1
|
Jackson LR, Erickson A, Camphausen K, Krauze AV. Understanding the Immune System and Biospecimen-Based Response in Glioblastoma: A Practical Guide to Utilizing Signal Redundancy for Biomarker and Immune Signature Discovery. Curr Oncol 2024; 32:16. [PMID: 39851932 PMCID: PMC11763554 DOI: 10.3390/curroncol32010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/22/2024] [Indexed: 01/26/2025] Open
Abstract
Glioblastoma (GBM) is a primary central nervous system malignancy with a median survival of 15-20 months. The presence of both intra- and intertumoral heterogeneity limits understanding of biological mechanisms leading to tumor resistance, including immune escape. An attractive field of research to examine treatment resistance are immune signatures composed of cluster of differentiation (CD) markers and cytokines. CD markers are surface markers expressed on various cells throughout the body, often associated with immune cells. Cytokines are the effector molecules of the immune system. Together, CD markers and cytokines can serve as useful biomarkers to reflect immune status in patients with GBM. However, there are gaps in the understanding of the intricate interactions between GBM and the peripheral immune system and how these interactions change with standard and immune-modulating treatments. The key to understanding the true nature of these interactions is through multi-omic analysis of tumor progression and treatment response. This review aims to identify potential non-invasive blood-based biomarkers that can contribute to an immune signature through multi-omic approaches, leading to a better understanding of immune involvement in GBM.
Collapse
Affiliation(s)
| | | | | | - Andra V. Krauze
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, 9000 Rockville Pike, Building 10, CRC, Bethesda, MD 20892, USA; (L.R.J.); (A.E.); (K.C.)
| |
Collapse
|
2
|
Zhou Y, Jia P, Fang Y, Zhu W, Gong Y, Fan T, Yin J. Comprehensive understanding of the adverse effects associated with temozolomide: a disproportionate analysis based on the FAERS database. Front Pharmacol 2024; 15:1437436. [PMID: 39246656 PMCID: PMC11377320 DOI: 10.3389/fphar.2024.1437436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Background Temozolomide, which is the standard drug for glioma treatment, has several Adverse events (AEs) in the treatment of gliomas and other tumors that are not yet fully understood. This is due to the pharmacological nature of the alkylating agent. A significant proportion of these effects have not been systematically documented or reported. Methods We selected data from the United States FDA Adverse Event Reporting System (FAERS) database from the first quarter of 2004 to the fourth quarter of 2023. Four algorithms were used for disproportionate analysis, with the objective of assessing the association between temozolomide and related adverse events. Results In this study, 20,079,906 case reports were collected from the FAERS database, of which 15,152 adverse events related to temozolomide were reported. A total of 352 preferred terms (PTs) and 24 system organ classes (SOCs) that were significantly disproportionally related to the four algorithms were included. The SOCs included blood and lymphatic system disorders (χ2 = 18,220.09, n = 4,325); skin and subcutaneous tissue disorders (χ2 = 408.06, n = 1,347); investigations (χ2 = 639.44, n = 3,925); musculoskeletal and connective tissue disorders (χ2 = 1,317.29, n = 588); and psychiatric disorders (χ2 = 1,098.47, n = 877). PT levels were screened for adverse drug reaction signals consistent with drug inserts, such as anemia, thrombocytopenia, liver function abnormalities, nausea and vomiting, as well as rarely reported adverse drug reactions, such as aplastic anemia, myelodysplastic syndromes, electrolyte disorders, cerebral edema, and high-frequency mutations. Conclusion The results of our investigation demonstrated both adverse effects that had been reported and a multitude of unreported adverse effects that were serious in nature and lacked a clear cause. These novel findings suggest that more attention should be given to the clinical conditions of patients after treatment to provide a more comprehensive perspective and understanding for further clarifying the safety of temozolomide.
