1
|
Ordónez-Rubiano EG, Cómbita A, Baldoncini M, Payán-Gómez C, Gómez-Amarillo DF, Hakim F, Camargo J, Zorro-Sepúlveda V, Luzzi S, Zorro O, Parra-Medina R. Cellular Senescence in Diffuse Gliomas: From Physiopathology to Possible Treatments. World Neurosurg 2024; 191:138-148. [PMID: 39233309 DOI: 10.1016/j.wneu.2024.08.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024]
Abstract
Cellular senescence in gliomas is a complex process that is induced by aging and replication, ionizing radiation, oncogenic stress, and the use of temozolomide. However, the escape routes that gliomas must evade senescence and achieve cellular immortality are much more complex, in which the expression of telomerase and the alternative lengthening of telomeres, as well as the mutation of some proto-oncogenes or tumor suppressor genes, are involved. In gliomas, these molecular mechanisms related to cellular senescence can have a tumor-suppressing or promoting effect and are directly involved in tumor recurrence and progression. From these cellular mechanisms related to cellular senescence, it is possible to generate targeted senostatic and senolytic therapies that improve the response to currently available treatments and improve survival rates. This review aims to summarize the mechanisms of induction and evasion of cellular senescence in gliomas, as well as review possible treatments with therapies targeting pathways related to cellular senescence.
Collapse
Affiliation(s)
- Edgar G Ordónez-Rubiano
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia; School of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia; Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia.
| | - Alba Cómbita
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia; Department of Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matías Baldoncini
- School of Medicine, Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, University of Buenos Aires, Buenos Aires, Argentina; Department of Neurological Surgery, Hospital San Fernando, Buenos Aires, Argentina
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, La Paz, Colombia
| | - Diego F Gómez-Amarillo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Fernando Hakim
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Julián Camargo
- Department of Neurosurgery, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Sabino Luzzi
- Neurosurgery Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Oscar Zorro
- Department of Neurological Surgery, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia; Research Institute, Fundación Universitaria de Ciencias de la Salud (FUCS), Hospital de San José - Sociedad de Cirugía de Bogotá, Bogotá, Colombia
| |
Collapse
|
2
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
3
|
Chagas PS, Chagas HIS, Naeini SE, Bhandari B, Gouron J, Malta TM, Salles ÉL, Wang LP, Yu JC, Baban B. Network-Based Transcriptome Analysis Reveals FAM3C as a Novel Potential Biomarker for Glioblastoma. J Cell Biochem 2024; 125:e30612. [PMID: 38923575 DOI: 10.1002/jcb.30612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Glioblastoma (GBM) is the most common form of malignant primary brain tumor with a high mortality rate. The aim of the present study was to investigate the clinical significance of Family with Sequence Similarity 3, Member C, FAM3C, in GBM using bioinformatic-integrated analysis. First, we performed the transcriptomic integration analysis to assess the expression profile of FAM3C in GBM using several data sets (RNA-sequencing and scRNA-sequencing), which were obtained from TCGA and GEO databases. By using the STRING platform, we investigated FAM3C-coregulated genes to construct the protein-protein interaction network. Next, Metascape, Enrichr, and CIBERSORT databases were used. We found FAM3C high expression in GBM with poor survival rates. Further, we observed, via FAM3C coexpression network analysis, that FAM3C plays key roles in several hallmarks of cancer. Surprisingly, we also highlighted five FAM3C‑coregulated genes overexpressed in GBM. Specifically, we demonstrated the association between the high expression of FAM3C and the abundance of the different immune cells, which may markedly worsen GBM prognosis. For the first time, our findings suggest that FAM3C not only can be a new emerging biomarker with promising therapeutic values to GBM patients but also gave a new insight into a potential resource for future GBM studies.
