1
|
Prieto R, Barrios L, Ebrat-Mancilla E, Martín P, Tejerina E. The Significance of BRAF Mutation in the Epithelioid Glioblastoma Subtype: A Systematic Literature Review and a Case Report with a Unique Intraventricular Topography. Int J Surg Pathol 2024; 32:649-666. [PMID: 37743598 DOI: 10.1177/10668969231195026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Epithelioid glioblastoma (E-GBM) is an exceedingly rare subtype of isocitrate dehydrogenase (IDH)-wildtype glioblastoma, first included in the WHO 2016 classification and characterized by a dominant population of epithelioid cells. Its histological and molecular defining features remain troublesome. The significance of BRAF mutations to pathological diagnosis and surgical outcome has drawn increasing attention given their promising potential for future adjuvant therapies. Herein, we describe a unique case of an E-GBM in the atrium of the left lateral ventricle and comprehensively analyze the importance of BRAF status in a cohort of 211 E-GBMs from the literature. Our patient was a 40-year-old man with occipital pain. His brain MRI revealed a large intraventricular tumor at the same location as a signal change found 10 years earlier with no additional follow-up. He underwent gross total tumor removal followed by conventional adjuvant treatment. Histopathological diagnosis was consistent with IDH-wildtype E-GBM WHO grade 4 with pleomorphic xanthoastrocytoma-like areas. BRAF p.V600 mutation was demonstrated in the tumoral genetic study. In the cohort analyzed, male patients predominated (63%), the median age was 32 years old, and the 5-year survival rate following diagnosis was 4.2%. BRAF mutations were found in 60.3% of the tumors overall, with this rate increasing to 78.3% in young adults (19-49 years, P < .001). Presence of BRAF mutations associated with tumor progression (P = .001), the event usually leading to death (P < .001). In conclusion, our study supports the importance of genetic BRAF p.V600 mutation analysis because its presence not only points to an E-GBM diagnosis but may also promote tumor progression.
Collapse
Affiliation(s)
- Ruth Prieto
- Department of Neurosurgery, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Laura Barrios
- Statistics Department, Computing Center, C.S.I.C., Madrid, Spain
| | - Edwin Ebrat-Mancilla
- Department of Neurophysiology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Paloma Martín
- Molecular Pathology Group, Instituto de Investigación Sanitaria Puerta de Hierro Segovia de Arana (IDIPHISA), Madrid, Spain
| | - Eva Tejerina
- Department of Pathology, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| |
Collapse
|
2
|
Tomoszková S, Škarda J, Lipina R. Potential Diagnostic and Clinical Significance of Selected Genetic Alterations in Glioblastoma. Int J Mol Sci 2024; 25:4438. [PMID: 38674026 PMCID: PMC11050250 DOI: 10.3390/ijms25084438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glioblastoma is currently considered the most common and, unfortunately, also the most aggressive primary brain tumor, with the highest morbidity and mortality rates. The average survival of patients diagnosed with glioblastoma is 14 months, and only 2% of patients survive 3 years after surgery. Based on our clinical experience and knowledge from extensive clinical studies, survival is mainly related to the molecular biological properties of glioblastoma, which are of interest to the general medical community. Our study examined a total of 71 retrospective studies published from 2016 through 2022 and available on PubMed that deal with mutations of selected genes in the pathophysiology of GBM. In conclusion, we can find other mutations within a given gene group that have different effects on the prognosis and quality of survival of a patient with glioblastoma. These mutations, together with the associated mutations of other genes, as well as intratumoral heterogeneity itself, offer enormous potential for further clinical research and possible application in therapeutic practice.