Collapse
Affiliation(s)
- Yusen Zhou
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Peng Jia
- Department of Surgery, 94750th Hospital of Chinese People's Liberation Army, Longyan, Fujian, China
| | - Yuting Fang
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Wei Zhu
- Department of Surgery, 94750th Hospital of Chinese People's Liberation Army, Longyan, Fujian, China
| | - Yong Gong
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Tianyu Fan
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| | - Jiangliu Yin
- Department of Neurosurgery, The Affiliated Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
3
|
Kim J, Choi H, Jeun SS, Ahn S. From lymphopenia to restoration: IL-7 immunotherapy for lymphocyte recovery in glioblastoma. Cancer Lett 2024; 588:216714. [PMID: 38369003 DOI: 10.1016/j.canlet.2024.216714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/12/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Glioblastoma, the most prevalent malignant primary brain tumor, presents substantial treatment challenges because of its inherent aggressiveness and limited therapeutic options. Lymphopenia, defined as reduced peripheral blood lymphocyte count, commonly occurs as a consequence of the disease and its treatment. Recent studies have associated lymphopenia with a poor prognosis. Factors that contribute to lymphopenia include radiotherapy, chemotherapy, and the tumor itself. Patients who are female, older, using dexamethasone, or receiving higher doses of radiation therapy are particularly vulnerable to this condition. Several preclinical studies have explored the use of interleukin-7, a crucial cytokine for lymphocyte homeostasis, to restore lymphocyte counts and potentially rebuild the immune system to combat glioblastoma cells. With the development of recombinant interleukin-7 for prolonged activity in the body, various clinical trials are underway to explore this treatment in patients with glioblastoma. Our study provides a comprehensive summary of the incidence of lymphopenia, its potential biological background, and the associated clinical risk factors. Furthermore, we reviewed several clinical trials using IL-7 cytokine therapy in glioblastoma patients. We propose IL-7 as a promising immunotherapeutic strategy for glioblastoma treatment. We are optimistic that our study will enhance understanding of the complex interplay between lymphopenia and glioblastoma and will pave the way for the development of more effective treatment modalities.
Collapse
Affiliation(s)
- Joonseok Kim
- College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Haeyoun Choi
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sin-Soo Jeun
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Stephen Ahn
- Department of Neurosurgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Stepanenko AA, Sosnovtseva AO, Valikhov MP, Chernysheva AA, Abramova OV, Naumenko VA, Chekhonin VP. The need for paradigm shift: prognostic significance and implications of standard therapy-related systemic immunosuppression in glioblastoma for immunotherapy and oncolytic virotherapy. Front Immunol 2024; 15:1326757. [PMID: 38390330 PMCID: PMC10881776 DOI: 10.3389/fimmu.2024.1326757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/23/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Despite significant advances in our knowledge regarding the genetics and molecular biology of gliomas over the past two decades and hundreds of clinical trials, no effective therapeutic approach has been identified for adult patients with newly diagnosed glioblastoma, and overall survival remains dismal. Great hopes are now placed on combination immunotherapy. In clinical trials, immunotherapeutics are generally tested after standard therapy (radiation, temozolomide, and steroid dexamethasone) or concurrently with temozolomide and/or steroids. Only a minor subset of patients with progressive/recurrent glioblastoma have benefited from immunotherapies. In this review, we comprehensively discuss standard therapy-related systemic immunosuppression and lymphopenia, their prognostic significance, and the implications for immunotherapy/oncolytic virotherapy. The effectiveness of immunotherapy and oncolytic virotherapy (viro-immunotherapy) critically depends on the activity of the host immune cells. The absolute counts, ratios, and functional states of different circulating and tumor-infiltrating immune cell subsets determine the net immune fitness of patients with cancer and may have various effects on tumor progression, therapeutic response, and survival outcomes. Although different immunosuppressive mechanisms operate in patients with glioblastoma/gliomas at presentation, the immunological competence of patients may be significantly compromised by standard therapy, exacerbating tumor-related systemic immunosuppression. Standard therapy affects diverse immune cell subsets, including dendritic, CD4+, CD8+, natural killer (NK), NKT, macrophage, neutrophil, and myeloid-derived suppressor cell (MDSC). Systemic immunosuppression and lymphopenia limit the immune system's ability to target glioblastoma. Changes in the standard therapy are required to increase the success of immunotherapies. Steroid use, high neutrophil-to-lymphocyte ratio (NLR), and low post-treatment total lymphocyte count (TLC) are significant prognostic factors for shorter survival in patients with glioblastoma in retrospective studies; however, these clinically relevant variables are rarely reported and correlated with response and survival in immunotherapy studies (e.g., immune checkpoint inhibitors, vaccines, and oncolytic viruses). Our analysis should help in the development of a more rational clinical trial design and decision-making regarding the treatment to potentially improve the efficacy of immunotherapy or oncolytic virotherapy.
