1
|
Kim SJ, Park J, Shim JK, Choi RJ, Moon JH, Kim EH, Teo WY, Chang JH, Kang SG. Disruption of bioenergetics enhances the radio-sensitivity of patient-derived glioblastoma tumorspheres. Transl Oncol 2025; 51:102197. [PMID: 39550888 PMCID: PMC11609692 DOI: 10.1016/j.tranon.2024.102197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/13/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024] Open
Abstract
BACKGROUND Despite available treatment approaches, including surgical resection along with chemotherapy and radiotherapy, glioblastoma (GBM), the most prevalent primary brain tumor, remains associated with a grim prognosis. Although radiotherapy is central to GBM treatment, its combination with bioenergetics regulators has not been validated in clinical practice. Here, we hypothesized that bioenergetics regulators can enhance the radio-sensitivity of GBM tumorspheres (TSs). METHODS Gene expression profiles of GBM patient-derived TSs were obtained through microarray and RNA-seq. In vitro treatment efficacy was assessed using clonogenic assay, 3D invasion assay, neurosphere formation assay, and flow cytometry. Protein expression was measured via western blot, and γH2AX foci were detected via immunofluorescence. In vivo efficacy was confirmed in an orthotopic xenograft model. RESULTS Based on radiation response-associated gene expression, GBM TSs were classified into high- or low-radioresistant groups. Among the five bioenergetics regulators, the pentose phosphate pathway inhibitor DHEA and the glycolysis inhibitor 2-DG notably enhanced the efficacy of ionizing radiation (IR) efficacy in vitro, reducing the survival fraction, stemness, and invasiveness in high- and low-radioresistant TSs. Combination with 2-DG further stimulated IR-induced DNA damage response and apoptosis in low-radioresistant GBM TSs. RNA-seq analysis revealed a downregulation of bioenergetics- and cell cycle-associated genes, whereas extracellular matrix- and cell adhesion-associated genes were enhanced by combined IR and 2-DG treatment. This therapeutic regimen extended survival and diminished tumor size in mouse xenograft models. CONCLUSIONS Our data suggest that combination with bioenergetics regulator 2-DG enhances the radio-sensitivity of GBM TSs, highlighting the clinical potential of this combined regimen.
Collapse
Affiliation(s)
- Seo Jin Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Junseong Park
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Wan-Yee Teo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore; Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea; Brain Tumor Translational Research Laboratory, Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, South Korea; Department of Medical Science, Yonsei University Graduate School, Seoul, South Korea.
| |
Collapse
|
2
|
Shi Y, Cao Z, Ge L, Lei L, Tao D, Zhong J, Xu D, Geng T, Li X, Li Z, Xing S, Wu X, Wang Z, Li L. Rotenone adaptation promotes migration and invasion of p53-wild-type colon cancer through lipid metabolism. Clin Transl Oncol 2024:10.1007/s12094-024-03785-x. [PMID: 39612123 DOI: 10.1007/s12094-024-03785-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND The association between mitochondrial dysfunction and multiple metabolic adaptations is increasingly being proven. We previously elucidated that mitochondrial complex I deficiency can promote glycolysis in mut-p53 SW480 cells. However, studies have revealed a phenotype with attenuated glycolysis but enhanced fatty acid oxidation (FAO) in invasive tumors. The interplay between complex I and FAO in carcinogenesis remains obscure. METHODS The p53 wild-type RKO cells were exposed to rotenone over at least 2 months to acquire rotenone adaptation cells. Then the transwell invasion assays and expression of metabolic enzymes were first detected in rotenone adaptation cells to illustrate whether rotenone adaptation is correlated with the invasion and FAO. The levels of epithelial-to-mesenchymal transition (EMT)-related proteins and acetyl-CoA in rotenone adaptation cells treated with etomoxir (ETO) and acetate were evaluated