA McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
| | - Sebastien Froelich
- Department of Neurosurgery, Lariboisière Hospital, Université Paris Diderot, Paris, France
| | - Emanuel Jouanneau
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Romain Manet
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Mahmoud Messerer
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, Federico II University of Naples, Policlinico Federico II University Hospital, Italy
| | - Diego Mazzatenta
- Department of Neurosurgery, Neurological Sciences Institut IRCCS, Bologna, Italy
| | - Torstein R. Meling
- Department of Neurosurgery, The National Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Pierre-Hugues Roche
- Department of Neurosurgery, Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Marseille, France
| | | | - Marcos Tatagiba
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
| | - Massimiliano Visocchi
- Department of Neurosurgery, Institute of Neurosurgery Catholic University of Rome, Italy
| | - Daniel M. Prevedello
- Deparmtent of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
| | - Jan F. Cornelius
- Department of Neurosurgery, University Hospital of Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - EANS Skull Base Section
- Department of Neurosurgery, University Hospital of Münster, Münster, Germany
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
- Department of Neurosurgery, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurosurgery, University Hospital of Liège, Liège, Belgium
- Department of Neurosurgery, Mansoura University, Egypt
- Department of Neurosciences and Reproductive and Dental Sciences, Division of Neurosurgery, Federico II University of Naples, Policlinico Federico II University Hospital, Italy
- Department of Neurosurgery, Department of Neuroscience, Centre Hospitalier Universitaire Vaudois, University Hospital Lausanne, Switzerland
- Department of Neurosurgery, Boston University Medical School, MA and Steward Medical Group, Brighton, MA/USA McMaster University Faculty of Health Sciences, Hamilton, ON, Canada
- Department of Neurosurgery, Lariboisière Hospital, Université Paris Diderot, Paris, France
- Department of Neurosurgery, Hôpital Neurologique Pierre Wertheimer, Lyon, France
- Department of Neurosurgery, Neurological Sciences Institut IRCCS, Bologna, Italy
- Department of Neurosurgery, The National Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Neurosurgery, Aix-Marseille Université, Assistance Publique-Hôpitaux de Marseille, Hôpital Nord, Marseille, France
- Department of Neurosurgery, University Medicine Greifswald, Germany
- Department of Neurosurgery, University Hospital Tübingen, Tübingen, Germany
- Department of Neurosurgery, Institute of Neurosurgery Catholic University of Rome, Italy
- Deparmtent of Neurosurgery, The Ohio State University College of Medicine, Columbus, OH, USA
- Department of Neurosurgery, University Hospital of Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Ageenko A, Vasileva N, Richter V, Kuligina E. Combination of Oncolytic Virotherapy with Different Antitumor Approaches against Glioblastoma. Int J Mol Sci 2024; 25:2042. [PMID: 38396720 PMCID: PMC10889383 DOI: 10.3390/ijms25042042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Glioblastoma is one of the most malignant and aggressive tumors of the central nervous system. Despite the standard therapy consisting of maximal surgical resection and chemo- and radiotherapy, the median survival of patients with this diagnosis is about 15 months. Oncolytic virus therapy is one of the promising areas for the treatment of malignant neoplasms. In this review, we have focused on emphasizing recent achievements in virotherapy, both as a monotherapy and in combination with other therapeutic schemes to improve survival rate and quality of life among patients with glioblastoma.
Collapse
Affiliation(s)
- Alisa Ageenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Natalia Vasileva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| | - Vladimir Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
| | - Elena Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, Akad. Lavrentiev Ave. 8, 630090 Novosibirsk, Russia
- LLC "Oncostar", R&D Department, Ingenernaya Street 23, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Jiang S, Chai H, Tang Q. Advances in the intraoperative delineation of malignant glioma margin. Front Oncol 2023; 13:1114450. [PMID: 36776293 PMCID: PMC9909013 DOI: 10.3389/fonc.2023.1114450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Surgery plays a critical role in the treatment of malignant glioma. However, due to the infiltrative growth and brain shift, it is difficult for neurosurgeons to distinguish malignant glioma margins with the naked eye and with preoperative examinations. Therefore, several technologies were developed to determine precise tumor margins intraoperatively. Here, we introduced four intraoperative technologies to delineate malignant glioma margin, namely, magnetic resonance imaging, fluorescence-guided surgery, Raman histology, and mass spectrometry. By tracing their detecting principles and developments, we reviewed their advantages and disadvantages respectively and imagined future trends.
Collapse
|
4
|
Suero Molina E, Black D, Kaneko S, Müther M, Stummer W. Double dose of 5-aminolevulinic acid and its effect on protoporphyrin IX accumulation in low-grade glioma. J Neurosurg 2022; 137:943-952. [PMID: 35213830 DOI: 10.3171/2021.12.jns211724] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Administration of 5-aminolevulinic acid (5-ALA) does not regularly elicit fluorescence in low-grade glioma (LGG) at currently established doses and timing of administration. One explanation may be differences in blood-brain barrier (BBB) integrity compared to high-grade glioma. The authors hypothesized that for a BBB semipermeable to 5-ALA there might be a relationship between plasma 5-ALA concentration and its movement into the brain. A higher dose would elicit more 5-ALA conversion into protoporphyrin IX (PPIX). The authors present a case series of patients harboring LGG who received higher doses of 5-ALA. METHODS Patients undergoing surgery for indeterminate glioma later diagnosed as LGG were included in this study. 5-ALA was administered at a standard dose of 20 mg/kg body weight (bw) 4 hours prior to induction of anesthesia. A subgroup of patients received a higher dose of 40 mg/kg bw. Fluorescence was evaluated visually and PPIX concentration (cPPIX) was determined ex vivo by hyperspectral measurements in freshly extracted tissue. All adverse events were recorded. RESULTS A total of 23 patients harboring diffuse low-grade astrocytomas (n = 19) and oligodendrogliomas (n = 4) were analyzed. Thirteen patients received 20 mg/kg bw, and 10 patients received 40 mg/kg bw of 5-ALA. In the 20 mg/kg group, 30.8% (4 of 13) of tumors harbored areas of visible fluorescence, compared to 60% of cases (n = 6 of 10) with 40 mg/kg bw. The threshold to visibility was 1 μg/ml in both groups. Measured over all biopsies, the mean cPPIX was significantly higher in the double-dose group (1.8 vs 0.45 μg/ml; p < 0.001). In non-visibly fluorescent tissue the mean cPPIX was 0.146 μg/ml in the 20 mg/kg and 0.347 μg/ml in the 40 mg/kg group, indicating an increase of 138% (p < 0.001). CONCLUSIONS These observations demonstrate different regions with different levels of PPIX accumulation in LGG. With higher 5-ALA doses cPPIX increases, leading to more regions surpassing the visibility threshold of 1 μg/ml. These observations can be explained by the fact that the BBB in LGG is semipermeable to 5-ALA. Higher 5-ALA doses result in more PPIX conversion, an observation with implications for future dosing in LGG.
