1
|
Hanke N, Rami A. Cerebral ischemia induced iron deposit, ferritin accumulation, nuclear receptor coactivator 4-depletion and ferroptosis. Curr Neurovasc Res 2022; 19:47-60. [PMID: 35319371 DOI: 10.2174/1567202619666220321120954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The neuronal death upon cerebral ischemia shares not only characteristics of necrosis, apoptosis and autophagy, but exhibits also biochemical and morphological characteristics of ferroptosis. Ferroptosis is a regulated form of cell death which is considered to be an oxidative iron-dependent process. It is now commonly accepted that iron and free radicals are considered to cause lipid peroxidation as well as the oxidation of proteins and nucleic acids, leading to increased membrane and enzymatic dysfunction, and finally contributing to cell death. Although ferroptosis was first described in cancer cells, emerging evidence now links mechanisms of ferroptosis to many different diseases, including cerebral ischemia. METHODS The objective of this study was to identify the ferroptosis key players and the underlying biochemical pathways leading to cell death upon focal cerebral ischemia in mice by using immunofluorescence, Western blotting, histochemistry and densitometry. RESULTS In this study, we demonstrated that cerebral ischemia induced iron-deposition, down-regulated dramatically the expression of the glutathione peroxidase 4 (GPX4), decreased the expression of the nuclear receptor coactivator 4 (NCOA4) and induced inappropriate accumulation of ferritin in the ischemic brain. This supports the hypothesis that an ischemic insult may induce ferroptosis through inhibition of GPX4. CONCLUSION We conclude that iron excess following cerebral ischemia leads to cell death despite activation of compensatory mechanisms for iron homeostasis, as illustrated by the accumulation of ferritins. These data emphasize the presence of a cellular mechanism that allows neuronal cells to handle restriction in iron overload.
Collapse
Affiliation(s)
- Nora Hanke
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Abdelhaq Rami
- Institut für Experimentelle Neurobiologie (Anatomie II), Klinikum der Johann Wolfgang von Goethe-Universität, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
2
|
Guo W, Huai Q, Zhang G, Guo L, Song P, Xue X, Tan F, Xue Q, Gao S, He J. Elevated Heterogeneous Nuclear Ribonucleoprotein C Expression Correlates With Poor Prognosis in Patients With Surgically Resected Lung Adenocarcinoma. Front Oncol 2021; 10:598437. [PMID: 33569346 PMCID: PMC7868529 DOI: 10.3389/fonc.2020.598437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Background Lung adenocarcinoma (LUAD), as the most common histological subtype of lung cancer, is a high-grade malignancy and a leading cause of cancer-related death globally. Identification of biomarkers with prognostic value is of great significance for the diagnosis and treatment of LUAD. Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an RNA-binding protein “reader” of N6-methyladenosine (m6A) methylation, and is related to the progression of various cancers; however, its role in LUAD is unclear. The aims of this study aims were to study the expression and prognostic value of HNRNPC in LUAD. Methods The Oncomine database and gene expression profiling interactive analysis (GEPIA) were used for preliminary exploration of HNRNPC expression and prognostic value in LUAD. LUAD cases from The Cancer Genome Atlas (TCGA) (n = 416) and the Kaplan-Meier plotter database (n = 720) were extracted to study the differential expression and prognostic value of HNRNPC. HNRNPC expression in the National Cancer Center of China (NCC) cohort was analyzed by immunohistochemical staining, and the relationship between HNRNPC expression and survival rate evaluated using the Kaplan-Meier method and log-rank test. Univariate and multivariate Cox regression analyses were used to identify independent prognostic factors. Several pathways that were significantly enriched in the HNRNPC high expression group were identified by Gene Set Enrichment Analysis (GSEA). Results Five data sets from the Oncomine and GEPIA databases all supported that HNRNPC expression is significantly higher in LUAD than in normal lung tissue. In TCGA cohort, HNRNPC was highly expressed in LUAD tissues and significantly related to age, sex, smoking history, ethnicity, lymph node metastasis, and TNM staging (P < 0.001). High HNRNPC expression was significantly correlated with poor prognosis in the three cohorts (NCC, TCGA, and K-M plotter) (P < 0.05). Multivariate Cox regression analysis showed that HNRNPC expression was an independent prognostic factor in both TCGA and NCC cohorts (P < 0.05). Further, 10 significantly enriched pathways were identified from TCGA data and 118 lung cancer cell lines in CCLE, respectively. Conclusions High HNRNPC expression is significantly related to poor overall survival in patients with LUAD, suggesting that HNRNPC may be a cancer-promoting factor and a potential prognostic biomarker in LUAD.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qilin Huai
