1
|
Abd El-Hafeez T, Shams MY, Elshaier YAMM, Farghaly HM, Hassanien AE. Harnessing machine learning to find synergistic combinations for FDA-approved cancer drugs. Sci Rep 2024; 14:2428. [PMID: 38287066 PMCID: PMC10825182 DOI: 10.1038/s41598-024-52814-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/24/2024] [Indexed: 01/31/2024] Open
Abstract
Combination therapy is a fundamental strategy in cancer chemotherapy. It involves administering two or more anti-cancer agents to increase efficacy and overcome multidrug resistance compared to monotherapy. However, drug combinations can exhibit synergy, additivity, or antagonism. This study presents a machine learning framework to classify and predict cancer drug combinations. The framework utilizes several key steps including data collection and annotation from the O'Neil drug interaction dataset, data preprocessing, stratified splitting into training and test sets, construction and evaluation of classification models to categorize combinations as synergistic, additive, or antagonistic, application of regression models to predict combination sensitivity scores for enhanced predictions compared to prior work, and the last step is examination of drug features and mechanisms of action to understand synergy behaviors for optimal combinations. The models identified combination pairs most likely to synergize against different cancers. Kinase inhibitors combined with mTOR inhibitors, DNA damage-inducing drugs or HDAC inhibitors showed benefit, particularly for ovarian, melanoma, prostate, lung and colorectal carcinomas. Analysis highlighted Gemcitabine, MK-8776 and AZD1775 as frequently synergizing across cancer types. This machine learning framework provides a valuable approach to uncover more effective multi-drug regimens.
Collapse
Affiliation(s)
- Tarek Abd El-Hafeez
- Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt.
- Computer Science Unit, Deraya University, El-Minia, Egypt.
| | - Mahmoud Y Shams
- Faculty of Artificial Intelligence, Kafrelsheikh University, Kafr El-Sheikh, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Menoufia, Egypt
| | - Heba Mamdouh Farghaly
- Department of Computer Science, Faculty of Science, Minia University, El-Minia, Egypt
| | - Aboul Ella Hassanien
- Faculty of Computers and Artificial Intelligence, Cairo University, Cairo, Egypt.
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt.
| |
Collapse
|
2
|
Wang Z, Li W, Li F, Xiao R. An update of predictive biomarkers related to WEE1 inhibition in cancer therapy. J Cancer Res Clin Oncol 2024; 150:13. [PMID: 38231277 PMCID: PMC10794259 DOI: 10.1007/s00432-023-05527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE WEE1 is a crucial kinase involved in the regulation of G2/M checkpoint within the cell cycle. This article aims to comprehensively review the existing knowledge on the implication of WEE1 as a therapeutic target in tumor progression and drug resistance. Furthermore, we summarize the current predictive biomarkers employed to treat cancer with WEE1 inhibitors. METHODS A systematic review of the literature was conducted to analyze the association between WEE1 inhibition and cancer progression, including tumor advancement and drug resistance. Special attention was paid to the identification and utilization of predictive biomarkers related to therapeutic response to WEE1 inhibitors. RESULTS The review highlights the intricate involvement of WEE1 in tumor progression and drug resistance. It synthesizes the current knowledge on predictive biomarkers employed in WEE1 inhibitor treatments, offering insights into their prognostic significance. Notably, the article elucidates the potential for precision medicine by understanding these biomarkers in the context of tumor treatment outcomes. CONCLUSION WEE1 plays a pivotal role in tumor progression and is a promising therapeutic target. Distinguishing patients that would benefit from WEE1 inhibition will be a major direction of future research.