Collapse
Affiliation(s)
| | - David Black
- 2Carl Zeiss Meditec AG, Oberkochen, Germany
- 3Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada; and
| | - Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster
- 4Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Michael Müther
- 1Department of Neurosurgery, University Hospital of Münster
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster
| |
Collapse
|
5
|
Mazzucchi E, La Rocca G, Hiepe P, Pignotti F, Galieri G, Policicchio D, Boccaletti R, Rinaldi P, Gaudino S, Ius T, Sabatino G. Intraoperative integration of multimodal imaging to improve neuronavigation: a technical note. World Neurosurg 2022; 164:330-340. [PMID: 35667553 DOI: 10.1016/j.wneu.2022.05.133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Brain shift may cause significant error in neuronavigation leading the surgeon to possible mistakes. Intraoperative MRI is the most reliable technique in brain tumor surgery. Unfortunately, it is highly expensive and time consuming and, at the moment, it is available only in few neurosurgical centers. METHODS In this case series the surgical workflow for brain tumor surgery is described where neuronavigation of pre-operative MRI, intraoperative CT scan and US as well as rigid and elastic image fusion between preoperative MRI and intraoperative US and CT, respectively, was applied to four brain tumor patients in order to compensate for surgical induced brain shift by using a commercially available software (Elements Image Fusion 4.0 with Virtual iMRI Cranial; Brainlab AG). RESULTS Three exemplificative cases demonstrated successful integration of different components of the described intraoperative surgical workflow. The data indicates that intraoperative navigation update is feasible by applying intraoperative 3D US and CT scanning as well as rigid and elastic image fusion applied depending on the degree of observed brain shift. CONCLUSIONS Integration of multiple intraoperative imaging techniques combined with rigid and elastic image fusion of preoperative MRI may reduce the risk of incorrect neuronavigation during brain tumor resection. Further studies are needed to confirm the present findings in a larger population.
Collapse
Affiliation(s)
- Edoardo Mazzucchi
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy.
| | - Giuseppe La Rocca
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | | | - Fabrizio Pignotti
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Gianluca Galieri
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | | | | | | | - Simona Gaudino
- Institute of Radiology, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sabatino
- Unit of Neurosurgery, Mater Olbia Hospital, Olbia, Italy; Institute of Neurosurgery, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, Catholic University, Rome, Italy
| |
Collapse
|
6
|
Netufo O, Connor K, Shiels LP, Sweeney KJ, Wu D, O’Shea DF, Byrne AT, Miller IS. Refining Glioblastoma Surgery through the Use of Intra-Operative Fluorescence Imaging Agents. Pharmaceuticals (Basel) 2022; 15:550. [PMID: 35631376 PMCID: PMC9143023 DOI: 10.3390/ph15050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive adult brain tumour with a dismal 2-year survival rate of 26-33%. Maximal safe resection plays a crucial role in improving patient progression-free survival (PFS). Neurosurgeons have the significant challenge of delineating normal tissue from brain tumour to achieve the optimal extent of resection (EOR), with 5-Aminolevulinic Acid (5-ALA) the only clinically approved intra-operative fluorophore for GBM. This review aims to highlight the requirement for improved intra-operative imaging techniques, focusing on fluorescence-guided imaging (FGS) and the use of novel dyes with the potential to overcome the limitations of current FGS. The review was performed based on articles found in PubMed an.d Google Scholar, as well as articles identified in searched bibliographies between 2001 and 2022. Key words for searches included 'Glioblastoma' + 'Fluorophore'+ 'Novel' + 'Fluorescence Guided Surgery'. Current literature has favoured the approach of using targeted fluorophores to achieve specific accumulation in the tumour microenvironment, with biological conjugates leading the way. These conjugates target specific parts overexpressed in the tumour. The positive results in breast, ovarian and colorectal tissue are promising and may, therefore, be applied to intracranial neoplasms. Therefore, this design has the potential to produce favourable results in GBM by reducing the residual tumour, which translates to decreased tumour recurrence, morbidity and ultimately, mortality in GBM patients. Several preclinical studies have shown positive results with targeted dyes in distinguishing GBM cells from normal brain parenchyma, and targeted dyes in the Near-Infrared (NIR) emission range offer promising results, which may be valuable future alternatives.
Collapse
Affiliation(s)
- Oluwakanyinsolami Netufo
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kate Connor
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Liam P. Shiels
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
| | - Kieron J. Sweeney
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Centre for Neurosurgery, Beaumont Hospital, 9, D09 V2N0 Dublin, Ireland
| | - Dan Wu
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Donal F. O’Shea
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 2, D02 YN77 Dublin, Ireland; (D.W.); (D.F.O.)
| | - Annette T. Byrne
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| | - Ian S. Miller
- Precision Cancer Medicine Group, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 2, D02 YN77 Dublin, Ireland; (O.N.); (K.C.); (L.P.S.); (K.J.S.); (A.T.B.)
- National Pre-Clinical Imaging Centre (NPIC), 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
7
|
Haider S, Hamilton TM, Hunt RJ, Lee IY, Robin AM. Clinically useful tumor fluorescence greater than 24 hours after 5-aminolevulinic acid administration. Surg Neurol Int 2022; 13:99. [PMID: 35399905 PMCID: PMC8986640 DOI: 10.25259/sni_836_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: 5-aminolevulinic acid (5-ALA) is a valuable surgical adjuvant used for the resection of glioblastoma multiforme (GBM). Since Food and Drug Administration approval in 2017, 5-ALA has been used in over 37,000 cases. The current recommendation for peak efficacy and intraoperative fluorescence is within 4 h after administration. This narrow time window imposes a perioperative time constraint which may complicate or preclude the use of 5-ALA in GBM surgery. Case Description: This case report describes the prolonged activity of 5-ALA in a 66-year-old patient with a newly diagnosed GBM lesion within the left supramarginal gyrus. An awake craniotomy with language and sensorimotor mapping was planned along with 5-ALA fluorescence guidance. Shortly, after receiving the preoperative 5-ALA dose, the patient developed a fever. Surgery was postponed for an infectious disease workup which proved negative. The patient was taken to surgery the following day, 36 h after 5-ALA administration. Despite the delay, intraoperative fluorescence within the tumor remained and was sufficient to guide resection. Postoperative imaging confirmed a gross total resection of the tumor. Conclusion: The use of 5-ALA as an intraoperative adjuvant may still be effective for patients beyond the recommended 4-h window after initial administration. Reconsideration of current use of 5-ALA is warranted.
