3
|
Yamada T, Himori K, Tatebayashi D, Yamada R, Ashida Y, Imai T, Akatsuka M, Masuda Y, Kanzaki K, Watanabe D, Wada M, Westerblad H, Lanner JT. Electrical Stimulation Prevents Preferential Skeletal Muscle Myosin Loss in Steroid-Denervation Rats. Front Physiol 2018; 9:1111. [PMID: 30147660 PMCID: PMC6097132 DOI: 10.3389/fphys.2018.01111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Severe muscle weakness concomitant with preferential depletion of myosin has been observed in several pathological conditions. Here, we used the steroid-denervation (S-D) rat model, which shows dramatic decrease in myosin content and force production, to test whether electrical stimulation (ES) treatment can prevent these deleterious changes. S-D was induced by cutting the sciatic nerve and subsequent daily injection of dexamethasone for 7 days. For ES treatment, plantarflexor muscles were electrically stimulated to produce four sets of five isometric contractions each day. Plantarflexor in situ isometric torque, muscle weight, skinned muscle fiber force, and protein and mRNA expression were measured after the intervention period. ES treatment partly prevented the S-D-induced decreases in plantarflexor in situ isometric torque and muscle weight. ES treatment fully prevented S-D-induced decreases in skinned fiber force and ratio of myosin heavy chain (MyHC) to actin, as well as increases in the reactive oxygen/nitrogen species-generating enzymes NADPH oxidase (NOX) 2 and 4, phosphorylation of p38 MAPK, mRNA expression of the muscle-specific ubiquitin ligases muscle ring finger-1 (MuRF-1) and atrogin-1, and autolyzed active calpain-1. Thus, ES treatment is an effective way to prevent muscle impairments associated with loss of myosin.
Collapse
Affiliation(s)
- Takashi Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Koichi Himori
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Daisuke Tatebayashi
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Ryotaro Yamada
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Yuki Ashida
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Tomihiro Imai
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Masayuki Akatsuka
- Department of Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | - Yoshiki Masuda
- Department of Intensive Care Medicine, Sapporo Medical University, Sapporo, Japan
| | - Keita Kanzaki
- Faculty of Health Science and Technology, Kawasaki University of Medical Welfare, Kurashiki, Japan
| | - Daiki Watanabe
- School of Life Sciences, La Trobe University, Melbourne, VIC, Australia
| | - Masanobu Wada
- Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, Japan
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Johanna T Lanner
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
Cea LA, Balboa E, Puebla C, Vargas AA, Cisterna BA, Escamilla R, Regueira T, Sáez JC. Dexamethasone-induced muscular atrophy is mediated by functional expression of connexin-based hemichannels. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1891-9. [PMID: 27437607 DOI: 10.1016/j.bbadis.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/29/2016] [Accepted: 07/12/2016] [Indexed: 11/29/2022]
Abstract
Long-term treatment with high glucocorticoid doses induces skeletal muscle atrophy. However, the molecular mechanism of such atrophy remains unclear. We evaluated the possible involvement of connexin-based hemichannels (Cx HCs) in muscle atrophy induced by dexamethasone (DEX), a synthetic glucocorticoid, on control (Cx43(fl/fl)Cx45(fl/fl)) and Cx43/Cx45 expression-deficient (Cx43(fl/fl)Cx45(fl/fl):Myo-Cre) skeletal myofibers. Myofibers of Cx43(fl/fl)Cx45(fl/fl) mice treated with DEX (5h) expressed several proteins that form non-selective membrane channels (Cx39, Cx43, Cx45, Panx1, P2X7 receptor and TRPV2). After 5h DEX treatment in vivo, myofibers of Cx43(fl/fl)Cx45(fl/fl) mice showed Evans blue uptake, which was absent in myofibers of Cx43(fl/fl)Cx45(fl/fl):Myo-Cre mice. Similar results were obtained in vitro using ethidium as an HC permeability probe, and DEX-induced dye uptake in control myofibers was blocked by P2X7 receptor inhibitors. DEX also induced a significant increase in basal intracellular Ca(2+) signal and a reduction in resting membrane potential in Cx43(fl/fl)Cx45(fl/fl) myofibers, changes that were not elicited by myofibers deficient in Cx43/Cx45 expression. Moreover, treatment with DEX induced NFκB activation and increased mRNA levels of TNF-α in control but not in Cx43/Cx45 expression-deficient myofibers. Finally, a prolonged DEX treatment (7days) increased atrogin-1 and Murf-1 and reduced the cross sectional area of Cx43(fl/fl)Cx45(fl/fl) myofibers, but these parameters remained unaffected in Cx43(fl/fl)Cx45(fl/fl):Myo-Cre myofibers. Therefore, DEX-induced expression of Cx43 and Cx45 plays a critical role in early sarcolemma changes that lead to atrophy. Consequently, this side effect of chronic glucocorticoid treatment might be avoided by co-administration with a Cx HC blocker.