Collapse
Affiliation(s)
- Silvia Tomoszková
- Neurosurgery Clinic, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic;
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| | - Jozef Škarda
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic
| | - Radim Lipina
- Neurosurgery Clinic, University Hospital Ostrava, 17. listopadu 1790/5, 708 00 Ostrava, Czech Republic;
- Medical Faculty, University of Ostrava, Syllabova 19, 703 00 Ostrava, Czech Republic;
| |
Collapse
|
3
|
Mahajan S, Singh J, Dandapath I, Jha P, Chaturvedi S, Ahuja A, Bhardwaj M, Saran R, Garg A, Sharma MC, Manjunath N, Suri A, Sarkar C, Suri V. Analysis of Histomorphologic/Molecular Association and Immune Checkpoint Regulators in Epithelioid Glioblastoma and Pleomorphic Xanthoastrocytoma: Are These Tumors Potential Candidates for Immune Checkpoint Blockade? Appl Immunohistochem Mol Morphol 2024; 32:84-95. [PMID: 38158760 DOI: 10.1097/pai.0000000000001179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/12/2023] [Indexed: 01/03/2024]
Abstract
Accurate diagnosis of Epithelioid glioblastoma (eGB) and pleomorphic xanthoastrocytoma (PXA) is sometimes challenging owing to overlapping histologic and genetic features. There are limited reports on the immune profile of these tumors. In this study, we assessed 21 PXA [15 PXA Grade 2 (PXAG2); 6 PXA Grade 3 (PXAG3)] and 14 eGB for their histopathological and molecular association. Further, their immune profile was compared with GB, IDH1 wild-type (wt) (n-18). Morphologically, PXAG2 mostly differed from eGB; however, it was occasionally difficult to differentiate PXAG3 from eGB due to their epithelioid pattern and less obvious degenerative features. PXAG2 showed predominantly diffuse, whereas variable positivity for epithelial and glial markers was seen in PXAG3 and eGB. All cases showed retained nuclear ATRX and INI-1 . H3K27M or IDH1 mutation was seen in none. P53 mutation was more common in eGB, followed by PXAG3, and least common in PXAG2. BRAF V600E mutation was observed in 66.67% PXAG2, 33.33% PXAG3, and 50% eGB, with 100% concordance between immunohistochemistry (IHC) and sequencing. Thirty-six percent eGB, 33% PXAG3, and 61% PXAG2 harbored CDKN2A homozygous deletion. EGFR amplification was observed in 14% eGB and 66% of GB, IDH wt. PDL1 and CTLA-4 expression was higher in eGB (71.4% and 57.1%), PXAG3 (66.6% and100%), and PXAG2 (60% & 66.7%) as compared with GB, IDH wt (38.8% and 16.7%). Tumor-infiltrating lymphocytes were also observed in a majority of eGB and PXA (90% to 100%) in contrast to GB, IDH wt (66%). This analysis highlights the homogenous molecular and immune profile of eGB and PXA, suggesting the possibility that histologically and molecularly, these two entities represent 2 ends of a continuous spectrum with PXAG3 lying in between. Higher upregulation of PDL1, CTLA-4, and increased tumor infiltrating lymphocytes in these tumors as compared with GB, IDH wt suggests potential candidature for immunotherapy.
Collapse
Affiliation(s)
- Swati Mahajan
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Jyotsna Singh
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Iman Dandapath
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Prerana Jha
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Sujata Chaturvedi
- Department of Pathology, Institute of Human Behaviour and Allied Sciences, New Delhi, India
| | - Arvind Ahuja
- Department of Pathology, PGIMER & Dr. RML Hospital, New Delhi, India
| | - Minakshi Bhardwaj
- Department of Pathology, PGIMER & Dr. RML Hospital, New Delhi, India
| | - Ravindra Saran
- Department of Pathology, G B Pant Institute of Postgraduate Medical Education and Research, New Delhi, India
| | - Ajay Garg
- Department of Neuroradiology, All India Institute of Medical Science, New Delhi
| | - Mehar C Sharma
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| | - Niveditha Manjunath
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Neuropathology Laboratory, Neurosciences Centre, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
4
|
Muniz TP, Mason WP. BRAF Mutations in CNS Tumors-Prognostic Markers and Therapeutic Targets. CNS Drugs 2023; 37:587-598. [PMID: 37268805 DOI: 10.1007/s40263-023-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
Gliomas are a heterogeneous group of brain tumors with limited therapeutic options. However, identification of BRAF V600E mutations in a subset of gliomas has provided a genomic-targeted approach for management of these diseases. In this review, we aimed to review the role of BRAF V600E in gliomagenesis, to characterize concurrent genomic alterations and their potential prognostic implications, and to review comprehensively the efficacy data of BRAF inhibitors (combined or not with MEK inhibitors) for the treatment of low- and high-grade gliomas. We also provide a summary of the toxicity of these agents and describe resistance mechanisms that may be circumvented by alternative genomic approaches. Although the efficacy of targeted therapy for management of BRAF V600E-mutant gliomas has mostly been assessed in small retrospective and phase 2 studies with heterogeneous populations, the data generated so far are a proof of concept that genomic-directed therapies improve outcomes of patients with refractory/relapsed glioma and underpin the need of comprehensive genomic assessments for these difficult-to-treat diseases. In the future, the role of targeted therapy in the first-line setting and of genomic-directed therapies to overcome resistance mechanisms should be assessed in well-designed clinical trials.