Collapse
|
8
|
Kiesel B, Wadiura LI, Mischkulnig M, Makolli J, Sperl V, Borkovec M, Freund J, Lang A, Millesi M, Berghoff AS, Furtner J, Woehrer A, Widhalm G. Efficacy, Outcome, and Safety of Elderly Patients with Glioblastoma in the 5-ALA Era: Single Center Experience of More Than 10 Years. Cancers (Basel) 2021; 13:cancers13236119. [PMID: 34885227 PMCID: PMC8657316 DOI: 10.3390/cancers13236119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary In the next decades, the incidence of patients with glioblastoma (GBM) will markedly increase due to the growth of the elderly population. Despite the increasing incidence of GBM, elderly patients are frequently excluded from clinical studies and thus, only few data are available specifically focusing on the elderly population. In the current study, we aimed to investigate the efficacy, outcome, and safety of surgically-treated GBM including resections and biopsies in the 5-ALA era in a large elderly cohort of altogether 272 patients. Our data of this large elderly cohort demonstrate for the first time the clinical utility and safety of 5-ALA fluorescence in GBM for improved tumor visualization in both resections as well as biopsies. Therefore, we recommend the use of 5-ALA not only in resections, but also in open/stereotactic biopsies to optimize the neurosurgical management of elderly GBM patients. Abstract Background: In the next decades, the incidence of patients with glioblastoma (GBM) will increase due to the growth of the elderly population. Fluorescence-guided resection using 5-aminolevulinic acid (5-ALA) is widely applied to achieve maximal safe resection of GBM and is identified as a novel intraoperative marker for diagnostic tissue during biopsies. However, detailed analyses of the use of 5-ALA in resections as well as biopsies in a large elderly cohort are still missing. The aim of this study was thus to investigate the efficacy, outcome, and safety of surgically- treated GBM in the 5-ALA era in a large elderly cohort. Methods: All GBM patients aged 65 years or older who underwent neurosurgical intervention between 2007 and 2019 were included. Data on 5-ALA application, intraoperative fluorescence status, and 5-ALA-related side effects were derived from our databank. In the case of resection, the tumor resectability and the extent of resection were determined. Potential prognostic parameters relevant for overall survival were analyzed. Results: 272 GBM patients with a median age of 71 years were included. Intraoperative 5-ALA fluorescence was applied in most neurosurgical procedures (n = 255/272, 88%) and visible fluorescence was detected in most cases (n = 252/255, 99%). In biopsies, 5-ALA was capable of visualizing tumor tissue by visible fluorescence in all but one case (n = 91/92, 99%). 5-ALA administration did not result in any severe side effects. Regarding patient outcome, smaller preoperative tumor volume (<22.75 cm3), gross total resection, single lesions, improved postoperative neurological status, and concomitant radio-chemotherapy showed a significantly longer overall survival. Conclusions: Our data of this large elderly cohort demonstrate the clinical utility and safety of 5-ALA fluorescence in GBM for improved tumor visualization in both resections as well as biopsies. Therefore, we recommend the use of 5-ALA not only in resections, but also in open/stereotactic biopsies to optimize the neurosurgical management of elderly GBM patients.
Collapse
Affiliation(s)
- Barbara Kiesel
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Lisa I. Wadiura
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Mario Mischkulnig
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Jessica Makolli
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Veronika Sperl
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Martin Borkovec
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Julia Freund
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Alexandra Lang
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Matthias Millesi
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
| | - Anna S. Berghoff
- Department of Medicine I, Clinical Division of Oncology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, 1090 Vienna, Austria;
| | - Adelheid Woehrer
- Department of Neurology, Institute of Neuropathology and Neurochemistry, Medical University Vienna, 1090 Vienna, Austria;
| | - Georg Widhalm
- Department of Neurosurgery, Medical University Vienna, 1090 Vienna, Austria; (B.K.); (L.I.W.); (M.M.); (J.M.); (V.S.); (M.B.); (J.F.); (A.L.); (M.M.)
- Correspondence:
| |
Collapse
|
9
|
Morisawa S, Jobu K, Ishida T, Kawada K, Fukuda H, Kawanishi Y, Nakayama T, Yamamoto S, Tamura N, Takemura M, Kagimoto N, Ohta T, Masahira N, Fukuhara H, Ogura SI, Ueba T, Inoue K, Miyamura M. Association of 5-aminolevulinic acid with intraoperative hypotension in malignant glioma surgery. Photodiagnosis Photodyn Ther 2021; 37:102657. [PMID: 34848378 DOI: 10.1016/j.pdpdt.2021.102657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Use of 5-aminolevulinic acid for photodynamic malignant tumor diagnosis reportedly causes intraoperative hypotension (systolic blood pressure < 70 mmHg) during urologic surgery. However, its association with intraoperative hypotension in malignant glioma surgery and underlying mechanisms has not yet been elucidated.. This study aimed to investigate whether 5-aminolevulinic acid administration is associated with intraoperative hypotension in malignant glioma surgery and explore the mechanisms of 5-aminolevulinic acid-induced hypotension in vitro. METHODS In this retrospective multicenter cohort study, we investigated intracellular nitric oxide as a candidate mediator of hypotension in response to 5-aminolevulinic acid in vitro in human umbilical vein endothelial cell cultures. RESULTS Of 142 patients, 94 underwent 5-aminolevulinic acid-guided surgery. Systolic blood pressure was significantly lower throughout surgery with 5-aminolevulinic acid administration. 5-Aminolevulinic acid administration was an independent risk factor for intraoperative hypotension according to multivariable logistic regression analysis (89% vs. 56%; odds ratio = 6.72, 95% confidence interval [2.05-22.1], P = 002). In subgroup analysis of the 5-aminolevulinic acid group, increasing age and use of renin-angiotensin system inhibitors had a synergistic effect with 5-aminolevulinic acid on decreased blood pressure. In the vascular endothelial cell culture study, 5-aminolevulinic acid induced a significant increase in intracellular nitric oxide generation. CONCLUSIONS 5-Aminolevulinic acid administration was associated with intraoperative hypotension in malignant glioma surgery, with increasing age and use of renin-angiotensin system inhibitors boosting the blood pressure-lowering effect of 5-aminolevulinic acid. According to in vitro results, the low blood pressure induced by 5-aminolevulinic acid may be mediated by a nitric oxide increase in vascular endothelial cells.