Collapse
Affiliation(s)
- Pablo Shimaoka Chagas
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
| | | | - Sahar Emami Naeini
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bidhan Bhandari
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Jules Gouron
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
| | - Tathiane M Malta
- Department of Clinical Analyses, Toxicology and Food Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Évila Lopes Salles
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Lei P Wang
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, Georgia, USA
| | - Jack C Yu
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Babak Baban
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, Georgia, USA
- DCG Center for Excellence in Research, Scholarship and Innovation (CERSI) Augusta University, Augusta, Georgia, USA
- Georgia Institute of Cannabis Research, Medicinal Cannabis of Georgia LLC, Augusta, Georgia, USA
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
4
|
Tufail M, Huang YQ, Hu JJ, Liang J, He CY, Wan WD, Jiang CH, Wu H, Li N. Cellular Aging and Senescence in Cancer: A Holistic Review of Cellular Fate Determinants. Aging Dis 2024:AD.2024.0421. [PMID: 38913050 DOI: 10.14336/ad.2024.0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
This comprehensive review navigates the complex relationship between cellular aging, senescence, and cancer, unraveling the determinants of cellular fate. Beginning with an overview of cellular aging's significance in cancer, the review explores processes, changes, and molecular pathways influencing senescence. The review explores senescence as a dual mechanism in cancer, acting as a suppressor and contributor, focusing on its impact on therapy response. This review highlights opportunities for cancer therapies that target cellular senescence. The review further examines the senescence-associated secretory phenotype and strategies to modulate cellular aging to influence tumor behavior. Additionally, the review highlights the mechanisms of senescence escape in aging and cancer cells, emphasizing their impact on cancer prognosis and resistance to therapy. The article addresses current advances, unexplored aspects, and future perspectives in understanding cellular aging and senescence in cancer.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Li G, Wang Z, Gao B, Dai K, Niu X, Li X, Wang Y, Li L, Wu X, Li H, Yu Z, Wang Z, Chen G. ANKZF1 knockdown inhibits glioblastoma progression by promoting intramitochondrial protein aggregation through mitoRQC. Cancer Lett 2024; 591:216895. [PMID: 38670305 DOI: 10.1016/j.canlet.2024.216895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024]
Abstract
Protein homeostasis is fundamental to the development of tumors. Ribosome-associated quality-control (RQC) is able to add alanine and threonine to the stagnant polypeptide chain C-terminal (CAT-tail) when protein translation is hindered, while Ankyrin repeat and zinc-finger domain-containing-protein 1 (ANKZF1) can counteract the formation of the CAT-tail, preventing the aggregation of polypeptide chains. In particular, ANKZF1 plays an important role in maintaining mitochondrial protein homeostasis by mitochondrial RQC (mitoRQC) after translation stagnation of precursor proteins targeting mitochondria. However, the role of ANKZF1 in glioblastoma is unclear. Therefore, the current study was aimed to investigate the effects of ANKZF1 in glioblastoma cells and a nude mouse glioblastoma xenograft model. Here, we reported that knockdown of ANKZF1 in glioblastoma cells resulted in the accumulation of CAT-tail in mitochondria, leading to the activated mitochondrial unfolded protein response (UPRmt) and inhibits glioblastoma malignant progression. Excessive CAT-tail sequestered mitochondrial chaperones HSP60, mtHSP70 and proteases LONP1 as well as mitochondrial respiratory chain subunits ND1, Cytb, mtCO2 and ATP6, leading to mitochondrial oxidative phosphorylation dysfunction, membrane potential impairment, and mitochondrial apoptotic pathway activation. Our study highlights ANKZF1 as a valuable target for glioblastoma intervention and provides an innovative insight for the treatment of glioblastoma through the regulating of mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Guangzhao Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China; Department of Neurosurgery, Hefei First People's Hospital, Hefei, 230031, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xiaowang Niu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Yunjiang Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Xin Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
6
|
