1
|
Man S, Li J, Li Y, Yan F, Wang Z, Huang J, Xia Y, Khan AJ, Wang L, Jia S, Wang J, Liu X, Zhang Y, Rahman FU, Li X. Elucidating the dual mechanistic action and synergism of platinum complexes bearing valproic acid as leaving ligand on NF-κB and inflammatory pathways in glioma. Eur J Med Chem 2025; 290:117522. [PMID: 40153933 DOI: 10.1016/j.ejmech.2025.117522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/27/2025] [Accepted: 03/16/2025] [Indexed: 04/01/2025]
Abstract
The valproic acid (VPA), an anti-epileptic drug, has demonstrated anticancer properties alone or in combination regimens in glioma. It has been shown synergistic activity with cisplatin in resistant cancer cells. In the current study, we synthesized Pt(II) complexes bearing VPA as ancillary/leaving ligand. All these complexes were obtained in good yields through simple reproducible synthetic procedures and characterized by multiple analytical techniques in both solution and solid state. In situ release of ancillary ligand (VPA) by these complexes was studied by 1H NMR in solution state that was catalysed by water in time dependent manner. The tumor preferential selective VPA-Pt actively controlling NF-kB signaling, culminating in the attenuation of IL-6 expression and the concomitant activation of p53 and caspase-3 pathways in gliomas. VPA-Pt exhibits potent cytotoxicity in human and mice glioma cancer cell lines, inducing apoptosis as evidenced by inhibition of cell proliferation and migration, disruption of mitochondrial membrane potential, and suppression of colony formation. An inhibitory effect of VPA-Pt4 on glioma was clearly evidenced through in vivo live bioluminescence imaging, histopathological examination, immunofluorescence evaluation, and protein expression analysis demonstrated that VPA-Pt4 significantly triggered apoptosis, with elevated levels of P53, caspase-3, cleaved caspase-3, along with a reduction in IL-6. Our discovery reveals a novel and efficient approach to glioma therapy.
Collapse
Affiliation(s)
- Shad Man
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Jiaqi Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yimiao Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Fufu Yan
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Zerui Wang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Jinxia Huang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yan Xia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Abdul Jamil Khan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China
| | - Liping Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Shuang Jia
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Jie Wang
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Xing Liu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China
| | - Yongmin Zhang
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Faiz-Ur Rahman
- Inner Mongolia University Research Center for Glycochemistry of Characteristic Medicinal Resources, Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| | - Xinyu Li
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
| |
Collapse
|
2
|
Lin TB, Kuo CY, Chang FC, Lin SC, Chen YW, Liang ML, Lee YY. Carboplatin and vinblastine monthly in the optic pathway and hypothalamic gliomas: A retrospective analysis in a single institute. Neurooncol Adv 2025; 7:vdaf020. [PMID: 40051663 PMCID: PMC11883347 DOI: 10.1093/noajnl/vdaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Background Chemotherapy plays an important role in the treatment of optic pathway hypothalamic gliomas (OPHGs). Commonly used regimens include carboplatin and vincristine and monotherapy with vinblastine weekly. In this retrospective study, we used a monthly regimen of carboplatin and vinblastine to treat progressive/recurrent OPHGs and evaluated their effectiveness, visual preservation, and toxicity. Methods The study involved patients with OPGH who were treated with carboplatin and vinblastine once per month. The response, disease progression, overall survival, vision changes, and toxicity were recorded according to their medical charts at our institute, and survival was analyzed. Results A total of 25 patients were included, including 15 males (60%) and 10 females (40%). The response rate was 11/25 (44%), and the stabilization rate (complete response rate + partial response rate + minor response rate + and stable disease rate) was 21/25 (84%). The 3-year progression-free survival (PFS) rate was 54.6%, and the 5-year PFS rate was 46.8%. The 5-year overall survival rate was 100%. There were 6 patients who showed improved visual acuity (28.6%). Stable vision was found in 52.4% of patients. Only 2 patients experienced severe allergic reactions to carboplatin. Conclusions The results showed that extending the dosing interval of carboplatin and vinblastine to every month can be seen as a similar response compared with previous regimens. The toxicity of this regimen is milder, and patients benefit from a lower frequency of hospital visits. The regimen can be considered as a choice of the first line of chemotherapy for OPHG patients.