Collapse
Affiliation(s)
- Shumpei Morisawa
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan.
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Kei Kawada
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Hitoshi Fukuda
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Yu Kawanishi
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Taku Nakayama
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Shinkuro Yamamoto
- Department of Urology, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Naohisa Tamura
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Mitsuhiro Takemura
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Nao Kagimoto
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Tsuyoshi Ohta
- Department of Neurosurgery, National Cerebral and Cardiovascular Center Hospital, 6-1 Kishibe Shimmachi, Suita Osaka, Japan
| | - Noritaka Masahira
- Department of Neurosurgery, Kochi Health Sciences Center, 2125-1, Ike, Kochi, Kochi, Japan
| | - Hideo Fukuhara
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Department of Urology, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Shun-Ichiro Ogura
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; School of Life Science and Technology, Tokyo Institute of Technology, 4259 B47, Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, Japan
| | - Tetsuya Ueba
- Department of Neurosurgery, Kochi Medical School, Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Keiji Inoue
- Center for Photodynamic Medicine, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Department of Urology, Kochi Medical School, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| | - Mitsuhiko Miyamura
- Department of Pharmacy, Kochi Medical School Hospital, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan; Graduate School of Integrated Arts and Sciences Kochi University, 185-1, Kohasu, Oko town, Nankoku, Kochi, Japan
| |
Collapse
|
10
|
Barsouk A, Baldassari MP, Khanna O, Andrews CE, Ye DY, Velagapudi L, Al Saiegh F, Hafazalla K, Cunningham E, Patel H, Malkani K, Fitchett EM, Farrell CJ, Judy KD. Glioblastoma with deep supratentorial extension is associated with a worse overall survival. J Clin Neurosci 2021; 93:82-87. [PMID: 34656266 DOI: 10.1016/j.jocn.2021.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/25/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Glioblastoma (GBM) with deep-supratentorial extension (DSE) involving the thalamus, basal ganglia and corpus collosum, poses significant challenges for clinical management. In this study, we present our outcomes in patients who underwent resection of supratentorial GBM with associated involvement of deep brain structures. We conducted a retrospective review of patients who underwent resection of GBM at our institution between 2012 and 2018. A total of 419 patients were included whose pre-operative MRI scans were reviewed. Of these, 143 (34.1%) had GBM with DSE. There were similar rates of IDH-1 mutation (9% versus 7.6%, p = 0.940) and MGMT methylation status (35.7% versus 45.2%, p = 0.397) between the two cohorts. GBM patients without evidence of DSE had higher rates of radiographic gross total resection (GTR) compared to those with DSE: 70.6% versus 53.1%, respectively (p = 0.002). The presence of DSE was not associated with decreased progression-free survival (PFS) compared to patients without DSE (mean 7.24 ± 0.97 versus 8.89 ± 0.76 months, respectively; p = 0.276), but did portend a worse overall survival (OS) (mean 10.55 ± 1.04 versus 15.02 ± 1.05 months, respectively; p = 0.003). There was no difference in PFS or OS amongst DSE and non-DSE patients who underwent GTR, but patients who harbored DSE and underwent subtotal resection had worse OS (mean 8.26 ± 1.93 versus 12.96 ± 1.59 months, p = 0.03). Our study shows that GBM patients with DSE have lower OS compared to those without DSE. This survival difference appears to be primarily related to the limited surgical extent of resection owing to the neurological deficits that may be incurred with involvement of eloquent deep brain structures.
Collapse
Affiliation(s)
- Adam Barsouk
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Michael P Baldassari
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Omaditya Khanna
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Carrie E Andrews
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Donald Y Ye
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Lohit Velagapudi
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Fadi Al Saiegh
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Karim Hafazalla
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Erica Cunningham
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Heli Patel
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kabir Malkani
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Evan M Fitchett
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Christopher J Farrell
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA
| | - Kevin D Judy
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Wu W, Klockow JL, Zhang M, Lafortune F, Chang E, Jin L, Wu Y, Daldrup-Link HE. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol Res 2021; 171:105780. [PMID: 34302977 PMCID: PMC8384724 DOI: 10.1016/j.phrs.2021.105780] [Citation(s) in RCA: 237] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Glioblastoma multiforme (GBM) is a WHO grade IV glioma and the most common malignant, primary brain tumor with a 5-year survival of 7.2%. Its highly infiltrative nature, genetic heterogeneity, and protection by the blood brain barrier (BBB) have posed great treatment challenges. The standard treatment for GBMs is surgical resection followed by chemoradiotherapy. The robust DNA repair and self-renewing capabilities of glioblastoma cells and glioma initiating cells (GICs), respectively, promote resistance against all current treatment modalities. Thus, durable GBM management will require the invention of innovative treatment strategies. In this review, we will describe biological and molecular targets for GBM therapy, the current status of pharmacologic therapy, prominent mechanisms of resistance, and new treatment approaches. To date, medical imaging is primarily used to determine the location, size and macroscopic morphology of GBM before, during, and after therapy. In the future, molecular and cellular imaging approaches will more dynamically monitor the expression of molecular targets and/or immune responses in the tumor, thereby enabling more immediate adaptation of tumor-tailored, targeted therapies.