to verify the role of CPT1A in regulating invasion. Finally, the levels of reactive oxygen species (ROS) were detected. Meanwhile, the invasiveness and histone acetylation levels of rotenone adaptation cells were observed after adding an ROS inhibitor (N-acetyl-L-cysteine NAC) to demonstrate the molecular connection between FAO and invasion during rotenone adaptation. RESULTS We found long-term exposure to rotenone (a mitochondrial complex I inhibitor) led to EMT and high CPT1A expression in wt-p53 colon cancer. The inhibition of CPT1A suppressed the invasion and reduced histone acetylation, which was rescued by supplementing with acetate. Mechanistically, ROS is crucial for lipid metabolism remodeling. CONCLUSION Our study provides a novel understanding of the role of complex I in lipid reprogramming facilitating colon cancer invasion and metastasis.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Zhen Cao
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Ling Ge
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Lin Lei
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Dan Tao
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Juan Zhong
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Dan Xu
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Tao Geng
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Xuetao Li
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Ziwei Li
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Shuaishuai Xing
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Xinyu Wu
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Zhongxu Wang
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China
| | - Linjun Li
- Department of Oncology, Maternal and Child Health Hospital of Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
3
|
Liu X, Liu X, Dong W, Wang P, Liu L, Liu L, E T, Wang D, Lin Y, Lin H, Ruan X, Xue Y. KHDRBS1 regulates the pentose phosphate pathway and malignancy of GBM through SNORD51-mediated polyadenylation of ZBED6 pre-mRNA. Cell Death Dis 2024; 15:802. [PMID: 39516455 PMCID: PMC11549417 DOI: 10.1038/s41419-024-07163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma is one of the most common and aggressive primary brain tumors. The aberration of metabolism is the important character of GBM cells and is tightly related to the malignancy of GBM. We mainly verified the regulatory effects of KHDRBS1, SNORD51 and ZBED6 on pentose phosphate pathway and malignant biological behavior in glioblastoma cells, such as proliferation, migration and invasion. KHDRBS1 and SNORD51 were upregulated in GBM tissues and cells. But ZBED6 had opposite tendency in GBM tissues and cells. KHDRBS1 may improve the stability of SNORD51 by binding to SNORD51, thus elevating the expression of SNORD51. More importantly, SNORD51 can competitively bind to WDR33 with 3'UTR of ZBED6 pre-mRNA which can inhibit the 3' end processing of ZBED6 pre-mRNA, thereby inhibiting the expression of ZBED6 mRNA. ZBED6 inhibited the transcription of G6PD by binding to the promoter region of G6PD. Therefore, the KHDRBS1/SNORD51/ZBED6 pathway performs an important part in regulating the pentose phosphate pathway to influence malignant biological behavior of GBM cells, providing new insights and potential targets for the treatment of GBM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiaobai Liu
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiwei Dong
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Ping Wang
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Libo Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Lu Liu
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Tiange E
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Di Wang
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Lin
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Hongda Lin
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| | - Yixue Xue
- Department of Neurobiology, School of Life Sciences, China Medical University, Shenyang, 110122, China.
- Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China.