Collapse
Affiliation(s)
- Ting-Bin Lin
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Yang Kuo
- Graduate Institute of Artificial Intelligence and Big Data in Healthcare, Smart Healthcare Interdisciplinary College, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Feng-Chi Chang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shih-Chieh Lin
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Wei Chen
- Department of Heavy Particles and Radiation Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Muh-Lii Liang
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei, Taiwan
| | - Yi-Yen Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Bansal I, Merchant TE. Radiotherapy for pediatric low-grade glioma. Childs Nerv Syst 2024; 40:3277-3290. [PMID: 38775957 DOI: 10.1007/s00381-024-06460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 10/26/2024]
Abstract
INTRODUCTION Radiotherapy is a highly effective treatment for pediatric low-grade glioma, serving as the standard for evaluating progression-free and overall survival, as well as vision preservation. Despite its proven efficacy, concerns about treatment complications have led to increased use of chemotherapy and targeted therapy, which are associated with poorer progression-free survival outcomes. METHODS This review by Indu Bansal and Thomas E. Merchant examines the indications, timing, and results of radiotherapy for pediatric low-grade glioma. The authors provide a comprehensive analysis of clinical management strategies, addressing the controversies surrounding the use and timing of radiotherapy compared to other therapies. RESULTS The review highlights that while radiotherapy is essential for certain patients, particularly those who are not candidates for complete resection due to the tumor's infiltrative nature or location, it is often deferred in favor of systemic therapies. This deferral can lead to significant morbidity, including poor visual outcomes. Reports indicate that systemic therapy negatively impacts progression-free survival in patients who eventually undergo radiotherapy. Newer radiotherapy techniques have been developed to minimize complications, offering potential benefits over traditional methods. DISCUSSION The evolving clinical management of pediatric low-grade glioma involves balancing the benefits of radiotherapy with concerns about its side effects. Although systemic therapies are increasingly favored, their associated inferior progression-free survival and potential for significant morbidity underscore the need for careful consideration of radiotherapy, particularly in older children, adolescents, or those with progressive disease post-systemic therapy. The emerging role of targeted therapy presents additional challenges, including uncertainties about long-term side effects and its interaction with radiotherapy. Further research is needed to optimize treatment strategies and improve outcomes for pediatric patients with low-grade glioma.
Collapse
Affiliation(s)
- Indu Bansal
- Department of Radiation Oncology at Paras Health, Gurugram, Haryana, India
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
4
|
Li X, Cheng Y, Yang Z, Ji Q, Huan M, Ye W, Liu M, Zhang B, Liu D, Zhou S. Glioma-targeted oxaliplatin/ferritin clathrate reversing the immunosuppressive microenvironment through hijacking Fe 2+ and boosting Fenton reaction. J Nanobiotechnology 2024; 22:93. [PMID: 38443927 PMCID: PMC10913265 DOI: 10.1186/s12951-024-02376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Menglei Huan
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Chan PP, Sabus A, Hemenway MS, Chatfield KC, White CJ, Mirsky DM, Foreman NK, Dahl NA. Thromboembolic toxicity observed with concurrent trametinib and lenalidomide therapy. Pediatr Blood Cancer 2023; 70:e30190. [PMID: 36602034 PMCID: PMC10519171 DOI: 10.1002/pbc.30190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023]
Abstract
The event-free survival of pediatric low-grade gliomas is poor, and patients often require multiple treatment strategies. While MEK and RAF inhibitors are efficacious in early-phase trials, not all patients respond, and many experience progression following completion of therapy. Evaluating combination therapies that may enhance efficacy or prolong disease stabilization is warranted. We report our institutional experience using concurrent trametinib and lenalidomide in the treatment of primary pediatric central and peripheral nervous system tumors. Two of four patients using this combination therapy experienced severe thromboembolic events, necessitating discontinuation of therapy. This combination requires further investigation, and we urge caution if used.