Collapse
Affiliation(s)
- Thiago P Muniz
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada.
| | - Warren P Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Damayanti NP, Saadatzadeh MR, Dobrota E, Ordaz JD, Bailey BJ, Pandya PH, Bijangi-Vishehsaraei K, Shannon HE, Alfonso A, Coy K, Trowbridge M, Sinn AL, Zhang ZY, Gallagher RI, Wulfkuhle J, Petricoin E, Richardson AM, Marshall MS, Lion A, Ferguson MJ, Balsara KE, Pollok KE. Establishment and characterization of patient-derived xenograft of a rare pediatric anaplastic pleomorphic xanthoastrocytoma (PXA) bearing a CDC42SE2-BRAF fusion. Sci Rep 2023; 13:9163. [PMID: 37280243 PMCID: PMC10244396 DOI: 10.1038/s41598-023-36107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.
Collapse
Affiliation(s)
- Nur P Damayanti
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - M Reza Saadatzadeh
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Josue D Ordaz
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
| | - Barbara J Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Pankita H Pandya
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Translational Research Integrated Biology Laboratory/Indiana Pediatric Biobank, Riley Children Hospital, Indianapolis, IN, 46202, USA
| | - Harlan E Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kathy Coy
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Melissa Trowbridge
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Anthony L Sinn
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Angela M Richardson
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Mark S Marshall
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alex Lion
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Ferguson
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Karl E Balsara
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, University of Oklahoma School of Medicine, Oklahoma City, OH, 73104, USA.
| | - Karen E Pollok
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA.
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
6
|
Ding Y, Wang Q, Wang F, Wu N, Li J, He X, Pan H, Wang L. TTFields Prolonged the PFS of Epithelioid Glioblastoma Patient: A Case Report. Brain Sci 2023; 13:brainsci13040633. [PMID: 37190598 DOI: 10.3390/brainsci13040633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Epithelioid glioblastoma (EGBM, classified as glioblastoma, IDH wild type, grade 4 according to the fifth edition of the World Health Organization (WHO) Classification of Tumors of the Central Nervous System (CNS) (WHO CNS5)) is a highly aggressive malignancy, with a median progression-free survival (mPFS) of about 6 months in adults. The application of tumor-treating fields (TTFields, possessing anti-cancer capabilities via anti-mitotic effects) in the maintenance of temozolomide (TMZ) chemotherapy showed a benefit for prolonging the mPFS of newly diagnosed glioblastoma (GBM) for patients for up to 6.9 months in the EF-14 clinical trial (NCT00916409). However, studies focusing on the effect of TTFields in EGBM treatment are very limited due to the rarity of EGBM. Here, we have reported a case of a 28-year-old male (recurrent left-sided limb twitching for 1 month and dizziness for 1 week) diagnosed with EGBM. A right frontal lobe occupancy was detected by magnetic resonance imaging (MRI), and a total tumor resection was performed. Meanwhile, a postoperative histopathology test, including immunohistochemistry and molecular characterization, was conducted, and the results revealed a BRAF V600E mutation, no co-deletion of 1p and 19q, and negative O-6-methylguanine DNA methyltransferase (MGMT) promoter methylation. Then, chemoradiotherapy was conducted, and TTFields and TMZ were performed sequentially. Notably, a long-term PFS of 34 months and a Karnofsky Performance Scale (KPS) of 90 were achieved by the patient on TTFields combined with TMZ, whose average daily usage of TTFields was higher than 90%.