- Department of Graduate School, Zunyi Medical University, Zunyi, China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Song
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fengwei Tan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
3
|
Wu Y, Zhao W, Liu Y, Tan X, Li X, Zou Q, Xiao Z, Xu H, Wang Y, Yang X. Function of HNRNPC in breast cancer cells by controlling the dsRNA-induced interferon response. EMBO J 2018; 37:embj.201899017. [PMID: 30158112 PMCID: PMC6276880 DOI: 10.15252/embj.201899017] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 01/03/2023] Open
Abstract
Elevated expression of RNA binding protein HNRNPC has been reported in cancer cells, while the essentialness and functions of HNRNPC in tumors were not clear. We showed that repression of HNRNPC in the breast cancer cells MCF7 and T47D inhibited cell proliferation and tumor growth. Our computational inference of the key pathways and extensive experimental investigations revealed that the cascade of interferon responses mediated by RIG‐I was responsible for such tumor‐inhibitory effect. Interestingly, repression of HNRNPC resulted in accumulation of endogenous double‐stranded RNA (dsRNA), the binding ligand of RIG‐I. These up‐regulated dsRNA species were highly enriched by Alu sequences and mostly originated from pre‐mRNA introns that harbor the known HNRNPC binding sites. Such source of dsRNA is different than the recently well‐characterized endogenous retroviruses that encode dsRNA. In summary, essentialness of HNRNPC in the breast cancer cells was attributed to its function in controlling the endogenous dsRNA and the down‐stream interferon response. This is a novel extension from the previous understandings about HNRNPC in binding with introns and regulating RNA splicing.
Collapse
Affiliation(s)
- Yusheng Wu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.,MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenwei Zhao
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yang Liu
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, China
| | - Xiangtian Tan
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Xin Li
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Qin Zou
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, China
| | - Zhengtao Xiao
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.,MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Hui Xu
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.,MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuting Wang
- MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Joint Graduate Program of Peking-Tsinghua-National Institute of Biological Science, Tsinghua University, Beijing, China
| | - Xuerui Yang
- Tsinghua-Peking Joint Center for Life Sciences, Beijing, China .,MOE Key Laboratory of Bioinformatics, Tsinghua University, Beijing, China.,Center for Synthetic & Systems Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Yang WZ, Zhou H, Yan Y. XIAP underlies apoptosis resistance of renal cell carcinoma cells. Mol Med Rep 2017; 17:125-130. [PMID: 29115633 PMCID: PMC5780075 DOI: 10.3892/mmr.2017.7925] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 09/06/2017] [Indexed: 01/28/2023] Open
Abstract
X-linked inhibitor of apoptosis (XIAP), a key member of the inhibitors of apoptosis protein family, can inhibit apoptosis by directly binding to the initiator caspase-9, −3 and −7, thereby promoting tumor cell survival during tumor progression. In the present study, XIAP basal expression levels were investigated and its contribution to the resistance to apoptosis was evaluated, in the RCC cell lines exposed to apoptosis-inducing drugs. This was investigated by histological methods and western blot analysis. Using RNA interference, elimination of XIAP in Caki-1 cells was also studied, and its contribution to the sensitivity to apoptosis induced through the intrinsic pathway was observed. Differences in XIAP expression were detected between ClearCa-2 and ClearCa-6 cell lines. ClearCa-6 cells with lower expression of XIAP were more sensitive to apoptosis-inducing drugs, compared with ClearCa-2 cells. However, the levels of XIAP expression in both cell lines were stable during apoptosis. Furthermore, a Caki-1 cell line with no XIAP expression was used, and was demonstrated to be more sensitive to the apoptosis induced by the mitochondrial pathway. These results suggested that downregulation of XIAP expression could enhance the sensitivity of RCC cells to apoptosis, and the basal expression of XIAP during apoptosis is stable. This may provide novel insight for targeted gene therapy against XIAP, in the clinic.