Collapse
Affiliation(s)
- Priya P Chan
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Ashley Sabus
- Department of Pharmacy, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Molly S Hemenway
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kathryn C Chatfield
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christina J White
- Department of Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David M Mirsky
- Department of Radiology, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas K Foreman
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nathan A Dahl
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
6
|
Tsai JW, Choi JJ, Ouaalam H, Murillo EA, Yeo KK, Vogelzang J, Sousa C, Woods JK, Ligon KL, Warfield SK, Bandopadhayay P, Cooney TM. Integrated response analysis of pediatric low-grade gliomas during and after targeted therapy treatment. Neurooncol Adv 2023; 5:vdac182. [PMID: 36926246 PMCID: PMC10011805 DOI: 10.1093/noajnl/vdac182] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background Pediatric low-grade gliomas (pLGGs) are the most common central nervous system tumor in children, characterized by RAS/MAPK pathway driver alterations. Genomic advances have facilitated the use of molecular targeted therapies, however, their long-term impact on tumor behavior remains critically unanswered. Methods We performed an IRB-approved, retrospective chart and imaging review of pLGGs treated with off-label targeted therapy at Dana-Farber/Boston Children's from 2010 to 2020. Response analysis was performed for BRAFV600E and BRAF fusion/duplication-driven pLGG subsets. Results Fifty-five patients were identified (dabrafenib n = 15, everolimus n = 26, trametinib n = 11, and vemurafenib n = 3). Median duration of targeted therapy was 9.48 months (0.12-58.44). The 1-year, 3-year, and 5-year EFS from targeted therapy initiation were 62.1%, 38.2%, and 31.8%, respectively. Mean volumetric change for BRAFV600E mutated pLGG on BRAF inhibitors was -54.11%; median time to best volumetric response was 8.28 months with 9 of 12 (75%) objective RAPNO responses. Median time to largest volume post-treatment was 2.86 months (+13.49%); mean volume by the last follow-up was -14.02%. Mean volumetric change for BRAF fusion/duplication pLGG on trametinib was +7.34%; median time to best volumetric response was 6.71 months with 3 of 7 (43%) objective RAPNO responses. Median time to largest volume post-treatment was 2.38 months (+71.86%); mean volume by the last follow-up was +39.41%. Conclusions Our integrated analysis suggests variability in response by pLGG molecular subgroup and targeted therapy, as well as the transience of some tumor growth following targeted therapy cessation.
Collapse
Affiliation(s)
- Jessica W Tsai
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jungwhan John Choi
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Hakim Ouaalam
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Efrain Aguilar Murillo
- Department of Radiology, Division of Neuroradiology and Neurointervention, Boston, Massachusetts, USA
| | - Kee Kiat Yeo
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Jayne Vogelzang
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Cecilia Sousa
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jared K Woods
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Department of Pathology, Boston Children’s Hospital, Boston Massachusetts, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Simon K Warfield
- Department of Radiology, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Pratiti Bandopadhayay
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Tabitha M Cooney
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Ruggiero A, Attinà G, Campanelli A, Maurizi P, Triarico S, Romano A, Massimi L, Tamburrini G, Verdolotti T, Mastrangelo S. Pediatric low-grade glioma and neurofibromatosis type 1: A single-institution experience. J Cancer Res Ther 2023; 19:228-234. [PMID: 37313902 DOI: 10.4103/jcrt.jcrt_1677_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Neurofibromatosis type 1 (NF1)-related gliomas appear to have a clinical behavior different from that of sporadic cases. The purpose of the study was to investigate the role of different factors in influencing the tumor response rate of children receiving chemotherapy for their symptomatic glioma. Methods Between 1995 and 2015, 60 patients with low-grade glioma (42 sporadic cases and 18 cases with NF1) were treated. Patients with brainstem gliomas were excluded. Thirty-nine patients underwent exclusive or postsurgical chemotherapy (vincristine/carboplatin-based regimen). Results Disease reduction was achieved in 12 of the 28 patients (42.8%) with sporadic low-grade glioma and in 9 of the 11 patients (81.8%) with NF1, with a significant difference between the 2 groups (P < 0.05). The response to chemotherapy in both the patient groups was not significantly influenced by sex, age, tumor site, and histopathology, although disease reduction occurred more frequently in children aged under 3 years. Conclusions Our study showed that pediatric patients with low-grade glioma and NF1 are more likely to respond to chemotherapy than those with non-NF1.