| |
Collapse
|
4
|
Wang X, Zhang J, Wu Y, Zhang Y, Zhang S, Li A, Wang J, Wang Z. RORα inhibits gastric cancer proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity. Cancer Cell Int 2024; 24:12. [PMID: 38184549 PMCID: PMC10770990 DOI: 10.1186/s12935-023-03201-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
BACKGROUND Glycolysis is critical for harvesting abundant energy to maintain the tumor microenvironment in malignant tumors. Retinoic acid-related orphan receptor α (RORα) has been identified as a circadian gene. However, the association of glycolysis with RORα in regulating gastric cancer (GC) proliferation remains poorly understood. METHODS Bioinformatic analysis and retrospective study were utilized to explore the role of RORα in cell cycle and glycolysis in GC. The mechanisms were performed in vitro and in vivo including colony formation, Cell Counting Kit-8 (CCK-8), Epithelial- mesenchymal transition (EMT) and subcutaneous tumors of mice model assays. The key drives between RORα and glycolysis were verified through western blot and chip assays. Moreover, we constructed models of high proliferation and high glucose environments to verify a negative feedback and chemoresistance through a series of functional experiments in vitro and in vivo. RESULTS RORα was found to be involved in the cell cycle and glycolysis through a gene set enrichment analysis (GSEA) algorithm. GC patients with low RORα expression were not only associated with high circulating tumor cells (CTC) and high vascular endothelial growth factor (VEGF) levels. However, it also presented a positive correlation with the standard uptake value (SUV) level. Moreover, the SUVmax levels showed a positive linear relation with CTC and VEGF levels. In addition, RORα expression levels were associated with glucose 6 phosphate dehydrogenase (G6PD) and phosphofructokinase-2/fructose-2,6-bisphosphatase (PFKFB3) expression levels, and GC patients with low RORα and high G6PD or low RORα and high PFKFB3 expression patterns had poorest disease-free survival (DFS). Functionally, RORα deletion promoted GC proliferation and drove glycolysis in vitro and in vivo. These phenomena were reversed by the RORα activator SR1078. Moreover, RORα deletion promoted GC proliferation through attenuating G6PD and PFKFB3 induced glycolytic activity in vitro and in vivo. Mechanistically, RORα was recruited to the G6PD and PFKFB3 promoters to modulate their transcription. Next, high proliferation and high glucose inhibited RORα expression, which indicated that negative feedback exists in GC. Moreover, RORα deletion improved fluorouracil chemoresistance through inhibition of glucose uptake. CONCLUSION RORα might be a novel biomarker and therapeutic target for GC through attenuating glycolysis.
Collapse
Affiliation(s)
- Xiaoshan Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Junyi Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuwei Wu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Yuqing Zhang
- Department of Occupational Health and Environmental Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, People's Republic of China
| | - Siyuan Zhang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Angqing Li
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Jian Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China
| | - Zhengguang Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Liu B, Fu X, Du Y, Feng Z, Chen R, Liu X, Yu F, Zhou G, Ba Y. Pan-cancer analysis of G6PD carcinogenesis in human tumors. Carcinogenesis 2023; 44:525-534. [PMID: 37335542 DOI: 10.1093/carcin/bgad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/24/2023] [Accepted: 06/18/2023] [Indexed: 06/21/2023] Open
Abstract
Glucose-6-phosphate dehydrogenase (G6PD) is involved in the catalytic pentose phosphate pathway (PPP), which is closely related to energy metabolism. G6PD plays a crucial role in many types of cancer, but the specific molecular mechanisms of G6PD in cancer remain unclear. Therefore, we investigated the potential oncogenic role of G6PD in various tumors based on The Cancer Genome Atlas (TCGA), the cBioPortal datasets, the University of California Santa Cruz (UCSC) Xena browser, and the UALCAN-based online tool. G6PD was highly expressed in several cancer tissues (hepatocellular carcinoma, glioma, and breast cancer) compared with normal tissues and was significantly associated with poor prognosis of hepatocellular carcinoma, clear cell renal cell carcinoma, and breast cancer. Promoter methylation levels of G6PD were lower in Bladder Urothelial Carcinoma (BLCA) (P = 2.77e-02), breast invasive carcinoma (BRCA) (P = 1.62e-12), kidney renal clear cell carcinoma (KIRC) (P = 4.23e-02), kidney renal papillary cell carcinoma (KIRP) (P = 2.64e-03), liver hepatocellular carcinoma (LIHC) (P = 1.76e-02), stomach adenocarcinoma (STAD) (P = 3.50e-02), testicular germ cell tumors (TGCT) (P = 1.62e-12), higher in prostate adenocarcinoma (PRAD) (P = 1.81e-09), and uterine corpus endometrial carcinoma (UCEC) (P = 2.96e-04) compared with corresponding normal tissue samples. G6PD expression was positively correlated with the infiltration level of immune cells in most tumors, suggesting that G6PD may be involved in tumor immune infiltration. In addition, the functional mechanism of G6PD also involves 'Carbon metabolism', 'Glycolysis/Gluconeogenesis', 'Pentose phosphate pathway', and 'Central carbon pathway metabolism in cancer signaling pathway'. This pan-cancer study provides a relatively broad understanding of the oncogenic role of G6PD in various tumors and presents a theoretical basis for the development of G6PD inhibitors as therapeutic drugs for multiple cancers.