Collapse
Affiliation(s)
- Wen Zheng Yang
- Department of Anesthesiology, Beijing Shijitan Hospital, Beijing 100038, P.R. China
| | - Haijiang Zhou
- Department of Emergency Medicine, Beijing Chao‑Yang Hospital, Beijing 100038, P.R. China
| | - Yong Yan
- Department of Urology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| |
Collapse
|
5
|
Dechtawewat T, Songprakhon P, Limjindaporn T, Puttikhunt C, Kasinrerk W, Saitornuang S, Yenchitsomanus PT, Noisakran S. Role of human heterogeneous nuclear ribonucleoprotein C1/C2 in dengue virus replication. Virol J 2015; 12:14. [PMID: 25890165 PMCID: PMC4351676 DOI: 10.1186/s12985-014-0219-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/27/2014] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Host and viral proteins are involved in dengue virus (DENV) replication. Heterogeneous ribonucleoprotein (hnRNP) C1/C2 are abundant host cellular proteins that exhibit RNA binding activity and play important roles in the replication of positive-strand RNA viruses such as poliovirus and hepatitis C virus. hnRNP C1/C2 have previously been shown to interact with vimentin and viral NS1 in DENV-infected cells; however, their functional role in DENV replication is not clearly understood. In the present study, we investigated the role of hnRNP C1/C2 in DENV replication by using an in vitro model of DENV infection in a hepatocyte cell line (Huh7) and siRNA-mediated knockdown of hnRNP C1/C2. METHODS Huh7 cells were transfected with hnRNP C1/C2-specific siRNA or irrelevant siRNA (control) followed by infection with DENV. Mock and DENV-infected knockdown cells were processed for immunoprecipitation using hnRNP C1/C2-specific antibody or their isotype-matched control antibody. The immunoprecipitated samples were subjected to RNA extraction and reverse transcriptase polymerase chain reaction (RT-PCR) for detection of DENV RNA. In addition, the knockdown cells harvested at varying time points after the infection were assessed for cell viability, cell proliferation, percentage of DENV infection, amount of viral RNA, and viral E and NS1 expression. Culture supernatants were subjected to focus forming unit assays to determine titers of infectious DENV. DENV luciferase reporter assay was also set up to determine viral translation. RESULTS Immunoprecipitation with the anti-hnRNP C1/C2 antibody and subsequent RT-PCR revealed the presence of DENV RNA in the immunoprecipitated complex containing hnRNP C1/C2 proteins. Transfection with hnRNP C1/C2-specific siRNA resulted in a significant reduction of hnRNP C1/C2 mRNA and protein levels but did not induce cell death during DENV infection. The reduced hnRNP C1/C2 expression decreased the percentage of DENV antigen-positive cells as well as the amount of DENV RNA and the relative levels of DENV E and NS1 proteins; however, it had no direct effect on DENV translation. In addition, a significant reduction of DENV titers was observed in the supernatant from DENV-infected cells following the knockdown of hnRNP C1/C2. CONCLUSIONS Our findings suggest that hnRNP C1/C2 is involved in DENV replication at the stage of viral RNA synthesis.
Collapse
Affiliation(s)
- Thanyaporn Dechtawewat
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
- Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Pucharee Songprakhon
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Thawornchai Limjindaporn
- Department of Anatomy, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Chiang Mai, 50200, Thailand.
| | - Sawanan Saitornuang
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Pa-Thai Yenchitsomanus
- Division of Molecular Medicine, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| | - Sansanee Noisakran
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Bangkok, 10700, Thailand.
- Division of Dengue Hemorrhagic Fever Research Unit, Office of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
6
|
Wu X, Wang S, Yu Y, Zhang J, Sun Z, Yan Y, Zhou J. Subcellular proteomic analysis of human host cells infected with H3N2 swine influenza virus. Proteomics 2013; 13:3309-26. [PMID: 24115376 DOI: 10.1002/pmic.201300180] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 11/10/2022]
Abstract
Cross-species transmissions of swine influenza viruses (SIVs) raise great public health concerns. In this study, subcellular proteomic profiles of human A549 cells inoculated with H3N2 subtype SIV were used to characterize dynamic cellular responses to infection. By 2DE and MS, 27 differentially expressed (13 upregulated, 14 downregulated) cytoplasmic proteins and 20 differentially expressed (13 upregulated, 7 downregulated) nuclear proteins were identified. Gene ontology analysis suggested that these differentially expressed proteins were mainly involved in cell death, stress response, lipid metabolism, cell signaling, and RNA PTMs. Moreover, 25 corresponding genes of the differentially expressed proteins were quantitated by real time RT-PCR to examine the transcriptional profiles between mock- and virus-infected A549 cells. Western blot analysis confirmed that changes in abundance of identified cellular proteins heterogeneous nuclear ribonucleoprotein (hnRNP) U, hnRNP C, ALDH1A1, tryptophanyl-tRNA synthetase, IFI35, and HSPB1 in H3N2 SIV-infected cells were consistent with results of 2DE analysis. By confocal microscopy, nucleus-to-cytoplasm translocation of hnRNP C and colocalization between the viral nonstructural protein 1 and hnRNP C as well as N-myc (and STAT) interactor were observed upon infection. Ingenuity Pathway Analysis revealed that cellular proteins altered during infection were grouped mainly into NFκB and interferon signaling networks. Collectively, these identified subcellular constituents provide an important framework for understanding host/SIV interactions and underlying mechanisms of SIV cross-species infection and pathogenesis.
