1
|
Zemskova O, Yu NY, Leppert J, Löser A, Rades D. Can Platelet-to-Lymphocyte Ratio (PLR) and Neutrophil-to-Lymphocyte Ratio (NLR) Help Predict Outcomes of Patients With Recurrent Glioblastoma? In Vivo 2024; 38:2341-2348. [PMID: 39187342 PMCID: PMC11363804 DOI: 10.21873/invivo.13700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND/AIM In patients with recurrent glioblastoma, very little data are available regarding the prognostic value of platelet-to-lymphocyte (PLR) and neutrophil-to-lymphocyte (NLR) ratios. This study investigated potential associations between PLR or NLR and treatment outcomes. PATIENTS AND METHODS PLR and NLR at diagnosis of recurrence plus 10 additional characteristics were retrospectively analyzed for associations with progression-free survival (PFS) and overall survival (OS) in 75 patients with recurrent glioblastoma. RESULTS On multivariate analyses, maximal cumulative diameter of recurrent lesion(s) <40 mm (p=0.015) and systemic therapy (p<0.001) were associated with improved PFS. On multivariate analysis of OS, improved outcomes were significantly associated with PLR ≤150 (p=0.029), maximal cumulative diameter <40 mm (p=0.030), and systemic therapy (p=0.010). CONCLUSION In addition to other characteristics, PLR at the time of recurrence was identified as an independent predictor of OS in patients with recurrent glioblastoma. PLR may be useful when designing personalized treatment approaches or clinical trials.
Collapse
Affiliation(s)
- Oksana Zemskova
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
- Department of Radioneurosurgery, Romodanov Neurosurgery Institute, Kyiv, Ukraine
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ, U.S.A
| | - Jan Leppert
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Anastassia Löser
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany
| | - Dirk Rades
- Department of Radiation Oncology, University of Lübeck, Lübeck, Germany;
| |
Collapse
|
2
|
Kumar S, Sarmah DT, Paul A, Chatterjee S. Exploration of functional relations among differentially co-expressed genes identifies regulators in glioblastoma. Comput Biol Chem 2024; 109:108024. [PMID: 38335855 DOI: 10.1016/j.compbiolchem.2024.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
The conventional computational approaches to investigating a disease confront inherent constraints as they often need to improve in delving beyond protein functional associations and grasping their deeper contextual significance within the disease framework. Such context-specificity can be explored using clinical data by evaluating the change in interaction between the biological entities in different conditions by investigating the differential co-expression relationships. We believe that the integration and analysis of differential co-expression and the functional relationships, primarily focusing on the source nodes, will open novel insights about disease progression as the source proteins could trigger signaling cascades, mostly because they are transcription factors, cell surface receptors, or enzymes that respond instantly to a particular stimulus. A thorough contextual investigation of these nodes could lead to a helpful beginning point for identifying potential causal linkages and guiding subsequent scientific investigations to uncover mechanisms underlying observed associations. Our methodology includes functional protein-protein Interaction (PPI) data and co-expression information and filters functional linkages through a series of critical steps, culminating in the identification of a robust set of regulators. Our analysis identified eleven key regulators-AKT1, BRCA1, CAMK2G, CUL1, FGFR3, KIF3A, NUP210, PRKACB, RAB8A, RPS6KA2 and TGFB3-in glioblastoma. These regulators play a pivotal role in disease classification, cell growth control, and patient survivability and exhibit associations with immune infiltrations and disease hallmarks. This underscores the importance of assessing correlation towards causality in unraveling complex biological insights.
Collapse
Affiliation(s)
- Shivam Kumar
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Dipanka Tanu Sarmah
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Abhijit Paul
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India
| | - Samrat Chatterjee
- Complex Analysis Group, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
3
|
Li X, Cheng Y, Yang Z, Ji Q, Huan M, Ye W, Liu M, Zhang B, Liu D, Zhou S. Glioma-targeted oxaliplatin/ferritin clathrate reversing the immunosuppressive microenvironment through hijacking Fe 2+ and boosting Fenton reaction. J Nanobiotechnology 2024; 22:93. [PMID: 38443927 PMCID: PMC10913265 DOI: 10.1186/s12951-024-02376-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Glioma is easy to develop resistance to temozolomide (TMZ). TMZ-resistant glioma secretes interleukin-10 (IL-10) and transforming growth factor-β (TGF-β), recruiting regulatory T cell (Treg) and inhibiting the activity of T cells and natural killer cell (NK cell), subsequently forming an immunosuppressive microenvironment. Oxaliplatin (OXA) greatly inhibits the proliferation of TMZ-resistant glioma cells, but the ability of OXA to cross blood-brain barrier (BBB) is weak. Thus, the therapeutic effect of OXA on glioma is not satisfactory. Transferrin receptor 1 (TfR1) is highly expressed in brain capillary endothelial cells and TMZ-resistant glioma cells. In this study, OXA was loaded into ferritin (Fn) to prepare glioma-targeted oxaliplatin/ferritin clathrate OXA@Fn. OXA@Fn efficiently crossed BBB and was actively taken up by TMZ-resistant glioma cells via TfR1. Then, OXA increased the intracellular H2O2 level and induced the apoptosis of TMZ-resistant glioma cells. Meanwhile, Fn increased Fe2+ level in TMZ-resistant glioma cells. In addition, the expression of ferroportin 1 was significantly reduced, resulting in Fe2+ to be locked up inside the TMZ-resistant glioma cells. This subsequently enhanced the Fenton reaction and boosted the ferroptosis of TMZ-resistant glioma cells. Consequently, T cell mediated anti-tumor immune response was strongly induced, and the immunosuppressive microenvironment was significantly reversed in TMZ-resistant glioma tissue. Ultimately, the growth and invasion of TMZ-resistant glioma was inhibited by OXA@Fn. OXA@Fn shows great potential in the treatment of TMZ-resistant glioma and prospect in clinical transformation.
Collapse
Affiliation(s)
- Xue Li
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Ying Cheng
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Zhifu Yang
- Department of Pharmacy, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Qifeng Ji
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Menglei Huan
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Weiliang Ye
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Miao Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Bangle Zhang
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China
| | - Daozhou Liu
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
| | - Siyuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Air Force Medical University, Changle West Road 169, Xi'an, 710032, Shaanxi, China.
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|