Collapse
Affiliation(s)
- Yuxuan Ding
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qiang Wang
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - Feijiang Wang
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Nan Wu
- Department of Pathology, Jinling Hospital, Nanjing 210002, China
| | - Jianrui Li
- Department of Diagnostic Radiology, Jinling Hospital, Nanjing 210002, China
| | - Xia He
- Department of Radiotherapy, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Hao Pan
- Department of Neurosurgery, Jinling Hospital, Nanjing 210002, China
| | - Lijun Wang
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Molecular Heterogeneity in BRAF-Mutant Gliomas: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2023; 15:cancers15041268. [PMID: 36831610 PMCID: PMC9954401 DOI: 10.3390/cancers15041268] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/25/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Over the last few decades, deciphering the alteration of molecular pathways in brain tumors has led to impressive changes in diagnostic refinement. Among the molecular abnormalities triggering and/or driving gliomas, alterations in the MAPK pathway reign supreme in the pediatric population, as it is encountered in almost all low-grade pediatric gliomas. Activating abnormalities in the MAPK pathway are also present in both pediatric and adult high-grade gliomas. Across those alterations, BRAF p.V600E mutations seem to define homogeneous groups of tumors in terms of prognosis. The recent development of small molecules inhibiting this pathway retains the attention of neurooncologists on BRAF-altered tumors, as conventional therapies showed no significant effect, nor prolonged efficiency on the high-grade or low-grade unresectable forms. Nevertheless, tumoral heterogeneity and especially molecular alteration(s) associated with MAPK-pathway abnormalities are not fully understood with respect to how they might lead to the specific dismal prognosis of those gliomas and/or affect their response to targeted therapies. This review is an attempt to provide comprehensive information regarding molecular alterations related to the aggressiveness modulation in BRAF-mutated gliomas and the current knowledge on how to use those targeted therapies in such situations.
Collapse
|
8
|
Pan R, Wang X, Fang R, Xia Q, Wu N, Rao Q. Epithelioid glioblastoma exhibits a heterogeneous molecular feature: A targeted next-generation sequencing study. Front Oncol 2022; 12:980059. [PMID: 36505786 PMCID: PMC9730819 DOI: 10.3389/fonc.2022.980059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Introduction Epithelioid glioblastoma (eGBM) is one of the rare glioblastoma (GBM) variants in the current World Health Organization (WHO) categorization of central nervous system (CNS) tumours. However, the diagnostic basis and molecular features of eGBM have not been clearly defined to date. In this study, we aimed to molecularly characterize these tumours. Methods The clinicopathological, molecular, and immunohistochemical characteristics of 12 cases of eGBM were investigated. Results The tumours were found to be made up of epithelioid and rhabdoid cells when examined under a microscope. Six cases (50%) harboured the BRAF V600E mutation, and NF1 mutation was detected in 2 eGBM cases (16.7%). CDKN2A/B homozygous deletion was seen in 5 cases (41.7%). TP53 mutation was recognized in 2 instances (16.7%), and TERT promoter mutation was recognized in 5 cases (41.7%). Discussion eGBM is characterized by high molecular heterogeneity and has molecular overlaps between low-grade gliomas. Moreover, rather than being a variant or entity, the biological significance of the "epithelioid" appearance may be reduced to a simply morphological pattern. In order to target the proper treatment to suitable patients, molecular stratification via genome-wide molecular profiling will be crucial.