Collapse
Affiliation(s)
- Xiaopeng Wu
- Key Laboratory of Animal Virology of Ministry of Agriculture, Zhejiang University, Hangzhou, P. R. China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University, Hangzhou, P. R. China
| | | | | | | | | | | | | |
Collapse
|
7
|
Jung EJ, Lee SY, Kim CW. Proteomic analysis of novel targets associated with TrkA-mediated tyrosine phosphorylation signaling pathways in SK-N-MC neuroblastoma cells. Proteomics 2013; 13:355-67. [PMID: 23319303 PMCID: PMC3580882 DOI: 10.1002/pmic.201200251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/28/2012] [Accepted: 10/25/2012] [Indexed: 02/04/2023]
Abstract
Tropomyosin-related kinase A (TrkA) is a receptor-type protein tyrosine kinase and exploits pleiotypic roles via nerve growth factor (NGF)-dependent or NGF-independent mechanisms in various cell types. Here, we showed that the inhibition of TrkA activity by GW441756 resulted in the suppression of tyrosine phosphorylation of cellular proteins including extracellular signal-regulated protein kinase (ERK) and c-Jun N-terminal kinase (JNK). To find novel targets associated with TrkA-mediated tyrosine phosphorylation signaling pathways, we investigated GW441756 effects on TrkA-dependent targets in SK-N-MC neuroblastoma cells by proteomic analysis. The major TrkA-dependent protein spots controlled by GW441756 were determined by PDQuest image analysis, identified by MALDI-TOF MS and MALDI-TOF/TOF MS/MS, and verified by 2DE/Western blot analysis. Thus, we found that most of the identified protein spots were modified forms in a normal condition, and their modifications were regulated by TrkA activity. Especially, our results demonstrated that the modifications of α-tubulin and heterogeneous nuclear ribonucleoproteins C1/C2 (hnRNP C1/C2) were significantly upregulated by TrkA, whereas α-enolase modification was downregulated by TrkA, and it was suppressed by GW441756, indicating that TrkA activity is required for their modifications. Taken together, we suggest here that the major novel TrkA-dependent targets such as α-tubulin, hnRNP C1/C2, and α-enolase could play an essential role in TrkA-mediated tyrosine phosphorylation signaling pathways via regulation of their posttranslational modifications.
Collapse
Affiliation(s)
- Eun Joo Jung
- Department of Biochemistry and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, South Korea
| | | | | |
Collapse
|
8
|
Jin S, Wu M, Cao H, Ying S, Hua J, Chen Y. p27(kip1) upregulated by hnRNPC1/2 antagonizes CagA (a virulence factor of Helicobacter pylori)-mediated pathogenesis. Helicobacter 2012; 17:140-7. [PMID: 22404445 DOI: 10.1111/j.1523-5378.2011.00927.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Infection by Helicobacter pylori is one of the major contributing factors of chronic active gastritis and peptic ulcer and is closely associated with the occurrence and progression of gastric cancer. CagA protein is a major virulence factor of H. pylori that interacts with SHP-2, a true oncogene, to interfere with cellular signaling pathways; CagA also plays a crucial role in promoting the carcinogenesis of gastric epithelial cells. However, currently, the molecular mechanisms of gastric epithelial cells that antagonize CagA pathogenesis remain inconclusive. METHODS We showed that AGS gastric cancer cells transfected with CagA exhibited the inhibition of proliferation and increased activity of caspase 3/7 using two-dimensional gel electrophoresis and secondary mass spectrometry (MS/MS). RESULTS It was found that the AGS gastric cancer cells stably expressing CagA displayed significantly increased the expression of 16 proteins, including hnRNPC1/2. Further analysis revealed that hnRNPC1/2 significantly boosted the expression of the p27(kip1) protein. CONCLUSION Our data suggested that hnRNPC1/2 upregulates p27(kip1) expression and the subsequent suppression of cell proliferation and induction of apoptosis, thereby providing an important mechanism whereby gastric epithelial cells antagonize CagA-mediated pathogenesis.