Collapse
Affiliation(s)
- Aleksei A. Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasiia O. Sosnovtseva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marat P. Valikhov
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Anastasia A. Chernysheva
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Olga V. Abramova
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Victor A. Naumenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Medical Nanobiotechnology, Institute of Translational Medicine, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
5
|
Myelotoxicity of Temozolomide Treatment in Patients with Glioblastoma Is It Time for a More Mechanistic Approach? Cancers (Basel) 2023; 15:cancers15051561. [PMID: 36900352 PMCID: PMC10000921 DOI: 10.3390/cancers15051561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Glioblastoma multiforme is the most common primary central nervous system tumor, with an incidence of 3 [...].
Collapse
|
6
|
Moitra P, Chatterjee A, Kota PK, Epari S, Patil V, Dasgupta A, Kowtal P, Sarin R, Gupta T. Temozolomide-induced myelotoxicity and single nucleotide polymorphisms in the MGMT gene in patients with adult diffuse glioma: a single-institutional pharmacogenetic study. J Neurooncol 2022; 156:625-634. [PMID: 35037156 DOI: 10.1007/s11060-022-03944-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Nearly 10% of patients with adult diffuse glioma develop clinically significant myelotoxicity while on temozolomide (TMZ) leading to treatment interruptions. This study aimed to assess single nucleotide polymorphisms (SNPs) in the O6-methylguanine-DNA methyltransferase (MGMT) gene in adults with biopsy-proven diffuse glioma who develop TMZ-induced myelotoxicity and correlate their presence with severity and duration of such toxicity. METHODS This study assessed 33 adults treated with TMZ for diffuse glioma who developed ≥ grade 2 thrombocytopenia and/or ≥ grade 3 neutropenia. Genomic DNA was extracted from peripheral blood cells for MGMT SNP analysis after written informed consent. TMZ-induced severe myelotoxicity (≥ grade 3) was correlated with three specified SNPs commonly seen in the MGMT gene (L84F, I143V/K178R) using chi-square test or Fischer's exact test as appropriate. RESULTS Of the 33 adults, 24 (72.7%) experienced ≥ grade 3 thrombocytopenia and/or neutropenia, while 9 (27.3%) developed grade 2 thrombocytopenia only. The variant T allele of L84F was expressed in 28.7% (19/66) of analyzed alleles, which was substantially higher than previously reported for South Asian ancestry. The variant G allele of I143V/K178R was expressed in 9.3% (6/64) of analyzed alleles. Of which 3 patients showed statistically significant association with prolonged myelosuppression for > 2 months (p = 0.03). No significant correlation was established between the mentioned SNPs and severe myelotoxicity. CONCLUSIONS There is substantially higher frequency of variant T allele (L84F) in Indian patients than previously reported for South Asians. The presence of specific SNPs in the MGMT gene correlates with prolonged duration but not severity of TMZ-induced myelotoxicity.
Collapse
Affiliation(s)
- Prithwijit Moitra
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
| | - Abhishek Chatterjee
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
| | - Priti Khatri Kota
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Archya Dasgupta
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
| | - Pradnya Kowtal
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Rajiv Sarin
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India
- Sarin Lab, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Tejpal Gupta
- Departments of Radiation Oncology, Tata Memorial Hospital (TMH)/Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Homi Bhabha National Institute (HBNI), Mumbai, 410210, India.
| |
Collapse
|