Collapse
Affiliation(s)
| | | | | | | | - Nan Wu
- *Correspondence: Qiu Rao, ; Nan Wu,
| | - Qiu Rao
- *Correspondence: Qiu Rao, ; Nan Wu,
| |
Collapse
|
9
|
Lin Z, Yang R, Zheng H, Li Z, Yi G, Wu Q, Yang C, Huang G. Pleomorphic xanthoastrocytoma, anaplastic pleomorphic xanthoastrocytoma, and epithelioid glioblastoma: case series with clinical characteristics, molecular features and progression relationship. Clin Neurol Neurosurg 2022; 221:107379. [DOI: 10.1016/j.clineuro.2022.107379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/16/2022] [Accepted: 07/18/2022] [Indexed: 11/03/2022]
|
10
|
The evolution of pleomorphic xanthoastrocytoma: from genesis to molecular alterations and mimics. J Transl Med 2022; 102:670-681. [PMID: 35031693 DOI: 10.1038/s41374-021-00708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 11/15/2021] [Accepted: 11/18/2021] [Indexed: 11/08/2022] Open
Abstract
Pleomorphic xanthoastrocytomas (PXAs) are rare tumors accounting for less than 1% of astrocytomas. They commonly occur in young patients and have relatively favorable prognosis. However, they are well known to have heterogenous morphology and biological behavior with the potential to recur and disseminate throughout the central nervous system, especially their anaplastic counterparts. Recent advances in the molecular characterization have discovered BRAFp.V600E mutations in conjunction with CDKN2A/B deletions and TERTp mutations to be the most frequent alterations in PXAs. These tumors can present a diagnostic challenge as they share overlapping histopathological, genomic as well as methylation profile with various other tumor types, particularly epithelioid glioblastomas (eGBs). This review provides the spectrum of evolution of PXAs from their genesis to recent molecular insights and attempts to review pathogenesis and relationship to other tumors that they mimic especially eGB. It is postulated based on evidence from literature that PXA and eGB are possibly related and not distinct entities, being two ends of a continuous spectrum of malignant progression (grade 2-grade 4) with anaplastic PXA (grade 3) lying in between. Future WHO classifications will have to possibly redefine these tumors using more confirmatory data from larger studies.
Collapse
|
11
|
TMEM60 Promotes the Proliferation and Migration and Inhibits the Apoptosis of Glioma through Modulating AKT Signaling. JOURNAL OF ONCOLOGY 2022; 2022:9913700. [PMID: 35027926 PMCID: PMC8749377 DOI: 10.1155/2022/9913700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/26/2021] [Indexed: 02/03/2023]
Abstract
Glioma is a highly fatal malignancy with aggressive proliferation, migration, and invasion metastasis due to aberrant genetic regulation. This work aimed to determine the function of transmembrane protein 60 (TMEM60) during glioma development. The level of TMEM60 in glioma tissues and normal tissues and its correlation with glioma prognosis were checked in The Cancer Genome Atlas (TCGA) database. The levels of TMEM60 in glioma cell lines and normal astrocytes were determined by quantitative real-time PCR and western blotting assay. TMEM60 knockdown and overexpression were conducted, followed by detection of cell viability, migration, invasion, and apoptosis. CCK-8 and colony formation assay were adopted to detect cell viability proliferation. Transwell assay was performed to measure cell migration and invasion. Cell apoptosis was evaluated by flow cytometry. The alternation of key proteins in the PI3K/Akt signaling pathway was measured by western blotting. TMEM60 expression was significantly higher in glioma tissues than that in the healthy control and was correlated with poor overall survival of patients. The protein and mRNA levels of TMEM60 were both elevated in glioma cell lines in comparison with the normal cell lines. Elevated level of TMEM60 led to enhanced proliferation, migration, and invasion and suppressed cell apoptosis. TMEM60 promoted the activation of PI3K/Akt signaling. Our data suggested that TMEM60 plays an oncogenic role in glioma progression via activating the PI3K/Akt signaling pathway.
Collapse
|
12
|
EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2021; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
|
13
|
The Pivotal Immunomodulatory and Anti-Inflammatory Effect of Histone-Lysine N-Methyltransferase in the Glioma Microenvironment: Its Biomarker and Therapy Potentials. Anal Cell Pathol (Amst) 2021; 2021:4907167. [PMID: 34745848 PMCID: PMC8566080 DOI: 10.1155/2021/4907167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/16/2021] [Indexed: 11/18/2022] Open
Abstract
Enhancer of zeste homolog 2 (EZH2) is a histone-lysine N-methyltransferase that encrypts a member of the Polycomb group (PcG) family. EZH2 forms a repressive chromatin structure which eventually participates in regulating the development as well as lineage propagation of stem cells and glioma progression. Posttranslational modifications are distinct approaches for the adjusted modification of EZH2 in the development of cancer. The amino acid succession of EZH2 protein makes it appropriate for covalent modifications, like phosphorylation, acetylation, O-GlcNAcylation, methylation, ubiquitination, and sumoylation. The glioma microenvironment is a dynamic component that comprises, besides glioma cells and glioma stem cells, a complex network that comprises diverse cell types like endothelial cells, astrocytes, and microglia as well as stromal components, soluble factors, and the extracellular membrane. EZH2 is well recognized as an essential modulator of cell invasion as well as metastasis in glioma. EZH2 oversecretion was implicated in the malfunction of several fundamental signaling pathways like Wnt/β-catenin signaling, Ras and NF-κB signaling, PI3K/AKT signaling, β-adrenergic receptor signaling, and bone morphogenetic protein as well as NOTCH signaling pathways. EZH2 was more secreted in glioblastoma multiforme than in low-grade gliomas as well as extremely secreted in U251 and U87 human glioma cells. Thus, the blockade of EZH2 expression in glioma could be of therapeutic value for patients with glioma. The suppression of EZH2 gene secretion was capable of reversing temozolomide resistance in patients with glioma. EZH2 is a promising therapeutic as well as prognostic biomarker for the treatment of glioma.