Collapse
Affiliation(s)
- Shenghang Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | | | | | | | | | | |
Collapse
|
9
|
Maris M, Waelkens E, Cnop M, D'Hertog W, Cunha DA, Korf H, Koike T, Overbergh L, Mathieu C. Oleate-induced beta cell dysfunction and apoptosis: a proteomic approach to glucolipotoxicity by an unsaturated fatty acid. J Proteome Res 2011; 10:3372-85. [PMID: 21707097 DOI: 10.1021/pr101290n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
High levels of fatty acids contribute to loss of functional beta cell mass in type 2 diabetes, in particular in combination with high glucose levels. The aim of this study was to elucidate the role of the unsaturated free fatty acid oleate in glucolipotoxicity and to unravel the molecular pathways involved. INS-1E cells were exposed to 0.5 mM oleate, combined or not with 25 mM glucose, for 24 h. Protein profiling of INS-1E cells was done by 2D-DIGE, covering pH ranges 4-7 and 6-9 (n = 4). Identification of differentially expressed proteins (P < 0.05) was based on MALDI-TOF analysis using Peptide Mass Fingerprint (PMF) and fragmentation (MS/MS) of the most intense peaks of PMF and proteomic results were confirmed by functional assays. Oleate impaired glucose-stimulated insulin secretion and decreased insulin content. 2D-DIGE analysis revealed 53 and 54 differentially expressed proteins for oleate and the combination of oleate and high glucose, respectively. Exposure to oleate down-regulated chaperones, hampered insulin processing and ubiquitin-related proteasomal degradation, and induced perturbations in vesicle transport and budding. In combination with high glucose, shunting of excess amounts of glucose toward reactive oxygen species production worsened beta cell death. The present findings provide new insights in oleate-induced beta cell dysfunction and identify target proteins for preservation of functional beta cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Michael Maris
- Laboratory for Experimental Medicine and Endocrinology (LEGENDO), Herestraat 49, Catholic University of Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Azizi AA, Li L, Ströbel T, Chen WQ, Slavc I, Lubec G. Identification of c-myc-dependent proteins in the medulloblastoma cell line D425Med. Amino Acids 2011; 42:2149-63. [DOI: 10.1007/s00726-011-0953-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 05/26/2011] [Indexed: 12/27/2022]
|
11
|
Benz AH, Shajari M, Peruzki N, Dehghani F, Maronde E. Early growth response-1 induction by fibroblast growth factor-1 via increase of mitogen-activated protein kinase and inhibition of protein kinase B in hippocampal neurons. Br J Pharmacol 2010; 160:1621-30. [PMID: 20649566 DOI: 10.1111/j.1476-5381.2010.00812.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE The transcription factor early growth response-1 (Egr-1) and the acidic fibroblast growth factor (FGF-1) are involved in many regulatory processes, including hippocampus-associated learning and memory. However, the intracellular signalling mechanisms regulating Egr-1 in hippocampal cells are not entirely understood. EXPERIMENTAL APPROACH We used primary mouse hippocampal neurons and the mouse hippocampal neuronal cell line HT22 to investigate how FGF-1 transiently induces Egr-1 protein. This was accomplished by a range of techniques including Western blotting, immunofluorescence, specific protein kinase inhibitors and transfectable constitutively active protein kinase constructs. KEY RESULTS Protein kinase B (PKB) and mitogen-activated protein kinase (MAPK) were both initially phosphorylated and activated by FGF-1 treatment, but when phosphorylated MAPK reached maximal activation, phosphorylated PKB was at its lowest levels, suggesting an interaction between MAPK kinase (MEK-1/2) and phosphatidyl inositol-3-kinase (PI3K) during Egr-1 induction. Interestingly, pharmacological inhibition of MEK-1/2 resulted in a robust increase in the phosphorylation of PKB, which was repressed in the presence of increasing doses of a PI3K inhibitor. FGF-1-mediated Egr-1 induction was impaired by inhibition of MEK-1/2, but not of PI3K. However, elevated levels of PKB, induced by transfection of constitutively active PKB (myrAkt) into hippocampal neuronal HT22 cells, led to reduced levels of Egr-1 after FGF-1 application. CONCLUSIONS AND IMPLICATIONS Our data indicate a contribution of inactive (dephosphorylated) PKB to FGF-1-mediated induction of Egr-1, and strongly suggest a functionally and pharmacologically interesting cross-talk between MEK-1/2 and PI3K signalling in hippocampal neurons after FGF-1 stimulation that may play a role in hippocampal synaptic plasticity.
