1
|
Jafar B, Sharma K, Sheikh A, Maertens P. The Novel Use of a Synthetic Amino Acid Analog in the Management of Menkes' Disease. JOURNAL OF PEDIATRIC NEUROLOGY 2022. [DOI: 10.1055/s-0042-1742687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractMenkes' disease is a rare X-linked neurodegenerative disorder due to an ATPA7 mutation. This mutation results in a defective copper transport into the lumen of the trans-Golgi network (TGN) of all tissues, except the liver. As the liver remains effective in transporting copper into the TGN, parenteral copper administration is successful in normalizing copper and ceruloplasmin levels. In addition, such treatment improves function of cuproenzymes in the nucleus, cytosol, and mitochondria. However, ATPA7 mutation results in a deficient dopamine β-hydroxylase, a cuproenzyme needed to convert dopamine to norepinephrine (NE). Here, we present the novel use of the synthetic amino acid analog, droxidopa, a prodrug to NE in the management of Menkes' disease. In our 6-year-old Menkes' disease patient treated with daily parenteral copper infusion, we studied clinical features and urine catecholamines levels at baseline and after initiating droxidopa therapy. NE deficiency at baseline was associated with inattention, hypothermia, and dysautonomia. After correction of NE deficiency, the child's symptoms improved. Epinephrine levels remained low. In Menkes' disease, NE deficiency persists after normalization of copper and ceruloplasmin levels. Droxidopa therapy is successful in correcting NE levels and improving quality of life. Further studies are needed.
Collapse
Affiliation(s)
- Bedour Jafar
- Department of Pediatrics, University of South Alabama College of Medicine, Mobile, Alabama, United States
| | - Kamal Sharma
- Division of Pediatric Critical Care, Department of Pediatrics, University of South Alabama College of Medicine, Mobile, Alabama, United States
| | - Ameera Sheikh
- Department of Pediatrics, University of South Alabama College of Medicine, Mobile, Alabama, United States
| | - Paul Maertens
- Department of Neurology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Parad RB, Kaler SG, Mauceli E, Sokolsky T, Yi L, Bhattacharjee A. Targeted next generation sequencing for newborn screening of Menkes disease. Mol Genet Metab Rep 2020; 24:100625. [PMID: 32714836 PMCID: PMC7378272 DOI: 10.1016/j.ymgmr.2020.100625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/18/2020] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Population-based newborn screening (NBS) allows early detection and treatment of inherited disorders. For certain medically-actionable conditions, however, NBS is limited by the absence of reliable biochemical signatures amenable to detection by current platforms. We sought to assess the analytic validity of an ATP7A targeted next generation DNA sequencing assay as a potential newborn screen for one such disorder, Menkes disease. METHODS Dried blood spots from control or Menkes disease subjects (n = 22) were blindly analyzed for pathogenic variants in the copper transport gene, ATP7A. The analytical method was optimized to minimize cost and provide rapid turnaround time. RESULTS The algorithm correctly identified pathogenic ATP7A variants, including missense, nonsense, small insertions/deletions, and large copy number variants, in 21/22 (95.5%) of subjects, one of whom had inconclusive diagnostic sequencing previously. For one false negative that also had not been detected by commercial molecular laboratories, we identified a deep intronic variant that impaired ATP7A mRNA splicing. CONCLUSIONS Our results support proof-of-concept that primary DNA-based NBS would accurately detect Menkes disease, a disorder that fulfills Wilson and Jungner screening criteria and for which biochemical NBS is unavailable. Targeted next generation sequencing for NBS would enable improved Menkes disease clinical outcomes, establish a platform for early identification of other unscreened disorders, and complement current NBS by providing immediate data for molecular confirmation of numerous biochemically screened condition.