Collapse
Affiliation(s)
- Zizhuo Wang
- Department of Gynecology and Obstetrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Wenting Li
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Fuxia Li
- Department of Gynecology, First Affiliated Hospital, Shihezi University, Shihezi, 832000, Xinjiang, People's Republic of China
| | - Rourou Xiao
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Funke VLE, Walter C, Melcher V, Wei L, Sandmann S, Hotfilder M, Varghese J, Jäger N, Kool M, Jones DTW, Pfister SM, Milde T, Mynarek M, Rutkowski S, Seggewiss J, Jeising D, de Faria FW, Marquardt T, Albert TK, Schüller U, Kerl K. Group-specific cellular metabolism in Medulloblastoma. J Transl Med 2023; 21:363. [PMID: 37277823 DOI: 10.1186/s12967-023-04211-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND Cancer metabolism influences multiple aspects of tumorigenesis and causes diversity across malignancies. Although comprehensive research has extended our knowledge of molecular subgroups in medulloblastoma (MB), discrete analysis of metabolic heterogeneity is currently lacking. This study seeks to improve our understanding of metabolic phenotypes in MB and their impact on patients' outcomes. METHODS Data from four independent MB cohorts encompassing 1,288 patients were analysed. We explored metabolic characteristics of 902 patients (ICGC and MAGIC cohorts) on bulk RNA level. Moreover, data from 491 patients (ICGC cohort) were searched for DNA alterations in genes regulating cell metabolism. To determine the role of intratumoral metabolic differences, we examined single-cell RNA-sequencing (scRNA-seq) data from 34 additional patients. Findings on metabolic heterogeneity were correlated to clinical data. RESULTS Established MB groups exhibit substantial differences in metabolic gene expression. By employing unsupervised analyses, we identified three clusters of group 3 and 4 samples with distinct metabolic features in ICGC and MAGIC cohorts. Analysis of scRNA-seq data confirmed our results of intertumoral heterogeneity underlying the according differences in metabolic gene expression. On DNA level, we discovered clear associations between altered regulatory genes involved in MB development and lipid metabolism. Additionally, we determined the prognostic value of metabolic gene expression in MB and showed that expression of genes involved in metabolism of inositol phosphates and nucleotides correlates with patient survival. CONCLUSION Our research underlines the biological and clinical relevance of metabolic alterations in MB. Thus, distinct metabolic signatures presented here might be the first step towards future metabolism-targeted therapeutic options.
Collapse
Affiliation(s)
- Viktoria L E Funke
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Carolin Walter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Lanying Wei
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Marc Hotfilder
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Natalie Jäger
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Marcel Kool
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Till Milde
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, Heidelberg, Germany
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany
| | - Martin Mynarek
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Jochen Seggewiss
- Institute of Human Genetics, University Hospital Münster, Münster, Germany
| | - Daniela Jeising
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Thorsten Marquardt
- Department of General Pediatrics, Metabolic Diseases, University Children's Hospital Münster, 48149, Münster, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany.
| |
Collapse
|
4
|
Jonchere B, Williams J, Zindy F, Liu J, Robinson S, Farmer DM, Min J, Yang L, Stripay JL, Wang Y, Freeman BB, Yu J, Shelat AA, Rankovic Z, Roussel MF. Combination of Ribociclib with BET-Bromodomain and PI3K/mTOR Inhibitors for Medulloblastoma Treatment In Vitro and In Vivo. Mol Cancer Ther 2023; 22:37-51. [PMID: 36318650 PMCID: PMC9808370 DOI: 10.1158/1535-7163.mct-21-0896] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 09/15/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
Despite improvement in the treatment of medulloblastoma over the last years, numerous patients with MYC- and MYCN-driven tumors still fail current therapies. Medulloblastomas have an intact retinoblastoma protein RB, suggesting that CDK4/6 inhibition might represent a therapeutic strategy for which drug combination remains understudied. We conducted high-throughput drug combination screens in a Group3 (G3) medulloblastoma line using the CDK4/6 inhibitor (CDK4/6i) ribociclib at IC20, referred to as an anchor, and 87 oncology drugs approved by FDA or in clinical trials. Bromodomain and extra terminal (BET) and PI3K/mTOR inhibitors potentiated ribociclib inhibition of proliferation in an established cell line and freshly dissociated tumor cells from intracranial xenografts of G3 and Sonic hedgehog (SHH) medulloblastomas in vitro. A reverse combination screen using the BET inhibitor JQ1 as anchor, revealed CDK4/6i as the most potentiating drugs. In vivo, ribociclib showed single-agent activity in medulloblastoma models whereas JQ1 failed to show efficacy due to high clearance and insufficient free brain concentration. Despite in vitro synergy, combination of ribociclib with the PI3K/mTOR inhibitor paxalisib did not significantly improve the survival of G3 and SHH medulloblastoma-bearing mice compared with ribociclib alone. Molecular analysis of ribociclib and paxalisib-treated tumors revealed that E2F targets and PI3K/AKT/MTORC1 signaling genes were depleted, as expected. Importantly, in one untreated G3MB model HD-MB03, the PI3K/AKT/MTORC1 gene set was enriched in vitro compared with in vivo suggesting that the pathway displayed increased activity in vitro. Our data illustrate the difficulty in translating in vitro findings in vivo. See related article in Mol Cancer Ther (2022) 21(8):1306-1317.