Collapse
Affiliation(s)
- Wei Wu
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Jessica L Klockow
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Michael Zhang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA; Department of Neurosurgery, Stanford University, Stanford, CA 94305, USA
| | - Famyrah Lafortune
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Edwin Chang
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA
| | - Linchun Jin
- Lillian S. Wells Department of Neurosurgery, University of Florida, Gainesville, FL 32611, USA
| | - Yang Wu
- Department of Neuropathology, Institute of Pathology, Technical University of Munich, Munich, Bayern 81675, Germany
| | - Heike E Daldrup-Link
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Nikova AS, Vlotinou P, Karelis L, Karanikas M, Birbilis TA. Gross total resection with fluorescence could lead to improved overall survival rates: a systematic review and meta-analysis. Br J Neurosurg 2021; 36:316-322. [PMID: 34313526 DOI: 10.1080/02688697.2021.1950637] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Glioblastoma cases are often treated with aggressive resection. Recent studies have suggested that extended surgical resection could improve survival. Improved extent of resection could be afforded by the use of fluorescence during surgery. We aimed to examine the effect of fluorescence on the results of gross total resection (GTR) and its impact on the overall survival (OS) and progression-free survival (PFS) rates. METHODS We performed a literature search of studies published between 2000 and 2021. The study followed the PRISMA guidelines and focused on newly-diagnosed glioblastoma cases. The collected data were divided into two groups according to the fluorescence use: Group A (standard white-light use) and Group B (fluorescent-light use). RESULTS The results showed a superiority of the fluorescence use during surgery for newly diagnosed glioblastoma cases concerning the procurement of GTR. Additionally, we highlighted the importance of GTR on the OS but not on the PFS rate. We found that the use of 5-aminolevulinic acid resulted in better OS rates compared to fluorescein sodium. CONCLUSION GTR is a significant factor leading to improved OS; nevertheless, it was an apparently unrelated factor for estimating the PFS rate. Fluorescence use during surgery could lead to higher rates of complete resection and better OS rates.
Collapse
Affiliation(s)
- Alexandrina S Nikova
- Department of Neurosurgery, Democritus University of Thrace Medical School, Alexandroupolis, Greece.,Department of Neurosurgery, "Evangelismos" General Hospital, Athens, Greece
| | - Penelope Vlotinou
- Department of Neurology, Democritus University of Thrace, Alexandroupolis, Greece
| | - Loukas Karelis
- Department of Pathology, "Metaxa" Cancer Hospital, Piraeus, Greece
| | - Michael Karanikas
- Department of Surgery, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| | - Theodossios A Birbilis
- Department of Neurosurgery, Democritus University of Thrace Medical School, Alexandroupolis, Greece
| |
Collapse
|
13
|
Lim J, Park Y, Ahn JW, Hwang SJ, Kwon H, Sung KS, Cho K. Maximal surgical resection and adjuvant surgical technique to prolong the survival of adult patients with thalamic glioblastoma. PLoS One 2021; 16:e0244325. [PMID: 33539351 PMCID: PMC7861362 DOI: 10.1371/journal.pone.0244325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 12/07/2020] [Indexed: 12/31/2022] Open
Abstract
The importance of maximal resection in the treatment of glioblastoma (GBM) has been reported in many studies, but maximal resection of thalamic GBM is rarely attempted due to high rate of morbidity and mortality. The purpose of this study was to investigate the role of surgical resection in adult thalamic glioblastoma (GBM) treatment and to identify the surgical technique of maximal safety resection. In case of suspected thalamic GBM, surgical resection is the treatment of choice in our hospital. Biopsy was considered when there was ventricle wall enhancement or multiple enhancement lesion in a distant location. Navigation magnetic resonance imaging, diffuse tensor tractography imaging, tailed bullets, and intraoperative computed tomography and neurophysiologic monitoring (transcranial motor evoked potential and direct subcortical stimulation) were used in all surgical resection cases. The surgical approach was selected on the basis of the location of the tumor epicenter and the adjacent corticospinal tract. Among the 42 patients, 19 and 23 patients underwent surgical resection and biopsy, respectively, according to treatment strategy criteria. As a result, the surgical resection group exhibited a good response with overall survival (OS) (median: 676 days, p < 0.001) and progression-free survival (PFS) (median: 328 days, p < 0.001) compared with each biopsy groups (doctor selecting biopsy group, median OS: 240 days and median PFS: 134 days; patient selecting biopsy group, median OS: 212 days and median PFS: 118 days). The surgical resection groups displayed a better prognosis compared to that of the biopsy groups for both the O6-methylguanine-DNA methyltransferase unmethylated (log-rank p = 0.0035) or methylated groups (log-rank p = 0.021). Surgical resection was significantly associated with better prognosis (hazard ratio: 0.214, p = 0.006). In case of thalamic GBM without ventricle wall-enhancing lesion or multiple lesions, maximal surgical resection above 80% showed good clinical outcomes with prolonged the overall survival compared to biopsy. It is helpful to use adjuvant surgical techniques of checking intraoperative changes and select the appropriate surgical approach for reducing the surgical morbidity.
Collapse
Affiliation(s)
- Jaejoon Lim
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - YoungJoon Park
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
- Dermay Research Center, Dongtan, Republic of Korea
| | - Ju Won Ahn
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
- Institute Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Republic of Korea
| | - So Jung Hwang
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - Hyouksang Kwon
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University Hospital, Dong-A University College of Medicine, Busan, Republic of Korea
- * E-mail: (KC); (KSS)
| | - Kyunggi Cho
- Department of Neurosurgery, Bundang CHA Medical Center, CHA University College of Medicine, Seongnam, Republic of Korea
- * E-mail: (KC); (KSS)
| |
Collapse
|
14
|
Nordmann NJ, Michael AP. 5-Aminolevulinic acid radiodynamic therapy for treatment of high-grade gliomas: A systematic review. Clin Neurol Neurosurg 2020; 201:106430. [PMID: 33360951 DOI: 10.1016/j.clineuro.2020.106430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Radiodynamic therapy (RDT) involves administration of a radiosensitizing agent and its subsequent activation by ionizing radiation for destruction of neoplastic cells. MATERIALS AND METHODS A comprehensive evaluation of the literature was performed to review the history of RDT using porphyrins for solid tumors, the cellular mechanisms of action, immunomodulatory effects, and both preclinical and clinical studies for use in high-grade gliomas (HGGs). This manuscript was prepared in accordance with the PRISMA guidelines. RESULTS A total of 271 articles were considered for initial review. After removal of duplicates, articles not unrelated to specific topic, and exclusion of commentary articles, a total of 11 articles were subject to full analysis that included in vivo, in vitro, and human studies. Porphyrins such as 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) selectively accumulate in neoplastic cells and are currently used for fluorescent-guided surgical resection and photodynamic therapy (PDT) of HGG and other brain tumors. 5-ALA is also shown to act as a radiosensitizer by increasing oxidative stress in neoplastic cell mitochondria and enhancing the host immune response. Postoperative radiation therapy is currently the standard of care for treatment of HGG. CONCLUSION RDT remains a promising adjuvant therapy for HGGs and requires further investigation. Clinical trials of 5-ALA RDT for HGG are needed to evaluate the optimum timing, dosing and effectiveness.
