1
|
Valero-Ochando J, Cantó A, López-Pedrajas R, Almansa I, Miranda M. Role of Gonadal Steroid Hormones in the Eye: Therapeutic Implications. Biomolecules 2024; 14:1262. [PMID: 39456195 PMCID: PMC11506707 DOI: 10.3390/biom14101262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gonadal steroid hormones are critical regulatory substances involved in various developmental and physiological processes from fetal development through adulthood. These hormones, derived from cholesterol, are synthesized primarily by the gonads, adrenal cortex, and placenta. The synthesis of these hormones involves a series of enzymatic steps starting in the mitochondria and includes enzymes such as cytochrome P450 and aromatase. Beyond their genomic actions, which involve altering gene transcription over hours, gonadal steroids also exhibit rapid, nongenomic effects through receptors located on the cell membrane. Additionally, recent research has highlighted the role of these hormones in the central nervous system (CNS). However, the interactions between gonadal steroid hormones and the retina have received limited attention, though it has been suggested that they may play a protective role in retinal diseases. This review explores the synthesis of gonadal hormones, their mechanisms of action, and their potential implications in various retinal and optic nerve diseases, such as glaucoma, age-related macular degeneration (AMD), diabetic retinopathy (DR), or retinitis pigmentosa (RP), discussing both protective and risk factors associated with hormone levels and their therapeutic potential.
Collapse
Affiliation(s)
| | | | | | | | - María Miranda
- Department of Biomedical Sciences, Faculty of Health Sciences, Institute of Biomedical Sciences, Cardenal Herrera-CEU University, CEU Universities, 46115 Valencia, Spain; (J.V.-O.); (A.C.); (R.L.-P.); (I.A.)
| |
Collapse
|
2
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Garcia-Herranz D, Garcia-Feijoo J, Herrero-Vanrell R, Pablo L, Bravo-Osuna I, Munuera I, Garcia-Martin E. Influence of sex on chronic steroid-induced glaucoma: 24-Weeks follow-up study in rats. Exp Eye Res 2024; 238:109736. [PMID: 38036216 DOI: 10.1016/j.exer.2023.109736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
The objective was to evaluate ocular changes based on sex in steroid-induced glaucoma models in rats comparing healthy controls, over 24 weeks follow-up. Eighty-nine Long-Evans rats (38 males and 51 females) with steroid-induced glaucoma were analysed. Two steroid-induced glaucoma models were generated by injecting poly-co-lactic-glycolic acid microspheres loaded with dexamethasone (MMDEX model) and dexamethasone-fibronectin (MMDEXAFIBRO model) into the ocular anterior chamber. Intraocular pressure was measured by rebound tonometer Tonolab®. Neuroretinal function was analysed using dark- and light-adapted electroretinography (Roland consult® RETIanimal ERG), and structure was analysed using optical coherence tomography (OCT Spectralis, Heidelberg® Engineering) using Retina Posterior Pole, Retinal Nerve Fibre Layer and Ganglion Cell Layer protocols over 24 weeks. Males showed statistically (p < 0.05) higher intraocular pressure measurements. In both sexes and models neuroretinal thickness tended to decrease over time. In the MMDEX model, males showed higher IOP values and greatest percentage thickness loss in the Ganglion Cell Layer (p = 0.015). Females receiving MMDEXAFIBRO experienced large fluctuations in thickness, a higher percentage loss (on average) in Retina Posterior Pole (p = 0.035), Retinal Nerve Fibre Layer and Ganglion Cell Layer than aged-matched males, and the highest thickness loss rate by mmHg. Although no difference was found by sex in dark- and light-adapted electroretinography, increased amplitude in photopic negative response was found in MMDEX males and MMDEXAFIBRO females at 12 weeks. Although both glaucoma models used dexamethasone, different intraocular pressure and neuroretinal changes were observed depending on sex and other influential cofactors (fibronectin). Both sex and the induced glaucoma model influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- M J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain
| | - T Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - M Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - S Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - D Garcia-Herranz
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain
| | - J Garcia-Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; Department of Ophthalmology, San Carlos Clinical Hospital, Complutense University of Madrid, Spain
| | - R Herrero-Vanrell
- National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - L Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain; Biotech Vision, Instituto Oftalmologico Quiron, Zaragoza, Spain
| | - I Bravo-Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Spain; Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Spain; Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain; University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Spain
| | - I Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain
| | - E Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain; Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragón), University of Zaragoza, Spain; National Ocular Researcha Network RD21/0002/0050. RICORS Red de Enfermedades Inflamatorias (RD21/0002). Carlos III Health Institute, Spain.