Collapse
Affiliation(s)
- Antonio Ruggiero
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Giorgio Attinà
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Anastasia Campanelli
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Palma Maurizi
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Triarico
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Alberto Romano
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Luca Massimi
- Pediatric Neurosurgery Unit, Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Gianpiero Tamburrini
- Pediatric Neurosurgery Unit, Department of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Tommaso Verdolotti
- Radiology and Neuroradiology Unit, Department of Radiological Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| | - Stefano Mastrangelo
- Pediatric Oncology Unit, Department of Women and Child Health, Fondazione Policlinico Universitario A. Gemelli Hospital Foundation IRCCS, Universita' Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Cai X, Chen Z, Huang C, Shen J, Zeng W, Feng S, Liu Y, Li S, Chen M. Development of a novel glycolysis-related genes signature for isocitrate dehydrogenase 1-associated glioblastoma multiforme. Front Immunol 2022; 13:950917. [DOI: 10.3389/fimmu.2022.950917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe significant difference in prognosis between IDH1 wild-type and IDH1 mutant glioblastoma multiforme (GBM) may be attributed to their metabolic discrepancies. Hence, we try to construct a prognostic signature based on glycolysis-related genes (GRGs) for IDH1-associated GBM and further investigate its relationships with immunity.MethodsDifferentially expressed GRGs between IDH1 wild-type and IDH1 mutant GBM were screened based on the TCGA database and the Molecular Signature Database (MSigDB). Consensus Cluster Plus analysis and KEGG pathway analyses were used to establish a new GRGs set. WGCNA, univariate Cox, and LASSO regression analyses were then performed to construct the prognostic signature. Then, we evaluated association of the prognostic signature with patients’ survival, clinical characteristics, tumor immunogenicity, immune infiltration, and validated one hub gene.Results956 differentially expressed genes (DEGs) between IDH1 wild-type and mutant GBM were screened out and six key prognostically related GRGs were rigorously selected to construct a prognostic signature. Further evaluation and validation showed that the signature independently predicted GBM patients’ prognosis with moderate accuracy. In addition, the prognostic signature was also significantly correlated with clinical traits (sex and MGMT promoter status), tumor immunogenicity (mRNAsi, EREG-mRNAsi and HRD-TAI), and immune infiltration (stemness index, immune cells infiltration, immune score, and gene mutation). Among six key prognostically related GRGs, CLEC5A was selected and validated to potentially play oncogenic roles in GBM.ConclusionConstruction of GRGs prognostic signature and identification of close correlation between the signature and immune landscape would suggest its potential applicability in immunotherapy of GBM in the future.
Collapse
|
9
|
Yang K, Wu Z, Zhang H, Zhang N, Wu W, Wang Z, Dai Z, Zhang X, Zhang L, Peng Y, Ye W, Zeng W, Liu Z, Cheng Q. Glioma targeted therapy: insight into future of molecular approaches. Mol Cancer 2022; 21:39. [PMID: 35135556 PMCID: PMC8822752 DOI: 10.1186/s12943-022-01513-z] [Citation(s) in RCA: 379] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are the common type of brain tumors originating from glial cells. Epidemiologically, gliomas occur among all ages, more often seen in adults, which males are more susceptible than females. According to the fifth edition of the WHO Classification of Tumors of the Central Nervous System (WHO CNS5), standard of care and prognosis of gliomas can be dramatically different. Generally, circumscribed gliomas are usually benign and recommended to early complete resection, with chemotherapy if necessary. Diffuse gliomas and other high-grade gliomas according to their molecule subtype are slightly intractable, with necessity of chemotherapy. However, for glioblastoma, feasible resection followed by radiotherapy plus temozolomide chemotherapy define the current standard of care. Here, we discuss novel feasible or potential targets for treatment of gliomas, especially IDH-wild type glioblastoma. Classic targets such as the p53 and retinoblastoma (RB) pathway and epidermal growth factor receptor (EGFR) gene alteration have met failure due to complex regulatory network. There is ever-increasing interest in immunotherapy (immune checkpoint molecule, tumor associated macrophage, dendritic cell vaccine, CAR-T), tumor microenvironment, and combination of several efficacious methods. With many targeted therapy options emerging, biomarkers guiding the prescription of a particular targeted therapy are also attractive. More pre-clinical and clinical trials are urgently needed to explore and evaluate the feasibility of targeted therapy with the corresponding biomarkers for effective personalized treatment options.