Collapse
|
14
|
LncRNA ANCR promotes glioma cells invasion, migration, proliferation and inhibits apoptosis via interacting with EZH2 and repressing PTEN expression. Cancer Gene Ther 2021; 28:1025-1034. [PMID: 33293663 DOI: 10.1038/s41417-020-00263-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 10/12/2020] [Accepted: 11/11/2020] [Indexed: 01/30/2023]
Abstract
Recently, the role of long noncoding RNA (lncRNA) has been identified in human diseases, and we aim to explore the role of lncRNA antidifferentiation noncoding RNA (ANCR) in glioma. Expression of lncRNA ANCR, enhancer of zeste homolog 2 (EZH2), and phosphatase and tensin homolog (PTEN) in glioma tissues and cells was determined by RT-PCR or western blot assay. The correlation between expression of ANCR, EZH2, and PTEN in glioma tissues was analyzed using Pearson test. The apoptosis, transwell invasion, migration, colony formation, and proliferation assays were conducted to evaluate the influences of lncRNA ANCR depletion, EZH2 reduction, or PTEN elevation on the cell biology of glioma cells. The relationships between ANCR and EZH2, and between EZH2 and PTEN were confirmed through RIP, RNA pull-down, and chromatin immunoprecipitation assays. Our results indicated that ANCR and EZH2 were upregulated and PTEN was downregulated in glioma tissues and cell lines. ANCR expression was positively related to EZH2 expression, while PTEN expression was negatively related to ANCR/EZH2 expression. Inhibited ANCR, reduced EZH2, or elevated PTEN could reduce the ability of invasion, migration, and proliferation, and promote apoptosis of glioma cells. PTEN overexpression or EZH2 inhibition reversed the promotive role of ANCR upregulation in glioma cell growth and metastasis. Mechanistically, PTEN was upregulated in ANCR knockdown glioma cells. EZH2 interacted with ANCR in glioma cells. In conclusion, we have found that restrained ANCR could repress invasion, migration, and proliferation, as well as promote apoptosis of glioma cells through interacting with EZH2 and regulating the expression of PTEN, offering an effective therapeutic target for patients with glioma.
Collapse
|
15
|
Rodrigues A, Bhambhvani H, Medress ZA, Malhotra S, Hayden-Gephart M. Differences in treatment patterns and overall survival between grade II and anaplastic pleomorphic xanthoastrocytomas. J Neurooncol 2021; 153:321-330. [PMID: 33970405 DOI: 10.1007/s11060-021-03772-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/05/2021] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Pleomorphic xanthoastrocytomas (PXAs) are classified as a grade II neoplasm, typically occur in children, and have favorable prognoses. However, their anaplastic counterparts remain poorly understood and vaguely characterized. In the present study, a large cohort of grade II PXA patients were compared with primary anaplastic PXA (APXA) patients to characterize patterns in treatment and survival. METHODS Data were collected from the National Cancer Institute's SEER database. Univariate and multivariate Cox regressions were used to evaluate the prognostic impact of demographic, tumor, and treatment-related covariates. Propensity score matching was used to balance baseline characteristics. Kaplan-Meier curves were used to estimate survival. RESULTS A total of 346 grade II PXA and 62 APXA patients were identified in the SEER database between 2000 and 2016. Kaplan-Meier analysis revealed substantially inferior survival for APXA patients compared to grade II PXA patients (median survival: 51 months vs. not reached) (p < 0.0001). After controlling across available covariates, increased age at diagnosis was identified as a negative predictor of survival for both grade II and APXA patients. In multivariate and propensity-matched analyses, extent of resection was not associated with improved outcomes in either cohort. CONCLUSIONS Using a large national database, we identified the largest published cohort of APXA patients to date and compared them with their grade II counterparts to identify patterns in treatment and survival. Upon multivariate analysis, we found increased age at diagnosis was inversely associated with survival in both grade II and APXA patients. Receipt of chemoradiotherapy or complete surgical resection was not associated with improved outcomes in the APXA cohort.