Collapse
Affiliation(s)
- Bin Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Xiaoli Fu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yuhui Du
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Zichen Feng
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ruiqin Chen
- Jinshui District Center for Disease Control and Prevention, Zhengzhou, Henan 450053, P. R. China
| | - Xiaoxue Liu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Fangfang Yu
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Guoyu Zhou
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Yue Ba
- Department of Environmental Health, School of Public Health, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
6
|
Miki K, Yagi M, Noguchi N, Do Y, Otsuji R, Kuga D, Kang D, Yoshimoto K, Uchiumi T. Induction of glioblastoma cell ferroptosis using combined treatment with chloramphenicol and 2-deoxy-D-glucose. Sci Rep 2023; 13:10497. [PMID: 37380755 DOI: 10.1038/s41598-023-37483-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Glioblastoma, a malignant tumor, has no curative treatment. Recently, mitochondria have been considered a potential target for treating glioblastoma. Previously, we reported that agents initiating mitochondrial dysfunction were effective under glucose-starved conditions. Therefore, this study aimed to develop a mitochondria-targeted treatment to achieve normal glucose conditions. This study used U87MG (U87), U373, and patient-derived stem-like cells as well as chloramphenicol (CAP) and 2-deoxy-D-glucose (2-DG). We investigated whether CAP and 2-DG inhibited the growth of cells under normal and high glucose concentrations. In U87 cells, 2-DG and long-term CAP administration were more effective under normal glucose than high-glucose conditions. In addition, combined CAP and 2-DG treatment was significantly effective under normal glucose concentration in both normal oxygen and hypoxic conditions; this was validated in U373 and patient-derived stem-like cells. 2-DG and CAP acted by influencing iron dynamics; however, deferoxamine inhibited the efficacy of these agents. Thus, ferroptosis could be the underlying mechanism through which 2-DG and CAP act. In conclusion, combined treatment of CAP and 2-DG drastically inhibits cell growth of glioblastoma cell lines even under normal glucose conditions; therefore, this treatment could be effective for glioblastoma patients.
Collapse
Affiliation(s)
- Kenji Miki
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Mikako Yagi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Naoki Noguchi
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Yura Do
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Ryosuke Otsuji
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Daisuke Kuga
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Takeshi Uchiumi
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Higashi-Ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
7
|
Bernhard C, Reita D, Martin S, Entz-Werle N, Dontenwill M. Glioblastoma Metabolism: Insights and Therapeutic Strategies. Int J Mol Sci 2023; 24:ijms24119137. [PMID: 37298093 DOI: 10.3390/ijms24119137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor metabolism is emerging as a potential target for cancer therapies. This new approach holds particular promise for the treatment of glioblastoma, a highly lethal brain tumor that is resistant to conventional treatments, for which improving therapeutic strategies is a major challenge. The presence of glioma stem cells is a critical factor in therapy resistance, thus making it essential to eliminate these cells for the long-term survival of cancer patients. Recent advancements in our understanding of cancer metabolism have shown that glioblastoma metabolism is highly heterogeneous, and that cancer stem cells exhibit specific metabolic traits that support their unique functionality. The objective of this review is to examine the metabolic changes in glioblastoma and investigate the role of specific metabolic processes in tumorigenesis, as well as associated therapeutic approaches, with a particular focus on glioma stem cell populations.
