Tai W, Li X, Zhou J, Arik S. Asynchronous dissipative stabilization for stochastic Markov-switching neural networks with completely- and incompletely-known transition rates.
Neural Netw 2023;
161:55-64. [PMID:
36736000 DOI:
10.1016/j.neunet.2023.01.039]
[Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
The asynchronous dissipative stabilization for stochastic Markov-switching neural networks (SMSNNs) is investigated. The aim is to design an output-feedback controller with inconsistent mode switching to ensure that the SMSNN is stochastically stable with extended dissipativity. Two situations, which involve completely- and incompletely-known transition rates (TRs), are taken into account. The situation that all TRs are exactly known is considered first. By applying a mode-dependent Lyapunov-Krasovskii functional, Dynkin's formula, and several matrix inequalities, a criterion for the desired performance of the closed-loop SMSNN is derived and a design method for determining the asynchronous controller is developed. Then, the study is generalized to the situation where some TRs are allowed to be uncertain or even fully unknown. An inequality is established for judging the upper bound of the product of the TRs with the Lyapunov matrix by making full use of accessible information on the incompletely-known TRs. Based on the inequality, performance analysis and control synthesis are presented without imposing the zero-sum hypothesis of the uncertainties in the TR matrix. Finally, an example with numerical calculation and simulation is provided to verify the validity of the stabilizing approaches.
Collapse