Collapse
Affiliation(s)
- Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Justin Williams
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Frederique Zindy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jingjing Liu
- Department of Tumor Cell Biology Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Sarah Robinson
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Dana M. Farmer
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jaeki Min
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Lei Yang
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jennifer L. Stripay
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Yingzhe Wang
- Department of Tumor Cell Biology Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Burgess B. Freeman
- Department of Tumor Cell Biology Preclinical PK Shared Resource, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Tumor Cell Biology Computational Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Anang A. Shelat
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Zoran Rankovic
- Department of Tumor Cell Biology Chemical Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| |
Collapse
|
5
|
Pribnow A, Jonchere B, Liu J, Smith KS, Campagne O, Xu K, Robinson S, Patel Y, Onar-Thomas A, Wu G, Stewart CF, Northcott PA, Yu J, Robinson GW, Roussel MF. Combination of Ribociclib and Gemcitabine for the Treatment of Medulloblastoma. Mol Cancer Ther 2022; 21:1306-1317. [PMID: 35709750 PMCID: PMC9578677 DOI: 10.1158/1535-7163.mct-21-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/03/2021] [Accepted: 05/25/2022] [Indexed: 01/04/2023]
Abstract
Group3 (G3) medulloblastoma (MB) is one of the deadliest forms of the disease for which novel treatment is desperately needed. Here we evaluate ribociclib, a highly selective CDK4/6 inhibitor, with gemcitabine in mouse and human G3MBs. Ribociclib central nervous system (CNS) penetration was assessed by in vivo microdialysis and by IHC and gene expression studies and found to be CNS-penetrant. Tumors from mice treated with short term oral ribociclib displayed inhibited RB phosphorylation, downregulated E2F target genes, and decreased proliferation. Survival studies to determine the efficacy of ribociclib and gemcitabine combination were performed on mice intracranially implanted with luciferase-labeled mouse and human G3MBs. Treatment of mice with the combination of ribociclib and gemcitabine was well tolerated, slowed tumor progression and metastatic spread, and increased survival. Expression-based gene activity and cell state analysis investigated the effects of the combination after short- and long-term treatments. Molecular analysis of treated versus untreated tumors showed a significant decrease in the activity and expression of genes involved in cell-cycle progression and DNA damage response, and an increase in the activity and expression of genes implicated in neuronal identity and neuronal differentiation. Our findings in both mouse and human patient-derived orthotopic xenograft models suggest that ribociclib and gemcitabine combination therapy warrants further investigation as a treatment strategy for children with G3MB.