| |
Collapse
|
3
|
Galindez SM, Keightley A, Koulen P. Differential distribution of steroid hormone signaling networks in the human choroid-retinal pigment epithelial complex. BMC Ophthalmol 2022; 22:406. [PMID: 36266625 PMCID: PMC9583547 DOI: 10.1186/s12886-022-02585-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/22/2022] [Indexed: 11/10/2022] Open
Abstract
Background The retinal pigment epithelium (RPE), a layer of pigmented cells that lies between the neurosensory retina and the underlying choroid, plays a critical role in maintaining the functional integrity of photoreceptor cells and in mediating communication between the neurosensory retina and choroid. Prior studies have demonstrated neurotrophic effects of select steroids that mitigate the development and progression of retinal degenerative diseases via an array of distinct mechanisms of action. Methods Here, we identified major steroid hormone signaling pathways and their key functional protein constituents controlling steroid hormone signaling, which are potentially involved in the mitigation or propagation of retinal degenerative processes, from human proteome datasets with respect to their relative abundances in the retinal periphery, macula, and fovea. Results Androgen, glucocorticoid, and progesterone signaling networks were identified and displayed differential distribution patterns within these three anatomically distinct regions of the choroid-retinal pigment epithelial complex. Classical and non-classical estrogen and mineralocorticoid receptors were not identified. Conclusion Identified differential distribution patterns suggest both selective susceptibility to chronic neurodegenerative disease processes, as well as potential substrates for drug target discovery and novel drug development focused on steroid signaling pathways in the choroid-RPE.
Collapse
Affiliation(s)
- Sydney M Galindez
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Andrew Keightley
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA
| | - Peter Koulen
- School of Medicine, Vision Research Center, Department of Ophthalmology, University of Missouri - Kansas City School of Medicine, 2411 Holmes St, Kansas City, MO, 64108, USA. .,Department of Biomedical Sciences, University of Missouri - Kansas City School of Medicine, Kansas City, MO, USA.
| |
Collapse
|
4
|
Qiu Y, Yu J, Tang L, Ren J, Shao M, Li S, Song Y, Cao W, Sun X. Association Between Sex Hormones and Visual Field Progression in Women With Primary Open Angle Glaucoma: A Cross-Sectional and Prospective Cohort Study. Front Aging Neurosci 2022; 13:756186. [PMID: 35002675 PMCID: PMC8741302 DOI: 10.3389/fnagi.2021.756186] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/02/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose: We evaluated the level of sex hormones in female patients with primary open angle glaucoma (POAG) to determine whether they are associated with the onset and/or progression of POAG. Methods: The cross-sectional study enrolled 63 women with POAG and 56 healthy women as normal control subjects. Furthermore, 57 women with POAG were included and followed-up for at least 2 years in the cohort study. All subjects were evaluated for serum concentration of sex hormones [prolactin (PRL), luteinizing hormone (LH), testosterone (TESTO), follicle-stimulating hormone (FSH), progesterone (PROG), and estrogen (E2)] and underwent visual field (VF) examination. In the cross-sectional study, Spearman analysis, linear regression analysis, and logistic regression analysis were performed to assess risk factors for POAG in women. In the cohort study, Cox regression analyses and Kaplan–Meier survival analysis were performed to identify factors associated with VF progression in women with POAG. Results: In the cross-sectional study, the level of E2 was significantly lower in the POAG group than in the normal group (p < 0.05). Multiple logistic regression showed that the decreased level of E2 was a risk factor of POAG (OR = 0.27, 95% CI = 0.09–0.78, p < 0.05), especially in premenopausal subjects. In the cohort study, there were 29 non-progression subjects and 28 progression subjects. Patients in the progression group had significantly lower levels of E2 than those in the no progression group (p < 0.01). The decreased level of E2 at baseline was associated with POAG progression (HR = 0.08, 95% CI = 0.02–0.46, p < 0.05), especially in premenopausal subjects. Patients with POAG and with lower baseline E2 levels had significantly lower VF non-progression rates than patients with higher E2 levels (log-rank test p < 0.001), especially premenopausal subjects (log-rank test p < 0.05). Additionally, logistic regression analyses, Cox regression analyses, and Kaplan–Meier survival analysis showed that PROG, LH, FSH, and TESTO were risk factors of POAG and/or significantly associated with POAG progression. Conclusion: A decreased E2 level is a POAG risk factor and is associated with VF progression in women with POAG, especially in premenopausal subjects. Additionally, other sex hormones (PROG, LH, FSH, and TESTO) might also play a role in POAG pathogenesis.