Collapse
Affiliation(s)
- Keyang Yang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijing Wu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,Xiangya School of Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Nan Zhang
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,One-Third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Wantao Wu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xun Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yun Peng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,Teaching and Research Section of Clinical Nursing, Xiangya Hospital of Central South University, Changsha, China
| | - Weijie Ye
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenjing Zeng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.,Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
10
|
Lu E, Gareev I, Yuan C, Liang Y, Sun J, Chen X, Beylerli O, Sufianov A, Zhao S, Yang G. The Mechanisms of Current Platinum Anticancer Drug Resistance in the Glioma. Curr Pharm Des 2022; 28:1863-1869. [PMID: 35674307 PMCID: PMC10556399 DOI: 10.2174/1381612828666220607105746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Gliomas are the most common and malignant primary tumors of the central nervous system (CNS). Glioblastomas are the most malignant and aggressive form of primary brain tumors and account for the majority of brain tumor-related deaths. The current standard treatment for gliomas is surgical resection supplemented by postoperative chemotherapy. Platinum drugs are a class of chemotherapeutic drugs that affect the cell cycle, and the main site of action is the DNA of cells, which are common chemotherapeutic drugs in clinical practice. Chemotherapy with platinum drugs such as cisplatin, carboplatin, oxaliplatin, or a combination thereof is used to treat a variety of tumors. However, the results of gliomas chemotherapy are unsatisfactory, and resistance to platinum drugs is one of the important reasons. The resistance of gliomas to platinum drugs is the result of a combination of influencing factors. Decreased intracellular drug concentration, enhanced function of cell processing active products, enhanced repair ability of cellular DNA damage, and blockage of related apoptosis pathways play an important role in it. It is known that the pathogenic properties of glioma cells and the response of glioma towards platinum-based drugs are strongly influenced by non-coding RNAs, particularly, by microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). miRNAs and lncRNAs control drug sensitivity and the development of tumor resistance towards platinum drugs. This mini-review summarizes the resistance mechanisms of gliomas to platinum drugs, as well as molecules and therapies that can improve the sensitivity of gliomas to platinum drugs.
Collapse
Affiliation(s)
- Enzhou Lu
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ilgiz Gareev
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Chao Yuan
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jingxian Sun
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xin Chen
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Ozal Beylerli
- Central Research Laboratory, Bashkir State Medical University, Ufa, 450008, Russia
| | - Albert Sufianov
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, 518055, China
| | - Guang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
11
|
Greuter L, Guzman R, Soleman J. Pediatric and Adult Low-Grade Gliomas: Where Do the Differences Lie? CHILDREN (BASEL, SWITZERLAND) 2021; 8:1075. [PMID: 34828788 PMCID: PMC8624473 DOI: 10.3390/children8111075] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Two thirds of pediatric gliomas are classified as low-grade (LGG), while in adults only around 20% of gliomas are low-grade. However, these tumors do not only differ in their incidence but also in their location, behavior and, subsequently, treatment. Pediatric LGG constitute 65% of pilocytic astrocytomas, while in adults the most commonly found histology is diffuse low-grade glioma (WHO II), which mostly occurs in eloquent regions of the brain, while its pediatric counterpart is frequently found in the infratentorial compartment. The different tumor locations require different skillsets from neurosurgeons. In adult LGG, a common practice is awake surgery, which is rarely performed on children. On the other hand, pediatric neurosurgeons are more commonly confronted with infratentorial tumors causing hydrocephalus, which more often require endoscopic or shunt procedures to restore the cerebrospinal fluid flow. In adult and pediatric LGG surgery, gross total excision is the primary treatment strategy. Only tumor recurrences or progression warrant adjuvant therapy with either chemo- or radiotherapy. In pediatric LGG, MEK inhibitors have shown promising initial results in treating recurrent LGG and several ongoing trials are investigating their role and safety. Moreover, predisposition syndromes, such as neurofibromatosis or tuberous sclerosis complex, can increase the risk of developing LGG in children, while in adults, usually no tumor growth in these syndromes is observed. In this review, we discuss and compare the differences between pediatric and adult LGG, emphasizing that pediatric LGG should not be approached and managed in the same way as adult LCG.
Collapse
Affiliation(s)
- Ladina Greuter
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Department of Neurosurgery, King’s College Hospital, NHS Foundation Trust, London SE5 9RS, UK
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Division of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| | - Jehuda Soleman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland; (R.G.); (J.S.)