Collapse
Affiliation(s)
- Chloé Bernhard
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Damien Reita
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Laboratory of Biochemistry and Molecular Biology, Department of Cancer Molecular Genetics, University Hospital of Strasbourg, 67200 Strasbourg, France
| | - Sophie Martin
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| | - Natacha Entz-Werle
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
- Pediatric Onco-Hematology Unit, University Hospital of Strasbourg, 67098 Strasbourg, France
| | - Monique Dontenwill
- UMR CNRS 7021, Laboratory Bioimaging and Pathologies, Tumoral Signaling and Therapeutic Targets, Faculty of Pharmacy, University of Strasbourg, 67405 lllkirch, France
| |
Collapse
|
8
|
Zhang X, Wang Z, Zhuo R, Wang L, Qin Y, Han W, Peng X. G6PD drives glioma invasion by regulating SQSTM1 protein stability. Gene 2023; 874:147476. [PMID: 37187243 DOI: 10.1016/j.gene.2023.147476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/20/2023] [Accepted: 05/05/2023] [Indexed: 05/17/2023]
Abstract
Glioma is an incurable brain tumor with high recurrence due to the frequent invasion of neoplastic cells. Glucose-6-phosphate dehydrogenase (G6PD) is a critical enzyme in the pentose phosphate pathway (PPP) whose aberrant expression drives the pathogenesis of various cancers. Recent research has identified other moonlight modes of enzymes besides the well-known regulation of metabolic reprogramming. Here, we identified previously unexplored roles of G6PD in glioma via gene set variation analysis (GSVA) based on the Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) database. Furthermore, survival analyses revealed that glioma patients with high G6PD expression had a worse outcome than patients with low G6PD expression (Hazard Ratio (95%CI): 2.96 (2.41, 3.64), p = 3.5E-22). Combined with functional assays, G6PD was shown to be related with the migration and invasion in glioma. G6PD knockdown could inhibit the migration in LN229 cells. And G6PD overexpression enhanced LN229 cell migration and invasion. Mechanically, the knockdown of G6PD reduced sequestosome 1 (SQSTM1) protein stability under cycloheximide (CHX) treatment. Moreover, the overexpression of SQSTM1 rescued the impaired migrated and invasive phenotypes in G6PD-silenced cells. Clinically, we validated the role of G6PD-SQSTM1 axis in glioma prognosis by constructing the multivariate cox proportional hazards regression model. These results define a pivotal function of G6PD in modulating SQSTM1 to promote glioma aggressiveness. And G6PD may be a prognostic biomarker and potential therapeutic target in glioma. G6PD-SQSTM1 axis may be a potential prognostic biomarker in glioma.
Collapse
Affiliation(s)
- Xin Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Zhixing Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Rui Zhuo
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Liping Wang
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Yiming Qin
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Wei Han
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China.
| | - Xiaozhong Peng
- State Key Laboratory of Medical Molecular Biology, Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; National Human Diseases Animal Model Resource Center, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College , Beijing 100021, China.
| |
Collapse
|
9
|
Liang K. Mitochondrial CPT1A: Insights into structure, function, and basis for drug development. Front Pharmacol 2023; 14:1160440. [PMID: 37033619 PMCID: PMC10076611 DOI: 10.3389/fphar.2023.1160440] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Carnitine Palmitoyl-Transferase1A (CPT1A) is the rate-limiting enzyme in the fatty acid β-oxidation, and its deficiency or abnormal regulation can result in diseases like metabolic disorders and various cancers. Therefore, CPT1A is a desirable drug target for clinical therapy. The deep comprehension of human CPT1A is crucial for developing the therapeutic inhibitors like Etomoxir. CPT1A is an appealing druggable target for cancer therapies since it is essential for the survival, proliferation, and drug resistance of cancer cells. It will help to lower the risk of cancer recurrence and metastasis, reduce mortality, and offer prospective therapy options for clinical treatment if the effects of CPT1A on the lipid metabolism of cancer cells are inhibited. Targeted inhibition of CPT1A can be developed as an effective treatment strategy for cancers from a metabolic perspective. However, the pathogenic mechanism and recent progress of CPT1A in diseases have not been systematically summarized. Here we discuss the functions of CPT1A in health and diseases, and prospective therapies targeting CPT1A. This review summarizes the current knowledge of CPT1A, hoping to prompt further understanding of it, and provide foundation for CPT1A-targeting drug development.
Collapse
|