Collapse
Affiliation(s)
- Alexander H Benz
- Institut für Anatomie III, Dr Senckenbergische Anatomie, Goethe-Universität, Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
12
|
Panchenko MP, Siddiquee Z, Dombkowski DM, Alekseyev YO, Lenburg ME, Walker JD, Macgillivray TE, Preffer FI, Stone JR. Protein kinase CK1alphaLS promotes vascular cell proliferation and intimal hyperplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:1562-72. [PMID: 20696773 DOI: 10.2353/ajpath.2010.100327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein kinase CK1alpha regulates several fundamental cellular processes including proliferation and differentiation. Up to four forms of this kinase are expressed in vertebrates resulting from alternative splicing of exons; these exons encode either the L-insert located within the catalytic domain or the S-insert located at the C terminus of the protein. Whereas the L-insert is known to target the kinase to the nucleus, the functional significance of nuclear CK1alphaLS has been unclear. Here we demonstrate that selective L-insert-targeted short hairpin small interfering RNA-mediated knockdown of CK1alphaLS in human vascular endothelial cells and vascular smooth muscle cells impairs proliferation and abolishes hydrogen peroxide-stimulated proliferation of vascular smooth muscle cells, with the cells accumulating in G(0)/G(1). In addition, selective knockdown of CK1alphaLS in cultured human arteries inhibits vascular activation, preventing smooth muscle cell proliferation, intimal hyperplasia, and proteoglycan deposition. Knockdown of CK1alphaLS results in the harmonious down-regulation of its target substrate heterogeneous nuclear ribonucleoprotein C and results in the altered expression or alternative splicing of key genes involved in cellular activation including CXCR4, MMP3, CSF2, and SMURF1. Our results indicate that the nuclear form of CK1alpha in humans, CK1alphaLS, plays a critical role in vascular cell proliferation, cellular activation, and hydrogen peroxide-mediated mitogenic signal transduction.
Collapse
Affiliation(s)
- Mikhail P Panchenko
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Koryllou A, Patrinou-Georgoula M, Troungos C, Pletsa V. Cell death induced by N-methyl-N-nitrosourea, a model S(N)1 methylating agent, in two lung cancer cell lines of human origin. Apoptosis 2009; 14:1121-33. [PMID: 19634013 DOI: 10.1007/s10495-009-0379-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
New therapeutic approaches are needed for lung cancer, the leading cause of cancer death. Methylating agents constitute a widely used class of anticancer drugs, the effect of which on human non small cell lung cancer (NSCLC) has not been adequately studied. N-methyl-N-nitrosourea (MNU), a model S(N)1 methylating agent, induced cell death through a distinct mechanism in two human NSCLC cell lines studied, A549(p53(wt)) and H157(p53(null)). In A549(p53(wt)), MNU induced G2/M arrest, accompanied by cdc25A degradation, hnRNP B1 induction, hnRNP C1/C2 downregulation. Non-apoptotic cell death was confirmed by the lack of increase in the sub-G1 DNA content, Poly (ADP-ribose) polymerase cleavage and caspase-3, -7 activation. In H157(p53(null)), MNU induced apoptotic cell death, confirmed by cytofluorometry of DNA content and immunodetection of apoptotic markers, accompanied by overexpression of hnRNP B1 and C1/C2. Thus, the mechanism of the cell death induced by S(N)1 methylating agents is cell type-dependent and must be assessed prior treatment.
Collapse
Affiliation(s)
- Angeliki Koryllou
- Institute of Biological Research and Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | |
Collapse
|
14
|
Bordet R, Ouk T, Onténiente B, Charriaut-Marlangue C, Heurteaux C. Ischémie cérébrale. Med Sci (Paris) 2009; 25:847-54. [DOI: 10.1051/medsci/20092510847] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|