Collapse
Affiliation(s)
- Yichao Qiu
- Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jian Yu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Li Tang
- Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Jun Ren
- Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Mingxi Shao
- Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Shengjie Li
- Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yunxiao Song
- Department of Clinical Laboratory, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Wenjun Cao
- Clinical Laboratory, Eye & ENT Hospital, Fudan University, Shanghai, China.,Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University - Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xinghuai Sun
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia, Fudan University - Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
5
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Pablo LE, Polo V, Aragon-Navas A, Garcia-Herranz D, Feijoo JG, Osuna IB, Herrero-Vanrell R, Garcia-Martin E. Influence of Sex on Neuroretinal Degeneration: Six-Month Follow-Up in Rats With Chronic Glaucoma. Invest Ophthalmol Vis Sci 2021; 62:9. [PMID: 34643665 PMCID: PMC8525827 DOI: 10.1167/iovs.62.13.9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose To evaluate differences by sex in the neuroretina of rats with chronic glaucoma over 24 weeks of follow-up, and to assess by sex the influence on neurodegeneration of different methods of inducing ocular hypertension. Methods Forty-six Long-Evans rats-18 males and 28 females-with induced chronic glaucoma were analyzed. Glaucoma was achieved via 2 models: repeatedly sclerosing the episcleral veins (9 male/14 female) or by injecting poly(lactic-co-glycolic acid) microspheres measuring 20 to 10 µm (Ms20/10) into the anterior chamber (9 male/14 female). The IOP was measured weekly by tonometer; neuroretinal function was recorded by dark/light-adapted electroretinography at baseline and weeks 12 and 24; and structure was analyzed by optical coherence tomography using the retina posterior pole, retinal nerve fiber layer and ganglion cell layer protocols at baseline and weeks 8, 12, 18, and 24. Results Males showed statistically significant (P < 0.05) higher IOP in both chronic glaucoma models, and greater differences were found in the episcleral model at earlier stages. Males with episclerally induced glaucoma showed a statistically higher increase in retinal thickness in optical coherence tomography recordings than females and also when comparing Ms20/10 at 12 weeks. Males showed a higher percentage of retinal nerve fiber layer thickness loss in both models. Ganglion cell layer thickness loss was only detected in the Ms20/10 model. Males exhibited worse dark/light-adapted functionality in chronic glaucoma models, which worsened in the episcleral sclerosis model at 12 weeks, than females. Conclusions Female rats with chronic glaucoma experienced lower IOP and structural loss and better neuroretinal functionality than males. Sex and the ocular hypertension-inducing method influenced neuroretinal degeneration.
Collapse
Affiliation(s)
- Maria J Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis E Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Alba Aragon-Navas
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - David Garcia-Herranz
- Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Julian García Feijoo
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,Department of Ophthalmology, San Carlos Clinical Hospital, UCM, Madrid, Spain
| | - Irene Bravo Osuna
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,Ophthalmology Innovation, Therapy and Pharmaceutical Development (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.,Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain.,University Institute for Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain.,Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain.,National Ocular Pathology Network (OFTARED), Carlos III Health Institute, Madrid, Spain.,https://orcid.org/0000-0001-6258-2489
| |
Collapse
|
6
|
Rodrigo MJ, Martinez-Rincon T, Subias M, Mendez-Martinez S, Luna C, Pablo LE, Polo V, Garcia-Martin E. Effect of age and sex on neurodevelopment and neurodegeneration in the healthy eye: Longitudinal functional and structural study in the Long-Evans rat. Exp Eye Res 2020; 200:108208. [PMID: 32882213 DOI: 10.1016/j.exer.2020.108208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/05/2020] [Accepted: 08/26/2020] [Indexed: 01/03/2023]
Abstract
The processes involved in neurodevelopment and aging have not yet been fully discovered. This is especially challenging in premorbid or borderline situations of neurodegenerative diseases such as Alzheimer's or glaucoma. The retina, as part of the central nervous system, can be considered the easiest and most accessible neural structure that can be analyzed using non-invasive methods. Animal studies of neuroretinal tissue in situations of health and under controlled conditions allow the earliest sex- and aging-induced changes to be analyzed so as to differentiate them from the first signs occurring in manifested disease. This study evaluates differences by age and sex based on intraocular pressure (IOP) and neuroretinal function and structure in healthy young and adult rats before decline due to senescence. For this purpose, eighty-five healthy Long-Evans rats (31 males and 54 females) were analyzed in this 6-month longitudinal study running from childhood to adulthood. IOP was measured by tonometer (Tonolab; Tiolat Oy Helsinki, Finland), neuroretinal function was recorded by flash scotopic and light-adapted photopic negative response electroretinography (ERG) (Roland consult® RETIanimal ERG, Germany) at 4, 16 and 28 weeks of age; and structure was evaluated by in vivo optical coherence tomography (OCT) (Spectralis, Heidelberg® Engineering, Germany). Analyzing both sexes together, IOP was below 20 mmHg throughout the study; retina (R), retinal nerve fiber layer (RNFL) and ganglion cell layer (GCL) thicknesses measured by OCT decreased over time; an increase in ERG signal was recorded at week 16; and no differences were found between right and left eyes. However, analyzing differences by sex revealed that males had higher IOP (even reaching ocular hypertension [>20 mmHg] by the end of the study [7 months of age]), exhibited greater neuroretinal thickness but higher structural percentage loss, and had worse dark- and light-adapted function as measured by ERG than females. This study concludes that age and sex influenced neurodevelopment and neurodegeneration. Different structural and functional degenerative patterns were observed by sex; these occurred earlier and more intensely in males than in age-matched females.