Collapse
Affiliation(s)
- Nathan J Nordmann
- Division of Neurosurgery, Neuroscience Institute, Southern Illinois University School of Medicine. P.O. Box 19638, Springfield, IL, 62794-9638, United States
| | - Alex P Michael
- Division of Neurosurgery, Neuroscience Institute, Southern Illinois University School of Medicine. P.O. Box 19638, Springfield, IL, 62794-9638, United States.
| |
Collapse
|
15
|
Zhao L, Zhao W, Hou Y, Wen C, Wang J, Wu P, Guo Z. An Overview of Managements in Meningiomas. Front Oncol 2020; 10:1523. [PMID: 32974188 PMCID: PMC7473392 DOI: 10.3389/fonc.2020.01523] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Meningioma is the most frequent primary tumor of the central nervous system. Important advances have been achieved in the treatment of meningioma in recent decades. Although most meningiomas are benign and have a good prognosis after surgery, clinicians often face challenges when the morphology of the tumor is complicated or the tumor is close to vital brain structures. At present, the longstanding treatment strategies of meningioma are mainly surgery and radiotherapy. The effectiveness of systemic therapy, such as chemotherapy or targeted therapy, has not been confirmed by big data series, and some clinical trials are still in progress. In this review, we summarize current treatment strategies and future research directions for meningiomas.
Collapse
Affiliation(s)
- Lianhua Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Wei Zhao
- Department of Neurology, Tianjin TEDA Hospital, Tianjin, China
| | - Yanwei Hou
- Department of Neurosurgery, Tianjin TEDA Hospital, Tianjin, China
| | - Cuixia Wen
- Department of Radiotherapy, Xuzhou Central Hospital, Xuzhou, China
| | - Jing Wang
- Department of Radiotherapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Pei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zaiyu Guo
- Department of Neurosurgery, Tianjin TEDA Hospital, Tianjin, China
| |
Collapse
|
16
|
Kim JK, Jung TY, Jung S, Kim IY, Jang WY, Moon KS, Kim SK, Kim JH, Lee KH. Relationship between tumor cell infiltration and 5-aminolevulinic acid fluorescence signals after resection of MR-enhancing lesions and its prognostic significance in glioblastoma. Clin Transl Oncol 2020; 23:459-467. [PMID: 32617871 DOI: 10.1007/s12094-020-02438-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/19/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE This study investigated the degree of tumor cell infiltration in the tumor cavity and ventricle wall based on fluorescent signals of 5-aminolevulinic acid (5-ALA) after removal of the magnetic resonance (MR)-enhancing area and analyzed its prognostic significance in glioblastoma. METHODS Twenty-five newly developed isocitrate dehydrogenase (IDH)-wildtype glioblastomas with complete resection both of MR-enhancing lesions and strong purple fluorescence on resection cavity were retrospectively analyzed. The fluorescent signals of 5-ALA were divided into strong purple, vague pink, and blue colors. The pathologic findings were classified into massively infiltrating tumor cells, infiltrating tumor cells, suspicious single-cell infiltration, and normal-appearing cells. The pathological findings were analyzed according to the fluorescent signals in the resection cavity and ventricle wall. RESULTS There was no correlation between fluorescent signals and infiltrating tumor cells in the resection cavity (p = 0.199) and ventricle wall (p = 0.704) after resection of the MR-enhancing lesion. The median progression-free survival (PFS) and median overall survival (OS) were 12.5 (± 2.1) and 21.1 (± 3.5) months, respectively. In univariate analysis, the presence of definitive infiltrating tumor cells in the resection cavity and ventricle wall was significantly related to the PFS (p = 0.002) and OS (p = 0.027). In multivariate analysis, the absence of definitive infiltrating tumor cells improved PFS (hazard ratio: 0.184; 95% CI: 0.049-0.690, p = 0.012) and OS (hazard ratio: 0.124; 95% CI: 0.015-0.998, p = 0.050). CONCLUSIONS After resection both of the MR-enhancing lesions and strong purple fluorescence on resection cavity, there was no correlation between remnant fluorescent signals and infiltrating tumor cells. The remnant definitive infiltrating tumor cells in the resection cavity and ventricle wall significantly influenced the prognosis of patients with glioblastoma. Aggressive surgical removal of infiltrating tumor cells may improve their prognosis.
Collapse
Affiliation(s)
- J -K Kim
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, South Korea
| | - T -Y Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, South Korea.
| | - S Jung
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, South Korea
| | - I -Y Kim
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, South Korea
| | - W -Y Jang
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, South Korea
| | - K -S Moon
- Department of Neurosurgery, Chonnam National University Medical School and Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeonnam, 58128, South Korea
| | - S -K Kim
- Department of Radiology, Chonnam National University Medical School and Hwasun Hospital, Gwangju, South Korea
| | - J -H Kim
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Gwangju, South Korea
| | - K -H Lee
- Department of Pathology, Chonnam National University Medical School and Hwasun Hospital, Gwangju, South Korea
| |
Collapse
|
17
|
Blomquist MR, Ensign SF, D'Angelo F, Phillips JJ, Ceccarelli M, Peng S, Halperin RF, Caruso FP, Garofano L, Byron SA, Liang WS, Craig DW, Carpten JD, Prados MD, Trent JM, Berens ME, Iavarone A, Dhruv H, Tran NL. Temporospatial genomic profiling in glioblastoma identifies commonly altered core pathways underlying tumor progression. Neurooncol Adv 2020; 2:vdaa078. [PMID: 32743548 PMCID: PMC7388612 DOI: 10.1093/noajnl/vdaa078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Tumor heterogeneity underlies resistance and disease progression in glioblastoma (GBM), and tumors most commonly recur adjacent to the surgical resection margins in contrast non-enhancing (NE) regions. To date, no targeted therapies have meaningfully altered overall patient survival in the up-front setting. The aim of this study was to characterize intratumoral heterogeneity in recurrent GBM using bulk samples from primary resection and recurrent samples taken from contrast-enhancing (EN) and contrast NE regions. Methods Whole exome and RNA sequencing were performed on matched bulk primary and multiple recurrent EN and NE tumor samples from 16 GBM patients who received standard of care treatment alone or in combination with investigational clinical trial regimens. Results Private mutations emerge across multi-region sampling in recurrent tumors. Genomic clonal analysis revealed increased enrichment in gene alterations regulating the G2M checkpoint, Kras signaling, Wnt signaling, and DNA repair in recurrent disease. Subsequent functional studies identified augmented PI3K/AKT transcriptional and protein activity throughout progression, validated by phospho-protein levels. Moreover, a mesenchymal transcriptional signature was observed in recurrent EN regions, which differed from the proneural signature in recurrent NE regions. Conclusions Subclonal populations observed within bulk resected primary GBMs transcriptionally evolve across tumor recurrence (EN and NE regions) and exhibit aberrant gene expression of common signaling pathways that persist despite standard or targeted therapy. Our findings provide evidence that there are both adaptive and clonally mediated dependencies of GBM on key pathways, such as the PI3K/AKT axis, for survival across recurrences.