Collapse
Affiliation(s)
- Richard B. Parad
- Department of Pediatric Newborn Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Stephen G. Kaler
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States of America
- Center for Gene Therapy, Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Evan Mauceli
- Parabase Genomics, Inc., Boston, MA, United States of America
| | - Tanya Sokolsky
- Parabase Genomics, Inc., Boston, MA, United States of America
- Baebies, Inc., Durham, NC, United States of America
| | - Ling Yi
- Section on Translational Neuroscience, Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States of America
| | - Arindam Bhattacharjee
- Parabase Genomics, Inc., Boston, MA, United States of America
- Baebies, Inc., Durham, NC, United States of America
| |
Collapse
|
3
|
The molecular mechanisms of copper metabolism and its roles in human diseases. Pflugers Arch 2020; 472:1415-1429. [PMID: 32506322 DOI: 10.1007/s00424-020-02412-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/13/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
Copper is an essential element in cells; it can act as either a recipient or a donor of electrons, participating in various reactions. However, an excess of copper ions in cells is detrimental as these copper ions can generate free radicals and increase oxidative stress. In multicellular organisms, copper metabolism involves uptake, distribution, sequestration, and excretion, at both the cellular and systemic levels. Mammalian enterocytes take in bioavailable copper ions from the diet in a Ctr1-dependent manner. After incorporation, cuprous ions are delivered to ATP7A, which pumps Cu+ from enterocytes into the blood. Copper ions arrive at the liver through the portal vein and are incorporated into hepatocytes by Ctr1. Then, Cu+ can be secreted into the bile or the blood via the Atox1/ATP7B/ceruloplasmin route. In the bloodstream, this micronutrient can reach peripheral tissues and is again incorporated by Ctr1. In peripheral tissue cells, cuprous ions are either sequestrated by molecules such as metallothioneins or targeted to utilization pathways by chaperons such as Atox1, Cox17, and CCS. Copper metabolism must be tightly controlled in order to achieve homeostasis and avoid disorders. A hereditary or acquired copper unbalance, including deficiency, overload, or misdistribution, may cause or aggravate certain diseases such as Menkes disease, Wilson disease, neurodegenerative diseases, anemia, metabolic syndrome, cardiovascular diseases, and cancer. A full understanding of copper metabolism and its roles in diseases underlies the identification of novel effective therapies for such diseases.
Collapse
|
4
|
Copper and the brain noradrenergic system. J Biol Inorg Chem 2019; 24:1179-1188. [PMID: 31691104 DOI: 10.1007/s00775-019-01737-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/21/2019] [Indexed: 02/08/2023]
Abstract
Copper (Cu) plays an essential role in the development and function of the brain. In humans, genetic disorders of Cu metabolism may cause either severe Cu deficiency (Menkes disease) or excessive Cu accumulation (Wilson disease) in the brain tissue. In either case, the loss of Cu homeostasis results in catecholamine misbalance, abnormal myelination of neurons, loss of normal brain architecture, and a spectrum of neurologic and/or psychiatric manifestations. Several metabolic processes have been identified as particularly sensitive to Cu dis-homeostasis. This review focuses on the role of Cu in noradrenergic neurons and summarizes the current knowledge of mechanisms that maintain Cu homeostasis in these cells. The impact of Cu misbalance on catecholamine metabolism and functioning of noradrenergic system is discussed.
Collapse
|
5
|
Abstract
Inborn errors of metabolism, also known as inherited metabolic diseases, constitute an important group of conditions presenting with neurologic signs in newborns. They are individually rare but collectively common. Many are treatable through restoration of homeostasis of a disrupted metabolic pathway. Given their frequency and potential for treatment, the clinician should be aware of this group of conditions and learn to identify the typical manifestations of the different inborn errors of metabolism. In this review, we summarize the clinical, laboratory, electrophysiologic, and neuroimaging findings of the different inborn errors of metabolism that can present with florid neurologic signs and symptoms in the neonatal period.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/diagnostic imaging
- Metabolism, Inborn Errors/physiopathology
- Metabolism, Inborn Errors/therapy
- Neuroimaging
- Pregnancy
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Rare Disease Institute, Children's National Health System, Washington, DC, United States
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
6
|
Vairo FPE, Chwal BC, Perini S, Ferreira MAP, de Freitas Lopes AC, Saute JAM. A systematic review and evidence-based guideline for diagnosis and treatment of Menkes disease. Mol Genet Metab 2019; 126:6-13. [PMID: 30594472 DOI: 10.1016/j.ymgme.2018.12.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/08/2018] [Accepted: 12/08/2018] [Indexed: 01/16/2023]
Abstract
Menkes disease is a rare X-linked neurodegenerative disorder caused by defect in copper metabolism. Parenteral copper supplementation has been used as a potential disease-modifying treatment of Menkes disease for decades. However, recent evidence suggests its efficacy only when treatment is started within days after birth, which also has important implications related to the techniques that enable early diagnosis. We aim at proposing a guideline for prenatal and neonatal diagnosis and for disease-modifying treatment of Menkes disease, guided by a systematic review of the literature, and built in conjunction with medical experts, methodologists and patient representatives. Thirteen articles were used for our recommendations that were based on GRADE system. Reviewed evidence suggests that prenatal genetic diagnosis in families with previous diagnosis of Menkes disease is feasible; analysis of plasma catecholamine levels is accurate for neonatal diagnosis of Menkes disease; treatment with copper-histidine is effective to increase survival and reduce neurologic burden of the disease if initiated in the neonatal period; and, treatment indication should not be guided by patient's genotype. In conclusion, our guideline can contribute to standardize some aspects of the clinical care of patients with Menkes disease, especially reducing disease burden and mortality and providers' and families' anxiety.