Collapse
Affiliation(s)
- Allison Pribnow
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Barbara Jonchere
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Jingjing Liu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Kyle S. Smith
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Olivia Campagne
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Ke Xu
- Department of Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Sarah Robinson
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Yogesh Patel
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Arzu Onar-Thomas
- Department of Biostatistics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Gang Wu
- Department of Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Clinton F. Stewart
- Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Paul A. Northcott
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Giles W. Robinson
- Department of Neuro-Oncology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105,Corresponding author: Martine F. Roussel, PhD. Department of Tumor Cell Biology, MS#350, 262, Danny thomas Place, Memphis, TN 38105, Phone: 901-595-3481; FAX: 901-595-2384; . Tel: 901-595-3481
| |
Collapse
|
6
|
McSwain LF, Parwani KK, Shahab SW, Hambardzumyan D, MacDonald TJ, Spangle JM, Kenney AM. Medulloblastoma and the DNA Damage Response. Front Oncol 2022; 12:903830. [PMID: 35747808 PMCID: PMC9209741 DOI: 10.3389/fonc.2022.903830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children with standard of care consisting of surgery, radiation, and chemotherapy. Recent molecular profiling led to the identification of four molecularly distinct MB subgroups – Wingless (WNT), Sonic Hedgehog (SHH), Group 3, and Group 4. Despite genomic MB characterization and subsequent tumor stratification, clinical treatment paradigms are still largely driven by histology, degree of surgical resection, and presence or absence of metastasis rather than molecular profile. Patients usually undergo resection of their tumor followed by craniospinal radiation (CSI) and a 6 month to one-year multi-agent chemotherapeutic regimen. While there is clearly a need for development of targeted agents specific to the molecular alterations of each patient, targeting proteins responsible for DNA damage repair could have a broader impact regardless of molecular subgrouping. DNA damage response (DDR) protein inhibitors have recently emerged as targeted agents with potent activity as monotherapy or in combination in different cancers. Here we discuss the molecular underpinnings of genomic instability in MB and potential avenues for exploitation through DNA damage response inhibition.
Collapse
Affiliation(s)
- Leon F. McSwain
- Department of Pediatrics, Emory University, Atlanta, GA, United States
| | - Kiran K. Parwani
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Shubin W. Shahab
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Dolores Hambardzumyan
- Departments of Neurosurgery and Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tobey J. MacDonald
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Jennifer M. Spangle
- Winship Cancer Institute, Emory University, Atlanta, GA, United States
- Department of Radiation Oncology, Emory University, Atlanta, GA, United States
| | - Anna Marie Kenney
- Department of Pediatrics, Emory University, Atlanta, GA, United States
- *Correspondence: Anna Marie Kenney,
| |
Collapse
|
7
|
The Current Landscape of Targeted Clinical Trials in Non-WNT/Non-SHH Medulloblastoma. Cancers (Basel) 2022; 14:cancers14030679. [PMID: 35158947 PMCID: PMC8833659 DOI: 10.3390/cancers14030679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Medulloblastoma is a form of malignant brain tumor that arises predominantly in infants and young children and can be divided into different groups based on molecular markers. The group of non-WNT/non-SHH medulloblastoma includes a spectrum of heterogeneous subgroups that differ in their biological characteristics, genetic underpinnings, and clinical course of disease. Non-WNT/non-SHH medulloblastoma is currently treated with surgery, chemotherapy, and radiotherapy; however, new drugs are needed to treat patients who are not yet curable and to reduce treatment-related toxicity and side effects. We here review which new treatment options for non-WNT/non-SHH medulloblastoma are currently clinically tested. Furthermore, we illustrate the challenges that have to be overcome to reach a new therapeutic standard for non-WNT/non-SHH medulloblastoma, for instance the current lack of good preclinical models, and the necessity to conduct trials in a comparably small patient collective. Abstract Medulloblastoma is an embryonal pediatric brain tumor and can be divided into at least four molecularly defined groups. The category non-WNT/non-SHH medulloblastoma summarizes medulloblastoma groups 3 and 4 and is characterized by considerable genetic and clinical heterogeneity. New therapeutic strategies are needed to increase survival rates and to reduce treatment-related toxicity. We performed a noncomprehensive targeted review of the current clinical trial landscape and literature to summarize innovative treatment options for non-WNT/non-SHH medulloblastoma. A multitude of new drugs is currently evaluated in trials for which non-WNT/non-SHH patients are eligible, for instance immunotherapy, kinase inhibitors, and drugs targeting the epigenome. However, the majority of these trials is not restricted to medulloblastoma and lacks molecular classification. Whereas many new molecular targets have been identified in the last decade, which are currently tested in clinical trials, several challenges remain on the way to reach a new therapeutic strategy for non-WNT/non-SHH medulloblastoma. These include the severe lack of faithful preclinical models and predictive biomarkers, the question on how to stratify patients for clinical trials, and the relative lack of studies that recruit large, homogeneous patient collectives. Innovative trial designs and international collaboration will be a key to eventually overcome these obstacles.