Collapse
Affiliation(s)
- Maria Jesus Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain.
| | - Teresa Martinez-Rincon
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Manuel Subias
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Silvia Mendez-Martinez
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Coral Luna
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Luis Emilio Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| | - Vicente Polo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Spain; RETICS: Thematic Networks for Co-operative Research in Health for Ocular Diseases, Spain
| |
Collapse
|
7
|
Galdamez LA, Brunstetter TJ, Lee AG, Tarver WJ. Origins of Cerebral Edema: Implications for Spaceflight-Associated Neuro-Ocular Syndrome. J Neuroophthalmol 2020; 40:84-91. [DOI: 10.1097/wno.0000000000000852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Mages K, Grassmann F, Jägle H, Rupprecht R, Weber BHF, Hauck SM, Grosche A. The agonistic TSPO ligand XBD173 attenuates the glial response thereby protecting inner retinal neurons in a murine model of retinal ischemia. J Neuroinflammation 2019; 16:43. [PMID: 30777091 PMCID: PMC6378755 DOI: 10.1186/s12974-019-1424-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ligand-driven modulation of the mitochondrial translocator protein 18 kDa (TSPO) was recently described to dampen the neuroinflammatory response of microglia in a retinal light damage model resulting in protective effects on photoreceptors. We characterized the effects of the TSPO ligand XBD173 in the postischemic retina focusing on changes in the response pattern of the major glial cell types of the retina-microglia and Müller cells. METHODS Retinal ischemia was induced by increasing the intraocular pressure for 60 min followed by reperfusion of the tissue in mice. On retinal cell types enriched via immunomagnetic separation expression analysis of TSPO, its ligand diazepam-binding inhibitor (DBI) and markers of glial activation were performed at transcript and protein level using RNA sequencing, qRT-PCR, lipid chromatography-mass spectrometry, and immunofluorescent labeling. Data on cell morphology and numbers were assessed in retinal slice and flatmount preparations. The retinal functional integrity was determined by electroretinogram recordings. RESULTS We demonstrate that TSPO is expressed by Müller cells, microglia, vascular cells, retinal pigment epithelium (RPE) of the healthy and postischemic retina, but only at low levels in retinal neurons. While an alleviated neurodegeneration upon XBD173 treatment was found in postischemic retinae as compared to vehicle controls, this neuroprotective effect of XBD173 is mediated putatively by its action on retinal glia. After transient ischemia, TSPO as a marker of activation was upregulated to similar levels in microglia as compared to their counterparts in healthy retinae irrespective of the treatment regimen. However, less microglia were found in XBD173-treated postischemic retinae at 3 days post-surgery (dps) which displayed a more ramified morphology than in retinae of vehicle-treated mice indicating a dampened microglia activation. Müller cells, the major retinal macroglia, show upregulation of the typical gliosis marker GFAP. Importantly, glutamine synthetase was more stably expressed in Müller glia of XBD173-treated postischemic retinae and homeostatic functions such as cellular volume regulation typically diminished in gliotic Müller cells remained functional. CONCLUSIONS In sum, our data imply that beneficial effects of XBD173 treatment on the postischemic survival of inner retinal neurons were primarily mediated by stabilizing neurosupportive functions of glial cells.
Collapse
Affiliation(s)
- Kristin Mages
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Felix Grassmann
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Nobels väg 12A, Stockholm, Sweden
| | - Herbert Jägle
- Department of Ophthalmology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Rainer Rupprecht
- Department of Psychiatry and Psychotherapy, University of Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Bernhard H F Weber
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Heidemannstraße 1, 80939, Munich, Germany
| | - Antje Grosche
- Institute of Human Genetics, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany. .,Department of Physiological Genomics, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Pardue MT, Allen RS. Neuroprotective strategies for retinal disease. Prog Retin Eye Res 2018; 65:50-76. [PMID: 29481975 PMCID: PMC6081194 DOI: 10.1016/j.preteyeres.2018.02.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/14/2018] [Accepted: 02/20/2018] [Indexed: 12/20/2022]
Abstract
Diseases that affect the eye, including photoreceptor degeneration, diabetic retinopathy, and glaucoma, affect 11.8 million people in the US, resulting in vision loss and blindness. Loss of sight affects patient quality of life and puts an economic burden both on individuals and the greater healthcare system. Despite the urgent need for treatments, few effective options currently exist in the clinic. Here, we review research on promising neuroprotective strategies that promote neuronal survival with the potential to protect against vision loss and retinal cell death. Due to the large number of neuroprotective strategies, we restricted our review to approaches that we had direct experience with in the laboratory. We focus on drugs that target survival pathways, including bile acids like UDCA and TUDCA, steroid hormones like progesterone, therapies that target retinal dopamine, and neurotrophic factors. In addition, we review rehabilitative methods that increase endogenous repair mechanisms, including exercise and electrical stimulation therapies. For each approach, we provide background on the neuroprotective strategy, including history of use in other diseases; describe potential mechanisms of action; review the body of research performed in the retina thus far, both in animals and in humans; and discuss considerations when translating each treatment to the clinic and to the retina, including which therapies show the most promise for each retinal disease. Despite the high incidence of retinal diseases and the complexity of mechanisms involved, several promising neuroprotective treatments provide hope to prevent blindness. We discuss attractive candidates here with the goal of furthering retinal research in critical areas to rapidly translate neuroprotective strategies into the clinic.