Collapse
Affiliation(s)
- Filippo Pinto E Vairo
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Center for Individualized Medicine, Mayo Clinic, Rochester, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, USA
| | - Bruna Cristine Chwal
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Silvana Perini
- Nucleo de Avaliação de Tecnologia em Saúde, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Ana Carolina de Freitas Lopes
- Executive Secretariat of the National Committee for Health Technology Incorporation (CONITEC), Brazilian Ministry of Health, Brazil
| | - Jonas Alex Morales Saute
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Neurology Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil; Internal Medicine Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Postgraduate program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
7
|
Schmidt K, Ralle M, Schaffer T, Jayakanthan S, Bari B, Muchenditsi A, Lutsenko S. ATP7A and ATP7B copper transporters have distinct functions in the regulation of neuronal dopamine-β-hydroxylase. J Biol Chem 2018; 293:20085-20098. [PMID: 30341172 DOI: 10.1074/jbc.ra118.004889] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/17/2018] [Indexed: 01/06/2023] Open
Abstract
The copper (Cu) transporters ATPase copper-transporting alpha (ATP7A) and ATPase copper-transporting beta (ATP7B) are essential for the normal function of the mammalian central nervous system. Inactivation of ATP7A or ATP7B causes the severe neurological disorders, Menkes disease and Wilson disease, respectively. In both diseases, Cu imbalance is associated with abnormal levels of the catecholamine-type neurotransmitters dopamine and norepinephrine. Dopamine is converted to norepinephrine by dopamine-β-hydroxylase (DBH), which acquires its essential Cu cofactor from ATP7A. However, the role of ATP7B in catecholamine homeostasis is unclear. Here, using immunostaining of mouse brain sections and cultured cells, we show that DBH-containing neurons express both ATP7A and ATP7B. The two transporters are located in distinct cellular compartments and oppositely regulate the export of soluble DBH from cultured neuronal cells under resting conditions. Down-regulation of ATP7A, overexpression of ATP7B, and pharmacological Cu depletion increased DBH retention in cells. In contrast, ATP7B inactivation elevated extracellular DBH. Proteolytic processing and the specific activity of exported DBH were not affected by changes in ATP7B levels. These results establish distinct regulatory roles for ATP7A and ATP7B in neuronal cells and explain, in part, the lack of functional compensation between these two transporters in human disorders of Cu imbalance.
Collapse
Affiliation(s)
- Katharina Schmidt
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Martina Ralle
- the Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239
| | - Thomas Schaffer
- the Department of Biological Chemistry, Johns Hopkins University, Baltimore, Maryland 21205, and
| | - Samuel Jayakanthan
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bilal Bari
- the Department of Neuroscience, Brain Science Institute, Johns Hopkins University, Baltimore, Maryland 21205
| | - Abigael Muchenditsi
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Svetlana Lutsenko
- From the Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205,.