Collapse
|
8
|
Curti L, Campaner S. MYC-Induced Replicative Stress: A Double-Edged Sword for Cancer Development and Treatment. Int J Mol Sci 2021; 22:6168. [PMID: 34201047 PMCID: PMC8227504 DOI: 10.3390/ijms22126168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
MYC is a transcription factor that controls the expression of a large fraction of cellular genes linked to cell cycle progression, metabolism and differentiation. MYC deregulation in tumors leads to its pervasive genome-wide binding of both promoters and distal regulatory regions, associated with selective transcriptional control of a large fraction of cellular genes. This pairs with alterations of cell cycle control which drive anticipated S-phase entry and reshape the DNA-replication landscape. Under these circumstances, the fine tuning of DNA replication and transcription becomes critical and may pose an intrinsic liability in MYC-overexpressing cancer cells. Here, we will review the current understanding of how MYC controls DNA and RNA synthesis, discuss evidence of replicative and transcriptional stress induced by MYC and summarize preclinical data supporting the therapeutic potential of triggering replicative stress in MYC-driven tumors.
Collapse
Affiliation(s)
- Laura Curti
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| | - Stefano Campaner
- Center for Genomic Science of IIT@CGS, Fondazione Istituto Italiano di Tecnologia (IIT), 20139 Milan, Italy
| |
Collapse
|
9
|
Veo B, Danis E, Pierce A, Wang D, Fosmire S, Sullivan KD, Joshi M, Khanal S, Dahl N, Karam S, Serkova N, Venkataraman S, Vibhakar R. Transcriptional control of DNA repair networks by CDK7 regulates sensitivity to radiation in MYC-driven medulloblastoma. Cell Rep 2021; 35:109013. [PMID: 33910002 DOI: 10.1016/j.celrep.2021.109013] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/22/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022] Open
Abstract
MYC-driven medulloblastoma is a major therapeutic challenge due to frequent metastasis and a poor 5-year survival rate. MYC gene amplification results in transcriptional dysregulation, proliferation, and survival of malignant cells. To identify therapeutic targets in MYC-amplified medulloblastoma, we employ a CRISPR-Cas9 essentiality screen targeting 1,140 genes. We identify CDK7 as a mediator of medulloblastoma tumorigenesis. Using chemical inhibitors and genetic depletion, we observe cessation of tumor growth in xenograft mouse models and increases in apoptosis. The results are attributed to repression of a core set of MYC-driven transcriptional programs mediating DNA repair. CDK7 inhibition alters RNA polymerase II (RNA Pol II) and MYC association at DNA repair genes. Blocking CDK7 activity sensitizes cells to ionizing radiation leading to accrual of DNA damage, extending survival and tumor latency in xenograft mouse models. Our studies establish the selective inhibition of MYC-driven medulloblastoma by CDK7 inhibition combined with radiation as a viable therapeutic strategy.
Collapse
Affiliation(s)
- Bethany Veo
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Etienne Danis
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Angela Pierce
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Dong Wang
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Susan Fosmire
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | | | | | - Nathan Dahl
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Sana Karam
- Department of Radiation Oncology, University of Colorado Denver, Aurora, CO, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado Denver, Aurora, CO, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children's, Hospital Colorado, Aurora, CO, USA; Department of Neurosurgery, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|