Collapse
Affiliation(s)
- Adrian Rodrigues
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Hriday Bhambhvani
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Zachary A Medress
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Shreya Malhotra
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Melanie Hayden-Gephart
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
16
|
Chatterjee D, Radotra BD, Aggarwal D, Madan R, Gupta SK. Analysis of 24 cases of epithelioid glioblastoma: Experience from a tertiary centre of North India. Ann Diagn Pathol 2020; 50:151679. [PMID: 33341703 DOI: 10.1016/j.anndiagpath.2020.151679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Epithelioid glioblastoma (eGB) is a recently recognized and a rare variant of glioblastoma. This study aimed to describe the clinical, histological and immunohistochemical spectrum and outcome of eGB from a tertiary care hospital in north India. MATERIALS AND METHODS Twenty four cases of eGB diagnosed over past 10 years were reviewed with detailed morphological and immunohistochemical analysis (GFAP, EMA, Vimentin, Myogenin, INI-1, Cytokeratin, Synaptophysin, CD99, S100, MelanA, IDH1, ATRX, p16, EZH2, Ki-67, and BRAF V600E mutant antibody). RESULT The mean age was 29.9 years (3-54 years), with equal male and female patients. All had supratentorial tumor. All cases showed epithelioid cells in sheets; however, focal spindling (7 cases, 29.2%), grouping/nesting (6 cases, 25%) and papillary configuration (5 cases, 20.8%) were also noted. All showed microvascular proliferation (MVP) and all except one demonstrated areas of necrosis. INI1 was retained in all cases, while 2 showed patchy loss. EZH2 overexpression (>25%) was observed in 4 cases, while 5 cases showed loss of p16 expression. BRAF V600E mutant protein expression was seen in 12/23 (52.2%) cases. Outcome was available in 8 cases, out of which 6 (75%) experienced recurrence. The median survival was 25.5 months. Cases with tumor infiltrating lymphocytes had a better outcome. CONCLUSION eGB is a distinct variant of glioblastoma which has predilection towards younger age group. It shows high percentage of BRAF V600E mutation and a subset of it shows longer survival. Cases with presence of tumor infiltrating lymphocytes are associated with better outcome.
Collapse
Affiliation(s)
- Debajyoti Chatterjee
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Bishan Dass Radotra
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India.
| | - Divya Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Renu Madan
- Department of Radiotherapy, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| | - Sunil Kumar Gupta
- Department of Neurosurgery, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India
| |
Collapse
|
17
|
Zeng Y, Zhu X, Wang Y, Liu B, Yang X, Wang Q, Du J, Ma Y, Lin L, Fu P, Xiao H, Guo QN. Clinicopathological, Immunohistochemical and Molecular Genetic Study on Epithelioid Glioblastoma: A Series of Fifteen Cases with Literature Review. Onco Targets Ther 2020; 13:3943-3952. [PMID: 32440157 PMCID: PMC7217317 DOI: 10.2147/ott.s249317] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/19/2020] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To observe the clinicopathological, immunohistochemical, and molecular genetic features of epithelioid glioblastoma (E-GBM), and identify tumor-associated prognostic factors. PATIENTS AND METHODS The clinical and radiological data of fifteen cases of E-GBM were collected, and their pathological, immunohistochemical, and molecular features were examined. A 1p/19q analysis via FISH, MGMT promoter methylation by MS-PCR, and IDH1 and BRAF V600E mutation analysis by HRM-PCR were performed. The level of EZH2 expression was valuated by immunohistochemistry in 15 E-GBM cases, and the prognostic factors were analyzed in E-GBM patients. Fifteen non-E-GBM cases were used as a control. RESULTS The fifteen cases of E-GBM included twelve males and three females, with fourteen cases supratentorially located. Headache was the main symptom. Microscopy revealed that the tumors were composed of epithelioid cells and some rhabdoid cells. The epithelioid and rhabdoid cells displayed focal discohesion, scant intervening neuropil, a distinct cell membrane, eosinophilic cytoplasm, and a laterally positioned nucleus. Most tumors showed high mitosis, zonal necrosis, and microvascular