Collapse
Affiliation(s)
- Machelle T Pardue
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA; Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive, Atlanta, GA, 30332, USA.
| | - Rachael S Allen
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA, 30033, USA
| |
Collapse
|
10
|
Abstract
PURPOSE To investigate the relationship between macular telangiectasia Type 2 and systemic levels of sex steroids or their antagonization. METHODS In a prospective single-center study, 90 patients with macular telangiectasia Type 2 were investigated. Female patients were evaluated for previous surgical (e.g., ovariectomy) and/or pharmacological (e.g., aromatase inhibitors, tamoxifen) therapy resulting in reduced action of sex steroids. In males, free serum testosterone levels were assessed in patients and controls. RESULTS Fourteen of 49 (29%) female patients had a history of pharmacological suppression of sex steroids and/or ovariectomy. These patients were younger at disease onset when compared with those without such medical history (mean ± SD: 47.1 ± 7.8, range: 38-59, versus 60.1 ± 7.6, range: 45-76; P < 0.0001). Male patients showed significantly lower free serum testosterone levels compared with controls at younger age (P < 0.0001 and 0.04 in the first and second age quartiles, respectively), as opposed to nonsignificant differences in older patients. In men ≤ 60 years of age, a biochemical hypogonadism (free serum testosterone < 0.05 ng/mL) was present in 53% (8/15) and 4% (2/49) of patients and controls, respectively (P < 0.0001). CONCLUSION The results indicate that steroidal sex hormones might be involved in the presumably multifactorial pathophysiology of macular telangiectasia Type 2.
Collapse
|
11
|
Allen RS, Sayeed I, Oumarbaeva Y, Morrison KC, Choi PH, Pardue MT, Stein DG. Progesterone treatment shows greater protection in brain vs. retina in a rat model of middle cerebral artery occlusion: Progesterone receptor levels may play an important role. Restor Neurol Neurosci 2018; 34:947-963. [PMID: 27802245 DOI: 10.3233/rnn-160672] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND/OBJECTIVE To determine whether inflammation increases in retina as it does in brain following middle cerebral artery occlusion (MCAO), and whether the neurosteroid progesterone, shown to have protective effects in both retina and brain after MCAO, reduces inflammation in retina as well as brain. METHODS MCAO rats treated systemically with progesterone or vehicle were compared with shams. Protein levels of cytosolic NF-κB, nuclear NF-κB, phosphorylated NF-κB, IL-6, TNF-α, CD11b, progesterone receptor A and B, and pregnane X receptor were assessed in retinas and brains at 24 and 48 h using western blots. RESULTS Following MCAO, significant increases were observed in the following inflammatory markers: pNF-κB and CD11b at 24 h in both brain and retina, nuclear NF-κB at 24 h in brain and 48 h in retina, and TNF-α at 24 h in brain.Progesterone treatment in MCAO animals significantly attenuated levels of the following markers in brain: pNF-κB, nuclear NF-κB, IL-6, TNF-α, and CD11b, with significantly increased levels of cytosolic NF-κB. Retinas from progesterone-treated animals showed significantly reduced levels of nuclear NF-κB and IL-6 and increased levels of cytosolic NF-κB, with a trend for reduction in other markers. Post-MCAO, progesterone receptors A and B were upregulated in brain and downregulated in retina. CONCLUSION Inflammatory markers increased in both brain and retina after MCAO, with greater increases observed in brain. Progesterone treatment reduced inflammation, with more dramatic reductions observed in brain than retina. This differential effect may be due to differences in the response of progesterone receptors in brain and retina after injury.
Collapse
Affiliation(s)
- Rachael S Allen
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA.,Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Iqbal Sayeed
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | - Yuliya Oumarbaeva
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | | | - Paul H Choi
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, GA, USA.,Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA, USA
| | - Donald G Stein
- Department of Emergency Medicine, Emory University, Atlanta, GA, USA
| |
Collapse
|
12
|
Wyse-Jackson AC, Roche SL, Ruiz-Lopez AM, Moloney JN, Byrne AM, Cotter TG. Progesterone analogue protects stressed photoreceptors via bFGF-mediated calcium influx. Eur J Neurosci 2016; 44:3067-3079. [PMID: 27763693 DOI: 10.1111/ejn.13445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 01/16/2023]
Abstract
Retinitis pigmentosa (RP) is a degenerative retinal disease leading to photoreceptor cell loss. In 2011, our group identified the synthetic progesterone 'Norgestrel' as a potential treatment for RP. Subsequent research showed Norgestrel to work through progesterone receptor membrane component 1 (PGRMC1) activation and upregulation of neuroprotective basic fibroblast growth factor (bFGF). Using trophic factor deprivation of 661W photoreceptor-like cells, we aimed to further elucidate the mechanism leading to Norgestrel-induced neuroprotection. In the present manuscript, we show by flow cytometry and live-cell immunofluorescence that Norgestrel induces an increase in cytosolic calcium in both healthy and stressed 661Ws over 24 h. Specific PGRMC1 inhibition by AG205 (1 μm) showed this rise to be PGRMC1-dependent, primarily utilizing calcium from extracellular sources, for blockade of L-type calcium channels by verapamil (50 μm) prevented a Norgestrel-induced calcium influx in stressed cells. Calcium influx was also shown to be bFGF-dependent, for siRNA knock down of bFGF prevented Norgestrel-PGRMC1 induced changes in cytosolic calcium. Notably, we demonstrate PGRMC1-activation is necessary for Norgestrel-induced bFGF upregulation. We propose that Norgestrel protects through the following pathway: binding to and activating PGRMC1 expressed on the surface of photoreceptor cells, PGRMC1 activation drives bFGF upregulation and subsequent calcium influx. Importantly, raised intracellular calcium is critical to Norgestrel's protective efficacy, for extracellular calcium chelation by EGTA abrogates the protective effects of Norgestrel on stressed 661W cells in vitro.