- Division of Pediatric Neurosurgery, University Children’s Hospital of Basel, 4056 Basel, Switzerland
- Faculty of Medicine, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Jeon J, Lee S, Kim H, Kang H, Youn H, Jo S, Youn B, Kim HY. Revisiting Platinum-Based Anticancer Drugs to Overcome Gliomas. Int J Mol Sci 2021; 22:ijms22105111. [PMID: 34065991 PMCID: PMC8151298 DOI: 10.3390/ijms22105111] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Although there are many patients with brain tumors worldwide, there are numerous difficulties in overcoming brain tumors. Among brain tumors, glioblastoma, with a 5-year survival rate of 5.1%, is the most malignant. In addition to surgical operations, chemotherapy and radiotherapy are generally performed, but the patients have very limited options. Temozolomide is the most commonly prescribed drug for patients with glioblastoma. However, it is difficult to completely remove the tumor with this drug alone. Therefore, it is necessary to discuss the potential of anticancer drugs, other than temozolomide, against glioblastomas. Since the discovery of cisplatin, platinum-based drugs have become one of the leading chemotherapeutic drugs. Although many studies have reported the efficacy of platinum-based anticancer drugs against various carcinomas, studies on their effectiveness against brain tumors are insufficient. In this review, we elucidated the anticancer effects and advantages of platinum-based drugs used in brain tumors. In addition, the cases and limitations of the clinical application of platinum-based drugs are summarized. As a solution to overcome these obstacles, we emphasized the potential of a novel approach to increase the effectiveness of platinum-based drugs.
Collapse
Affiliation(s)
- Jaewan Jeon
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Korea; (J.J.); (S.J.)
| | - Sungmin Lee
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
| | - Hyunwoo Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
| | - Hyunkoo Kang
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
| | - HyeSook Youn
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Korea;
| | - Sunmi Jo
- Department of Radiation Oncology, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Korea; (J.J.); (S.J.)
| | - BuHyun Youn
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (S.L.); (H.K.); (H.K.)
- Department of Biological Sciences, Pusan National University, Busan 46241, Korea
- Correspondence: (B.Y.); (H.Y.K.); Tel.: +82-51-510-2264 (B.Y.); +82-51-797-3923 (H.Y.K.)
| | - Hae Yu Kim
- Department of Neurosurgery, Haeundae Paik Hospital, Inje University School of Medicine, Busan 48108, Korea
- Correspondence: (B.Y.); (H.Y.K.); Tel.: +82-51-510-2264 (B.Y.); +82-51-797-3923 (H.Y.K.)
| |
Collapse
|
13
|
Kai Z, Dingyang L, Zhuanyi Y. Prognostic Role of BRAF Mutation in Low-Grade Gliomas: Meta-analysis. World Neurosurg 2020; 147:42-46. [PMID: 33316486 DOI: 10.1016/j.wneu.2020.12.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Newly emerged molecular markers in gliomas provide prognostic values beyond the capabilities of histologic classification. BRAF mutation, especially BRAF V600E, is common in a subset of gliomas and may represent a potential prognostic marker. The aim of our study is to investigate the potential use of BRAF mutations on the prognosis of low-grade glioma patients. METHODS Four electronic databases were searched for potential articles including PubMed, Web of Science, Embase, and Cochrane. Data of hazard ratio (HR) for overall survival and progression-free survival were directly obtained from original papers or indirectly estimated from the Kaplan-Meier curve. A random effect model weighted by inverse variance method was used to calculate the pooled HR. From 483 articles, we finally included 8 articles with 698 glioma patients for the final analysis. The overall estimates showed that BRAF V600E was associated with an improved overall survival in glioma patients (HR = 0.64; 95% confidence interval = 0.45-0.92). RESULTS Results for progression-free survival, however, were not statistically significant (HR = 0.97; 95% confidence interval = 0.7-1.36). In subgroup analyses, BRAF V600E showed its effect in improving survival in pediatric patients but did not have prognostic value in adult. Our meta-analysis provides evidence that BRAF mutation has a favorable prognostic impact in low-grade gliomas, and its prognostic value might be dependent on patient age. CONCLUSIONS This mutation can be used as a prognostic factor in low-grade glioma, but additional studies are required to clarify its prognostic value taking into account other confounding factors.
Collapse
Affiliation(s)
- Zhang Kai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| | - Liu Dingyang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yang Zhuanyi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|