Collapse
Affiliation(s)
- Mylan R Blomquist
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Department of Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| | | | - Fulvio D'Angelo
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA
| | - Joanna J Phillips
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
| | | | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Rebecca F Halperin
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Francesca P Caruso
- Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy
| | - Luciano Garofano
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA.,Department of Science and Technology, Università degli Studi del Sannio, Benevento, Italy
| | - Sara A Byron
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Winnie S Liang
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - John D Carpten
- Department of Translational Genomics, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Michael D Prados
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey M Trent
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Michael E Berens
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Columbia University Medical Center, New York, New York, USA
| | - Harshil Dhruv
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Nhan L Tran
- Department of Cancer Biology, Mayo Clinic Arizona, Scottsdale, Arizona, USA.,Department of Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona, USA
| |
Collapse
|
18
|
Šamec N, Zottel A, Videtič Paska A, Jovčevska I. Nanomedicine and Immunotherapy: A Step Further towards Precision Medicine for Glioblastoma. Molecules 2020; 25:E490. [PMID: 31979318 PMCID: PMC7038132 DOI: 10.3390/molecules25030490] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Owing to the advancement of technology combined with our deeper knowledge of human nature and diseases, we are able to move towards precision medicine, where patients are treated at the individual level in concordance with their genetic profiles. Lately, the integration of nanoparticles in biotechnology and their applications in medicine has allowed us to diagnose and treat disease better and more precisely. As a model disease, we used a grade IV malignant brain tumor (glioblastoma). Significant improvements in diagnosis were achieved with the application of fluorescent nanoparticles for intraoperative magnetic resonance imaging (MRI), allowing for improved tumor cell visibility and increasing the extent of the surgical resection, leading to better patient response. Fluorescent probes can be engineered to be activated through different molecular pathways, which will open the path to individualized glioblastoma diagnosis, monitoring, and treatment. Nanoparticles are also extensively studied as nanovehicles for targeted delivery and more controlled medication release, and some nanomedicines are already in early phases of clinical trials. Moreover, sampling biological fluids will give new insights into glioblastoma pathogenesis due to the presence of extracellular vesicles, circulating tumor cells, and circulating tumor DNA. As current glioblastoma therapy does not provide good quality of life for patients, other approaches such as immunotherapy are explored. To conclude, we reason that development of personalized therapies based on a patient's genetic signature combined with pharmacogenomics and immunogenomic information will significantly change the outcome of glioblastoma patients.
Collapse
Affiliation(s)
| | | | - Alja Videtič Paska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.)
| | - Ivana Jovčevska
- Medical Centre for Molecular Biology, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; (N.Š.); (A.Z.)
| |
Collapse
|
19
|
Navarro-Bonnet J, Suarez-Meade P, Brown DA, Chaichana KL, Quinones-Hinojosa A. Following the light in glioma surgery: a comparison of sodium fluorescein and 5-aminolevulinic acid as surgical adjuncts in glioma resection. J Neurosurg Sci 2020; 63:633-647. [PMID: 31961116 DOI: 10.23736/s0390-5616.19.04745-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Gliomas are molecularly complex neoplasms and require a multidisciplinary approach to treatment. Maximal safe resection is often the initial goal of treatment and extent of resection (EOR) is an important prognostic factor correlating with both progression-free-survival (PFS) and overall survival (OS). Postoperative patient outcome is also a critical and independent prognosticator and high EOR must not be achieved at the expense of good functional outcome. Several intraoperative adjuvant techniques have been developed to help the surgeon push the boundaries of EOR while maintaining safety. Fluorescence-guided surgery for brain tumors is a contemporary adjuvant technique that allows for intraoperative delineation of diseased and normal brain thus improving maximal safe resection. The most extensively used fluorophores are 5-aminolevulinic acid (5-ALA) and sodium fluorescein (SFL). These fluorophores have different spectrophotometric properties, mechanisms of action and considerations for use. Both have demonstrated utility in neurosurgical oncology. They are safe and both are FDA approved for use as surgical adjuncts during resection of primary CNS neoplasms although they have been used with varying success for other tumor types. When combined with other surgical adjuvant strategies such as neuronavigation, intraoperative ultrasound, intraoperative MRI, awake resection and/or electrophysiological mapping/monitoring, fluorescence-guided resection appears to further improve resection quality in regard to EOR and safety. In this article, we review the current knowledge related to both fluorophores for brain tumor resection, their benefits, and pitfalls, as well as the major advantages associated with their use. We also briefly review additional fluorophores in early clinical development. Fluorescence-guided surgery is a novel surgical adjuvant which allows for real-time delineation of neoplastic tissues. The most widely used fluorophores are 5-ALA and SFL. They are safe compounds and there is a large body of evidence suggesting improvement in EOR when these are employed. There are nuances to the use of each; the fluorescence intensity is dose-dependent in either case and the sensitivity and specificity for various tumors vary widely. Additional prospective studies will be necessary to parse the impact of this technique and these fluorophores on survival metrics.