Collapse
Affiliation(s)
- Alice C Wyse-Jackson
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Sarah L Roche
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ana M Ruiz-Lopez
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Jennifer N Moloney
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Ashleigh M Byrne
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| | - Thomas G Cotter
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Western Road, Cork, Ireland
| |
Collapse
|
13
|
Vogler S, Winters H, Pannicke T, Wiedemann P, Reichenbach A, Bringmann A. Sigma-1 receptor activation inhibits osmotic swelling of rat retinal glial (Müller) cells by transactivation of glutamatergic and purinergic receptors. Neurosci Lett 2015; 610:13-8. [PMID: 26499958 DOI: 10.1016/j.neulet.2015.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/05/2015] [Accepted: 10/14/2015] [Indexed: 12/28/2022]
Abstract
Water accumulation in retinal glial (Müller) and neuronal cells resulting in cellular swelling contributes to the development of retinal edema and neurodegeneration. Sigma (σ) receptor activation is known to have neuroprotective effects in the retina. Here, we show that the nonselective σ receptor agonist ditolylguanidine, and the selective σ1 receptor agonist PRE-084, inhibit the osmotic swelling of Müller cell somata induced by superfusion of rat retinal slices with a hypoosmotic solution containing barium ions. In contrast, PRE-084 did not inhibit the osmotic swelling of bipolar cell somata. The effects of σ receptor agonists on the Müller cell swelling were abrogated in the presence of blockers of metabotropic glutamate and purinergic P2Y1 receptors, respectively, suggesting that σ receptor activation triggers activation of a glutamatergic-purinergic signaling cascade which is known to prevent the osmotic Müller cell swelling. The swelling-inhibitory effect of 17β-estradiol was prevented by the σ1 receptor antagonist BD1047, suggesting that the effect is mediated by σ1 receptor activation. The data may suggest that the neuroprotective effect of σ receptor activation in the retina is in part mediated by prevention of the cytotoxic swelling of retinal glial cells.
Collapse
Affiliation(s)
- Stefanie Vogler
- Paul Flechsig Institute of Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Helge Winters
- Paul Flechsig Institute of Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Thomas Pannicke
- Paul Flechsig Institute of Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Peter Wiedemann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany
| | - Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, 04103 Leipzig, Germany
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|
14
|
Allen RS, Olsen TW, Sayeed I, Cale HA, Morrison KC, Oumarbaeva Y, Lucaciu I, Boatright JH, Pardue MT, Stein DG. Progesterone treatment in two rat models of ocular ischemia. Invest Ophthalmol Vis Sci 2015; 56:2880-91. [PMID: 26024074 DOI: 10.1167/iovs.14-16070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To determine whether the neurosteroid progesterone, shown to have protective effects in animal models of traumatic brain injury, stroke, and spinal cord injury, is also protective in ocular ischemia animal models. METHODS Progesterone treatment was tested in two ocular ischemia models in rats: a rodent anterior ischemic optic neuropathy (rAION) model, which induces permanent monocular optic nerve stroke, and the middle cerebral artery occlusion (MCAO) model, which causes transient ischemia in both the retina and brain due to an intraluminal filament that blocks the ophthalmic and middle cerebral arteries. Visual function and retinal histology were assessed to determine whether progesterone attenuated retinal injury in these models. Additionally, behavioral testing and 2% 2,3,5-triphenyltetrazolium chloride (TTC) staining in brains were used to compare progesterone's neuroprotective effects in both retina and brain using the MCAO model. RESULTS Progesterone treatment showed no effect on visual evoked potential (VEP) reduction and retinal ganglion cell loss in the permanent rAION model. In the transient MCAO model, progesterone treatment reduced (1) electroretinogram (ERG) deficits, (2) MCAO-induced upregulation of glutamine synthetase (GS) and glial fibrillary acidic protein (GFAP), and (3) retinal ganglion cell loss. As expected, progesterone treatment also had significant protective effects in behavioral tests and a reduction in infarct size in the brain. CONCLUSIONS Progesterone treatment showed protective effects in the retina following MCAO but not rAION injury, which may result from mechanistic differences with injury type and the therapeutic action of progesterone.