Strik H, Efferth T, Kaina B. Artesunate in glioblastoma therapy: Case reports and review of clinical studies. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155274. [PMID: 38142662 DOI: 10.1016/j.phymed.2023.155274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND Artesunate, a derivative of the active ingredient artemisinin from Artemisia annua L. used for centuries in the traditional Chinese medicine, is being applied as front-line drug in malaria treatment. As it is cytotoxic for cancer cells, trials are ongoing to include this drug as supplement in cancer therapy. In glioblastoma cells, artesunate was shown to induce oxidative stress, DNA base damage and double-strand breaks (DSBs), apoptosis, and necroptosis. It also inhibits DNA repair functions and bears senolytic activity. Compared to ionizing radiation, DNA damages accumulate over the whole exposure period, which makes the agent unique in its genotoxic profile. Artesunate has been used in adjuvant therapy of various cancers. PURPOSE As artesunate has been used in adjuvant therapy of different types of cancer and clinical trials are lacking in brain cancer, we investigated its activity in glioma patients with focus on possible side effects. STUDY DESIGN Between 2014 and 2020, twelve patients were treated with artesunate for relapsing glioma and analyzed retrospectively: 8 males and 4 females, median age 45 years. HISTOLOGY 4 glioblastomas WHO grade 4, 5 astrocytomas WHO grade 3, 3 oligodendrogliomas grade 2 or 3. All patients were pretreated with radiation and temozolomide-based chemotherapy. Artesunate 100 mg was applied twice daily p.o. combined with dose-dense temozolomide alone (100 mg/m2 day 1-5/7, 10 patients) or with temozolomide (50 mg/m2 day 1-5/7) plus lomustine (CCNU, 40 mg day 6/7). Blood count, C-reactive protein (CRP), liver enzymes, and renal parameters were monitored weekly. RESULTS Apart from one transient grade 3 hematological toxicity, artesunate was well tolerated. No liver toxicity was observed. While 8 patients with late stage of the disease had a median survival of 5 months after initiation of artesunate treatment, 4 patients with treatment for remission maintenance showed a median survival of 46 months. We also review clinical trials that have been performed in other cancers where artesunate was included in the treatment regimen. CONCLUSIONS Artesunate administered at a dose of 2 × 100 mg/day was without harmful side effects, even if combined with alkylating agents used in glioma therapy. Thus, the phytochemical, which is also utilized as food supplement, is an interesting, well tolerated supportive agent useful for long-term maintenance treatment. Being itself cytotoxic on glioblastoma cells and enhancing the cytotoxicity of temozolomide as well as in view of its senolytic activity, artesunate has clearly a potential to enhance the efficacy of malignant brain cancer therapy.
Collapse
Affiliation(s)
- Herwig Strik
- Department of Neurology, Sozialstiftung Bamberg, Bamberg, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
7
|
Carter T, Valenzuela RK, Yerukala Sathipati S, Medina-Flores R. Gene signatures associated with prognosis and chemotherapy resistance in glioblastoma treated with temozolomide. Front Genet 2023; 14:1320789. [PMID: 38259614 PMCID: PMC10802164 DOI: 10.3389/fgene.2023.1320789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024] Open
Abstract
Background: Glioblastoma (GBM) prognosis remains extremely poor despite standard treatment that includes temozolomide (TMZ) chemotherapy. To discover new GBM drug targets and biomarkers, genes signatures associated with survival and TMZ resistance in GBM patients treated with TMZ were identified. Methods: GBM cases in The Cancer Genome Atlas who received TMZ (n = 221) were stratified into subgroups that differed by median overall survival (mOS) using network-based stratification to cluster patients whose somatic mutations affected genes in similar modules of a gene interaction network. Gene signatures formed from differentially mutated genes in the subgroup with the longest mOS were used to confirm their association with survival and TMZ resistance in independent datasets. Somatic mutations in these genes also were assessed for an association with OS in an independent group of 37 GBM cases. Results: Among the four subgroups identified, subgroup four (n = 71 subjects) exhibited the longest mOS at 18.3 months (95% confidence interval: 16.2, 34.1; p = 0.0324). Subsets of the 86 genes that were differentially mutated in this subgroup formed 20-gene and 8-gene signatures that predicted OS in two independent datasets (Spearman's rho of 0.64 and 0.58 between actual and predicted OS; p < 0.001). Patients with mutations in five of the 86 genes had longer OS in a small, independent sample of 37 GBM cases, but this association did not reach statistical significance (p = 0.07). Thirty-one of the 86 genes formed signatures that distinguished TMZ-resistant GBM samples from controls in three independent datasets (area under the curve ≥ 0.75). The prognostic and TMZ-resistance signatures had eight genes in common (ANG, BACH1, CDKN2C, HMGA1, IFI16, PADI4, SDF4, and TP53INP1). The latter three genes have not been associated with GBM previously. Conclusion: PADI4, SDF4, and TP53INP1 are novel therapy and biomarker candidates for GBM. Further investigation of their oncologic functions may provide new insight into GBM treatment resistance mechanisms.
Collapse
Affiliation(s)
- Tonia Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Robert K. Valenzuela
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | | | - Rafael Medina-Flores
- Department of Pathology (Neuropathology), Marshfield Clinic, Marshfield, WI, United States
| |
Collapse
|