hyperplasia. Immunohistochemical findings included epithelioid cells positive for GFAP, vimentin, nestin, S-100, and INI-1. The molecular findings included no deletions of 1p/19q, EGFR amplifications, or IDH1 mutations in any case, a methylated MGMT promoter in 46.7% (7/15) cases, and a BRAFV600E mutation in 46.7% (7/15) cases. EZH2 overexpression occurred in 60.0% (9/15) of E-GBM cases. E-GBM patients with OS (≤12 months) exhibited extensive necrosis (6/6), EZH2 overexpression (6/6), MGMT promoter unmethylation (5/6), BRAFV600E mutation (3/6), and treatment (surgery4/6). E-GBM patients with OS (>12 months) exhibited focal or limited necrosis, low or negative EZH2 expression, MGMT promoter methylation (2/3), BRAFV600E mutation (3/3), and treatment (surgery+radiotherapy/chemo-radiotherapy, 2/3). CONCLUSION E-GBM was a rare variant of glioblastoma, with histological epithelioid features and poor prognosis. Extensive necrosis, MGMT promoter unmethylation, EZH2 overexpression, and lack of adjuvant chemo-radiotherapy may indicate a poor prognosis.
Collapse
Affiliation(s)
- Ying Zeng
- Department of Pathology, Second Affiliated Hospital, Amy Medical University (Third Military Medical University), Chongqing400037, People’s Republic of China
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Xiangfeng Zhu
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Yali Wang
- Department of Pathology, Second Affiliated Hospital, Amy Medical University (Third Military Medical University), Chongqing400037, People’s Republic of China
| | - Bo Liu
- Department of Pathology, Second Affiliated Hospital, Amy Medical University (Third Military Medical University), Chongqing400037, People’s Republic of China
| | - Xin Yang
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Qiushi Wang
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Juan Du
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Yu Ma
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Li Lin
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Ping Fu
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Hualiang Xiao
- Department of Pathology, Daping Hospital, Amy Medical University (Third Military Medical University), Chongqing400042, People’s Republic of China
| | - Qiao-Nan Guo
- Department of Pathology, Second Affiliated Hospital, Amy Medical University (Third Military Medical University), Chongqing400037, People’s Republic of China
| |
Collapse
|
18
|
Lenting K, van den Heuvel CNAM, van Ewijk A, ElMelik D, de Boer R, Tindall E, Wei G, Kusters B, te Dorsthorst M, ter Laan M, Huynen MA, Leenders WP. Mapping actionable pathways and mutations in brain tumours using targeted RNA next generation sequencing. Acta Neuropathol Commun 2019; 7:185. [PMID: 31747973 PMCID: PMC6865071 DOI: 10.1186/s40478-019-0826-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 01/28/2023] Open
Abstract
Many biology-based precision drugs are available that neutralize aberrant molecular pathways in cancer. Molecular heterogeneity and the lack of reliable companion diagnostic biomarkers for many drugs makes targeted treatment of cancer inaccurate for many individuals. Identifying actionable hyperactive biological pathways in individual cancers may improve this situation. To achieve this we applied a novel targeted RNA next generation sequencing (t/RNA-NGS) technique to surgically obtained glioma tissues. The test combines mutation detection with analysis of biological pathway activities that are involved in tumour behavior in many cancer types (e.g. tyrosine kinase signaling, angiogenesis signaling, immune response, metabolism), via quantitative measurement of transcript levels and splice variants of hundreds of genes. We here present proof of concept that the technique, which uses molecular inversion probes, generates a histology-independent molecular diagnosis and identifies classifiers that are strongly associated with conventional histopathology diagnoses and even with patient prognosis. The test not only confirmed known glioma-associated molecular aberrations but also identified aberrant expression levels of actionable genes and mutations that have so far been considered not to be associated with glioma, opening up the possibility of drug repurposing for individual patients. Its cost-effectiveness makes t/RNA-NGS to an attractive instrument to aid oncologists in therapy decision making.
Collapse
|