Collapse
Affiliation(s)
- Rachael S Allen
- Emergency Medicine Emory University, Atlanta, Georgia, United States 2Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Timothy W Olsen
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States
| | - Iqbal Sayeed
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Heather A Cale
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | | | - Yuliya Oumarbaeva
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Irina Lucaciu
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| | - Jeffrey H Boatright
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University, Atlanta, Georgia, United States 3Atlanta VA Center for Visual and Neurocognitive Rehabilitation, Decatur, Georgia, United States
| | - Donald G Stein
- Emergency Medicine Emory University, Atlanta, Georgia, United States
| |
Collapse
|
15
|
Reichenbach A, Bringmann A. Purinergic signaling in retinal degeneration and regeneration. Neuropharmacology 2015; 104:194-211. [PMID: 25998275 DOI: 10.1016/j.neuropharm.2015.05.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/07/2015] [Accepted: 05/07/2015] [Indexed: 02/01/2023]
Abstract
Purinergic signaling is centrally involved in mediating the degeneration of the injured and diseased retina, the induction of retinal gliosis, and the protection of the retinal tissue from degeneration. Dysregulated calcium signaling triggered by overactivation of P2X7 receptors is a crucial step in the induction of neuronal and microvascular cell death under pathogenic conditions like ischemia-hypoxia, elevated intraocular pressure, and diabetes, respectively. Overactivation of P2X7 plays also a pathogenic role in inherited and age-related photoreceptor cell death and in the age-related dysfunction and degeneration of the retinal pigment epithelium. Gliosis of micro- and macroglial cells, which is induced and/or modulated by purinergic signaling and associated with an impaired homeostatic support to neurons, and the ATP-mediated propagation of retinal gliosis from a focal injury into the surrounding noninjured tissue are involved in inducing secondary cell death in the retina. On the other hand, alterations in the glial metabolism of extracellular nucleotides, resulting in a decreased level of ATP and an increased level of adenosine, may be neuroprotective in the diseased retina. Purinergic signals stimulate the proliferation of retinal glial cells which contributes to glial scarring which has protective effects on retinal degeneration and adverse effects on retinal regeneration. Pharmacological modulation of purinergic receptors, e.g., inhibition of P2X and activation of adenosine receptors, may have clinical importance for the prevention of photoreceptor, neuronal, and microvascular cell death in diabetic retinopathy, retinitis pigmentosa, age-related macular degeneration, and glaucoma, respectively, for the clearance of retinal edema, and the inhibition of dysregulated cell proliferation in proliferative retinopathies. This article is part of a Special Issue entitled 'Purines in Neurodegeneration and Neuroregeneration'.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | - Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| |
Collapse
|
16
|
|
17
|
Abstract
Over the past 10 years, a literature has emerged concerning the sex steroid hormone oestrogen and its role in human vision. Herein, we review evidence that oestrogen (oestradiol) levels may significantly affect ocular function and low-level vision, particularly in older females. In doing so, we have examined a number of vision-related disorders including dry eye, cataract, increased intraocular pressure, glaucoma, age-related macular degeneration and Leber's hereditary optic neuropathy. In each case, we have found oestrogen, or lack thereof, to have a role. We have also included discussion of how oestrogen-related pharmacological treatments for menopause and breast cancer can impact the pathology of the eye and a number of psychophysical aspects of vision. Finally, we have reviewed oestrogen's pharmacology and suggest potential mechanisms underlying its beneficial effects, with particular emphasis on anti-apoptotic and vascular effects.
Collapse
Affiliation(s)
- Claire V Hutchinson
- College of MedicineBiological Sciences and Psychology, University of Leicester, Leicester LE1 9HN, UKHarvard Medical SchoolCenter for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USADivision of Biomedical SciencesSt George's Medical School, University of London, London SW17 0RE, UK
| | - James A Walker
- College of MedicineBiological Sciences and Psychology, University of Leicester, Leicester LE1 9HN, UKHarvard Medical SchoolCenter for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USADivision of Biomedical SciencesSt George's Medical School, University of London, London SW17 0RE, UK
| | - Colin Davidson
- College of MedicineBiological Sciences and Psychology, University of Leicester, Leicester LE1 9HN, UKHarvard Medical SchoolCenter for Human Genetic Research, Massachusetts General Hospital, Boston, Massachusetts 02114, USADivision of Biomedical SciencesSt George's Medical School, University of London, London SW17 0RE, UK
| |
Collapse
|
18
|
|
19
|
Purinergic neuron-glia interactions in sensory systems. Pflugers Arch 2014; 466:1859-72. [DOI: 10.1007/s00424-014-1510-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 02/06/2023]
|
20
|
Prokai-Tatrai K, Xin H, Nguyen V, Szarka S, Blazics B, Prokai L, Koulen P. 17β-estradiol eye drops protect the retinal ganglion cell layer and preserve visual function in an in vivo model of glaucoma. Mol Pharm 2013; 10:3253-61. [PMID: 23841874 DOI: 10.1021/mp400313u] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuroprotection in glaucoma as a curative strategy complementary to current therapies to lower intraocular pressure (IOP) is highly desirable. This study was designed to investigate neuroprotection by 17β-estradiol (E2) to prevent retinal ganglion cell (RGC) death in a glaucoma model of surgically elevated IOP in rats. We found that daily treatment with E2-containing eye drops resulted in significant E2 concentration in the retina with concomitant profound neuroprotective therapeutic benefits, even in the presence of continually elevated IOP. The number of apoptotic cells in the RGC layer was significantly decreased in the E2-treated group, when compared to the vehicle-treated controls. Deterioration in visual acuity in these animals was also markedly prevented. Using mass spectrometry-based proteomics, beneficial changes in the expression of several proteins implicated in the maintenance of retinal health were also found in the retina of E2-treated animals. On the other hand, systemic side effects could not be avoided with the eye drops, as confirmed by the measured high circulating estrogen levels and through the assessment of the uterus representing a typical hormone-sensitive peripheral organ. Collectively, the demonstrated significant neuroprotective effect of topical E2 in the selected animal model of glaucoma provides a clear rationale for further studies aiming at targeting E2 into the eye while avoiding systemic E2 exposure to diminish undesirable off-target side effects.