Collapse
Affiliation(s)
- Luis A Cea
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | - Elisa Balboa
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Departamento Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Puebla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Aníbal A Vargas
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Bruno A Cisterna
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Rosalba Escamilla
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile
| | - Tomás Regueira
- Departamento Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile; Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
10
|
Okutsu M, Call JA, Lira VA, Zhang M, Donet JA, French BA, Martin KS, Peirce-Cottler SM, Rembold CM, Annex BH, Yan Z. Extracellular superoxide dismutase ameliorates skeletal muscle abnormalities, cachexia, and exercise intolerance in mice with congestive heart failure. Circ Heart Fail 2014; 7:519-30. [PMID: 24523418 DOI: 10.1161/circheartfailure.113.000841] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Congestive heart failure (CHF) is a leading cause of morbidity and mortality, and oxidative stress has been implicated in the pathogenesis of cachexia (muscle wasting) and the hallmark symptom, exercise intolerance. We have previously shown that a nitric oxide-dependent antioxidant defense renders oxidative skeletal muscle resistant to catabolic wasting. Here, we aimed to identify and determine the functional role of nitric oxide-inducible antioxidant enzyme(s) in protection against cardiac cachexia and exercise intolerance in CHF. METHODS AND RESULTS We demonstrated that systemic administration of endogenous nitric oxide donor S-nitrosoglutathione in mice blocked the reduction of extracellular superoxide dismutase (EcSOD) protein expression, as well as the induction of MAFbx/Atrogin-1 mRNA expression and muscle atrophy induced by glucocorticoid. We further showed that endogenous EcSOD, expressed primarily by type IId/x and IIa myofibers and enriched at endothelial cells, is induced by exercise training. Muscle-specific overexpression of EcSOD by somatic gene transfer or transgenesis (muscle creatine kinase [MCK]-EcSOD) in mice significantly attenuated muscle atrophy. Importantly, when crossbred into a mouse genetic model of CHF (α-myosin heavy chain-calsequestrin), MCK-EcSOD transgenic mice had significant attenuation of cachexia with preserved whole body muscle strength and endurance capacity in the absence of reduced HF. Enhanced EcSOD expression significantly ameliorated CHF-induced oxidative stress, MAFbx/Atrogin-1 mRNA expression, loss of mitochondria, and vascular rarefaction in skeletal muscle. CONCLUSIONS EcSOD plays an important antioxidant defense function in skeletal muscle against cardiac cachexia and exercise intolerance in CHF.
Collapse
Affiliation(s)
- Mitsuharu Okutsu
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Jarrod A Call
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Vitor A Lira
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Mei Zhang
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Jean A Donet
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Brent A French
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Kyle S Martin
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Shayn M Peirce-Cottler
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Christopher M Rembold
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Brian H Annex
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.)
| | - Zhen Yan
- From the Departments of Medicine (M.O., J.A.C., V.A.L., M.Z., J.A.D., C.M.R., B.H.A., Z.Y.), Pharmacology (Z.Y.), and Molecular Physiology and Biological Physics (Z.Y.), Center for Skeletal Muscle Research (M.O., J.A.C., V.A.L., M.Z., J.A.D., Z.Y.), Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA; and Department of Biomedical Engineering, University of Virginia, Charlottesville, VA (B.A.F., K.S.M., S.M.P.-C.).
| |
Collapse
|