Collapse
Affiliation(s)
- Jorge Navarro-Bonnet
- Department of Neurosurgery, Medica Sur Clinical Foundation, Mexico City, Mexico - .,Faculty of Health Sciences, Anahuac University, Mexico City, Mexico -
| | | | | | | | | |
Collapse
|
20
|
Metalloporphyrin Pd(T4) Exhibits Oncolytic Activity and Cumulative Effects with 5-ALA Photodynamic Treatment against C918 Cells. Int J Mol Sci 2020; 21:ijms21020669. [PMID: 31968535 PMCID: PMC7013453 DOI: 10.3390/ijms21020669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy is a non-invasive method where light activates a photosensitizer bound to cancer cells, generating reactive oxygen species and resulting in cell death. This study assessed the oncolytic potential of photodynamic therapy, comparing European Medicines Agency and United States Food and Drug Administration-approved 5-aminolevulinic acid (5-ALA) to a metalloporphyrin, Pd(T4), against a highly invasive uveal melanoma cell line (C918) in two- and three-dimensional models in vitro. Epithelial monolayer studies displayed strong oncolytic effects (>70%) when utilizing Pd(T4) at a fraction of the concentration, and reduced pre-illumination time compared to 5-ALA post-405 nm irradiance. When analyzed at sub-optimal concentrations, application of Pd(T4) and 5-ALA with 405 nm displayed cumulative effects. Lethality from Pd(T4)-photodynamic therapy was maintained within a three-dimensional model, including the more resilient vasculogenic mimicry-forming cells, though at lower rates. At high concentrations, modality of cell death exhibited necrosis partially dependent on reactive oxygen species. However, sub-optimal concentrations of photosensitizer exhibited an apoptotic protein expression profile characterized by increased Bax/Bcl-2 ratio and endoplasmic stress-related proteins, along with downregulation of apoptotic inhibitors CIAP-1 and -2. Together, our results indicate Pd(T4) as a strong photosensitizer alone and in combination with 5-ALA against C918 cells.
Collapse
|
21
|
A New Treatment Opportunity for DIPG and Diffuse Midline Gliomas: 5-ALA Augmented Irradiation, the 5aai Regimen. Brain Sci 2020; 10:brainsci10010051. [PMID: 31963414 PMCID: PMC7016657 DOI: 10.3390/brainsci10010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/19/2022] Open
Abstract
Prognosis for diffuse intrinsic pontine glioma (DIPG) and generally for diffuse midline gliomas (DMG) has only marginally improved over the last ~40 years despite dozens of chemotherapy and other therapeutic trials. The prognosis remains invariably fatal. We present here the rationale for a planned study of adding 5-aminolevulinic acid (5-ALA) to the current irradiation of DIPG or DMG: the 5aai regimen. In a series of recent papers, oral 5-ALA was shown to enhance standard therapeutic ionizing irradiation. 5-ALA is currently used in glioblastoma surgery to enable demarcation of overt tumor margins by virtue of selective uptake of 5-ALA by neoplastic cells and selective conversion to protoporphyrin IX (PpIX), which fluoresces after excitation by 410 nm (blue) light. 5-ALA is also useful in treating glioblastomas by virtue of PpIX's transfer of energy to O2 molecules, producing a singlet oxygen that in turn oxidizes intracellular DNA, lipids, and proteins, resulting in selective malignant cell cytotoxicity. This is called photodynamic treatment (PDT). Shallow penetration of light required for PpIX excitation and resultant energy transfer to O2 and cytotoxicity results in the inaccessibility of central structures like the pons or thalamus to sufficient light. The recent demonstration that keV and MeV photons can also excite PpIX and generate singlet O2 allows for reconsideration of 5-ALA PDT for treating DMG and DIPG. 5-ALA has an eminently benign side effect profile in adults and children. A pilot study in DIPG/DMG of slow uptitration of 5-ALA prior to each standard irradiation session-the 5aai regimen-is warranted.
Collapse
|
22
|
Woo PY, Gai X, Wong HT, Chan KY. In Reply to the Letter to the Editor Regarding “A Novel Wavelength-Specific Blue Light-Emitting Headlamp for 5-Aminolevulinic Acid Fluorescence-Guided Resection of Glioblastoma.”. World Neurosurg 2020; 133:438-439. [DOI: 10.1016/j.wneu.2019.09.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 10/25/2022]
|
23
|
Valli D, Belykh E, Zhao X, Gandhi S, Cavallo C, Martirosyan NL, Nakaji P, Lawton MT, Preul MC. Development of a Simulation Model for Fluorescence-Guided Brain Tumor Surgery. Front Oncol 2019; 9:748. [PMID: 31475107 PMCID: PMC6706957 DOI: 10.3389/fonc.2019.00748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/25/2019] [Indexed: 12/11/2022] Open
Abstract
Objective: Fluorescence dyes are increasingly used in brain tumor surgeries, and thus the development of simulation models is important for teaching neurosurgery trainees how to perform fluorescence-guided operations. We aimed to create a tumor model for fluorescence-guided surgery in high-grade glioma (HGG). Methods: The tumor model was generated by the following steps: creating a tumor gel with a similar consistency to HGG, selecting fluorophores at optimal concentrations with realistic color, mixing the fluorophores with tumor gel, injecting the gel into fresh pig/sheep brain, and testing resection of the tumor model under a fluorescence microscope. The optimal tumor gel was selected among different combinations of agar and gelatin. The fluorophores included fluorescein, indocyanine green (ICG), europium, chlorin e6 (Ce6), and protoporphyrin IX (PpIX). The tumor model was tested by neurosurgeons and neurosurgery trainees, and a survey was used to assess the validity of the model. In addition, the photobleaching phenomenon was studied to evaluate its influence on fluorescence detection. Results: The best tumor gel formula in terms of consistency and tactile response was created using 100 mL water at 100°C, 0.5 g of agar, and 3 g of gelatin mixed thoroughly for 3 min. An additional 1 g of agar was added when the tumor gel cooled to 50°C. The optimal fluorophore concentration ranges were fluorescein 1.9 × 10−4 to 3.8 × 10−4 mg/mL, ICG 4.9 × 10−3 to 9.8 × 10−3 mg/mL, europium 7.0 × 10−2 to 1.4 × 10−1 mg/mL, Ce6 2.2 × 10−3 to 4.4 × 10−3 mg/mL, and PpIX 1.8 × 10−2 to 3.5 × 10−2 mg/mL. No statistical differences among fluorophores were found for face validity, content validity, and fluorophore preference. Europium, ICG, and fluorescein were shown to be relatively stable during photobleaching experiments, while chlorin e6 and PpIX had lower stability. Conclusions: The model can efficiently highlight the “tumor” with 3 different colors—green, yellow, or infrared green with color overlay. These models showed high face and content validity, although there was no significant difference among the models regarding the degree of simulation and training effectiveness. They are useful educational tools for teaching the key concepts of intra-axial tumor resection techniques, such as subpial dissection and nuances of fluorescence-guided surgery.
Collapse
Affiliation(s)
- Daniel Valli
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Xiaochun Zhao
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Sirin Gandhi
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Claudio Cavallo
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | | | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Michael T Lawton
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, United States
| |
Collapse
|