Collapse
Affiliation(s)
- Katalin Prokai-Tatrai
- Department of Molecular Biology and Immunology, University of North Texas Health Science Center , 3500 Camp Bowie Boulevard, Fort Worth, Texas 76107, United States
| | | | | | | | | | | | | |
Collapse
|
21
|
Reichenbach A, Bringmann A. New functions of Müller cells. Glia 2013; 61:651-78. [PMID: 23440929 DOI: 10.1002/glia.22477] [Citation(s) in RCA: 466] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/10/2012] [Indexed: 12/12/2022]
Abstract
Müller cells, the major type of glial cells in the retina, are responsible for the homeostatic and metabolic support of retinal neurons. By mediating transcellular ion, water, and bicarbonate transport, Müller cells control the composition of the extracellular space fluid. Müller cells provide trophic and anti-oxidative support of photoreceptors and neurons and regulate the tightness of the blood-retinal barrier. By the uptake of glutamate, Müller cells are more directly involved in the regulation of the synaptic activity in the inner retina. This review gives a survey of recently discoved new functions of Müller cells. Müller cells are living optical fibers that guide light through the inner retinal tissue. Thereby they enhance the signal/noise ratio by minimizing intraretinal light scattering and conserve the spatial distribution of light patterns in the propagating image. Müller cells act as soft, compliant embedding for neurons, protecting them in case of mechanical trauma, and also as soft substrate required for neurite growth and neuronal plasticity. Müller cells release neuroactive signaling molecules which modulate neuronal activity, are implicated in the mediation of neurovascular coupling, and mediate the homeostasis of the extracellular space volume under hypoosmotic conditions which are a characteristic of intense neuronal activity. Under pathological conditions, a subset of Müller cells may differentiate to neural progenitor/stem cells which regenerate lost photoreceptors and neurons. Increasing knowledge of Müller cell function and responses in the normal and diseased retina will have great impact for the development of new therapeutic approaches for retinal diseases.
Collapse
Affiliation(s)
- Andreas Reichenbach
- Paul Flechsig Institute of Brain Research, University of Leipzig, Leipzig, Germany.
| | | |
Collapse
|
22
|
Bringmann A, Wiedemann P. Müller glial cells in retinal disease. ACTA ACUST UNITED AC 2011; 227:1-19. [PMID: 21921569 DOI: 10.1159/000328979] [Citation(s) in RCA: 289] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/27/2011] [Indexed: 11/19/2022]
Abstract
Virtually all pathogenic stimuli activate Müller cells. Reactive Müller cells exert protective and toxic effects on photoreceptors and neurons. They contribute to oxidative stress and glutamate toxicity due to malfunctions of glutamate uptake and glutathione synthesis. Downregulation of potassium conductance disrupts transcellular potassium and water transport, resulting in neuronal hyperexcitability and edema. Protective effects of reactive Müller cells include upregulation of adenosine 5'-triphosphate (ATP)-degrading ectoenzymes, which enhances the extracellular availability of the neuroprotectant adenosine, abrogation of the osmotic release of ATP, which might protect retinal ganglion cells from apoptosis, and the release of antioxidants and neurotrophic factors. The dedifferentiation of reactive Müller cells to progenitor-like cells might have an impact on future therapeutic approaches. A better understanding of the gliotic mechanisms will be helpful in developing efficient therapeutic strategies aiming at increased protective and regenerative properties and decreased toxicity of reactive Müller cells.
Collapse
Affiliation(s)
- Andreas Bringmann
- Department of Ophthalmology and Eye Hospital, University of Leipzig, Leipzig, Germany
| | | |
Collapse
|
23
|
Wurm A, Pannicke T, Iandiev I, Francke M, Hollborn M, Wiedemann P, Reichenbach A, Osborne NN, Bringmann A. Purinergic signaling involved in Müller cell function in the mammalian retina. Prog Retin Eye Res 2011; 30:324-42. [DOI: 10.1016/j.preteyeres.2011.06.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 06/06/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
24
|
Linnertz R, Wurm A, Pannicke T, Krügel K, Hollborn M, Härtig W, Iandiev I, Wiedemann P, Reichenbach A, Bringmann A. Activation of voltage-gated Na+ and Ca2+ channels is required for glutamate release from retinal glial cells implicated in cell volume regulation. Neuroscience 2011; 188:23-34. [DOI: 10.1016/j.neuroscience.2011.04.058] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 04/20/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
|