1
|
Lendor S, Olkowicz M, Boyaci E, Yu M, Diwan M, Hamani C, Palmer M, Reyes-Garcés N, Gómez-Ríos GA, Pawliszyn J. Investigation of Early Death-Induced Changes in Rat Brain by Solid Phase Microextraction via Untargeted High Resolution Mass Spectrometry: In Vivo versus Postmortem Comparative Study. ACS Chem Neurosci 2020; 11:1827-1840. [PMID: 32407623 DOI: 10.1021/acschemneuro.0c00270] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Analysis of brain samples obtained postmortem remains a standard approach in neuroscience, despite often being suboptimal for inferring roles of small molecules in the pathophysiology of brain diseases. Sample collection and preservation further hinders conclusive interpretation of biomarker analysis in autopsy samples. We investigate purely death-induced changes affecting rat hippocampus in the first hour of postmortem interval (PMI) by means of untargeted liquid chromatography-mass spectrometry-based metabolomics. The unique possibility of sampling the same brain area of each animal both in vivo and postmortem was enabled by employing solid phase microextraction (SPME) probes. Four millimeter probes coated with mixed mode extraction phase were used to sample awake, freely roaming animals, with 2 more sampling events performed after death. Significant changes in brain neurochemistry were found to occur as soon as 30 min after death, further progressing with increasing PMI, evidenced by relative changes in levels of metabolites and lipids. These included species from several distinct groups, which can be classified as engaged in energy metabolism-related processes, signal transduction, neurotransmission, or inflammatory response. Additionally, we perform thorough analysis of interindividual variability in response to death, which provides insights into how this aspect can obscure conclusions drawn from an untargeted study at single metabolite and pathway level. The results suggest high demand for systematic studies examining the PMI time course with in vivo sampling as a starting point to eliminate artifacts in the form of neurochemical changes assumed to occur in vivo.
Collapse
Affiliation(s)
- Sofia Lendor
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mariola Olkowicz
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Ezel Boyaci
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Miao Yu
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Mustansir Diwan
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Clement Hamani
- Neuroimaging Research Section, Centre for Addiction and Mental Health, 250 College Street, Toronto, Ontario M5T 1R8, Canada
| | - Michael Palmer
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Nathaly Reyes-Garcés
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - German Augusto Gómez-Ríos
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| | - Janusz Pawliszyn
- Department of Chemistry, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Pozdnyakova N, Yatsenko L, Parkhomenko N, Himmelreich N. Perinatal hypoxia induces a long-lasting increase in unstimulated gaba release in rat brain cortex and hippocampus. The protective effect of pyruvate. Neurochem Int 2011; 58:14-21. [DOI: 10.1016/j.neuint.2010.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 10/14/2010] [Indexed: 10/18/2022]
|