| |
Collapse
|
8
|
Goldstein DS, Cheshire WP. Roles of catechol neurochemistry in autonomic function testing. Clin Auton Res 2018; 28:273-288. [PMID: 29705971 DOI: 10.1007/s10286-018-0528-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/10/2018] [Indexed: 12/14/2022]
Abstract
Catechols are a class of compounds that contain adjacent hydroxyl groups on a benzene ring. Endogenous catechols in human plasma include the catecholamines norepinephrine, epinephrine (adrenaline), and dopamine; the catecholamine precursor DOPA, 3,4-dihydroxyphenylglycol (DHPG), which is the main neuronal metabolite of norepinephrine; and 3,4-dihydroxyphenylacetic acid (DOPAC), which is the main neuronal metabolite of dopamine. In the diagnostic evaluation of patients with known or suspected dysautonomias, measurement of plasma catechols is rarely diagnostic but often is informative. This review summarizes the roles of clinical catechol neurochemistry in autonomic function testing.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 9000 Rockville Pike MSC-1620, Building 10 Room 8N260, Bethesda, MD, 20892-1620, USA.
| | | |
Collapse
|
9
|
The physical examination as a window into autonomic disorders. Clin Auton Res 2018; 28:23-33. [DOI: 10.1007/s10286-017-0494-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 12/17/2017] [Indexed: 10/18/2022]
|
10
|
Abstract
Trace elements are chemical elements needed in minute amounts for normal physiology. Some of the physiologically relevant trace elements include iodine, copper, iron, manganese, zinc, selenium, cobalt and molybdenum. Of these, some are metals, and in particular, transition metals. The different electron shells of an atom carry different energy levels, with those closest to the nucleus being lowest in energy. The number of electrons in the outermost shell determines the reactivity of such an atom. The electron shells are divided in sub-shells, and in particular the third shell has s, p and d sub-shells. Transition metals are strictly defined as elements whose atom has an incomplete d sub-shell. This incomplete d sub-shell makes them prone to chemical reactions, particularly redox reactions. Transition metals of biologic importance include copper, iron, manganese, cobalt and molybdenum. Zinc is not a transition metal, since it has a complete d sub-shell. Selenium, on the other hand, is strictly speaking a nonmetal, although given its chemical properties between those of metals and nonmetals, it is sometimes considered a metalloid. In this review, we summarize the current knowledge on the inborn errors of metal and metalloid metabolism.
Collapse
Affiliation(s)
- Carlos R. Ferreira
- Division of Genetics and Metabolism, Children’s National Health System, Washington, DC, USA
- Department of Pediatrics, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - William A. Gahl
- Section on Human Biochemical Genetics, Medical Genetics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| |
Collapse
|
11
|
Abstract
In paediatrics, one of our main aims in the diagnostic process is to identify any treatable conditions. The copper metabolism disorder Wilson's disease (WD) is one such condition that is caused by mutations in the ATP7B gene. Delay in treatment could result in irreversible disability or even death. Although liver disease is the most common presenting feature in children, some children may initially present with a subtle neurological presentation only. In patients presenting with dystonia, tremor, dysarthria or with a deterioration in school performance, there should be a high index of suspicion for WD. However, the differential of these clinical presentations is wide and exclusion of WD is difficult. No single diagnostic test can exclude WD and each of the biochemical tests has limitations. In this article, we discuss copper metabolism disorders including WD and Menke's disease. We then discuss the available diagnostic tests and how to investigate children for these rare disorders.
Collapse
Affiliation(s)
- Jane Armer
- Department of Clinical Laboratory Medicine, Royal Blackburn Hospital, Blackburn, UK
| | | |
Collapse
|
12
|
Goldstein DS, Holmes C, Cherup J, Sharabi Y. Plasma Catechols After Eating Olives. Clin Transl Sci 2017; 11:32-37. [PMID: 28898548 PMCID: PMC5759722 DOI: 10.1111/cts.12489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023] Open
Abstract
Olives contain 3,4‐dihydroxyphenyl compounds (catechols)—especially 3,4‐dihydroxyphenylethanol (DOPET)—that have therapeutic potential as nutraceuticals. Whether olive ingestion affects plasma levels of free (unconjugated) catechols has been unknown. Arm venous blood was sampled before and 15, 30, 45, 60, 120, 180, and 240 min after six healthy volunteers ate 10 Kalamata olives. Catechols were assayed by alumina extraction followed by liquid chromatography with series electrochemical detection. Plasma DOPET increased to 18.5 times baseline at 30 min (area under the curve (AUC) 39.2 ± 9.2 pmol‐min/mL, P = 0.008). 3,4‐Dihydroxyphenylacetic acid (DOPAC) increased markedly (peak 37.4 times baseline, AUC 23,490 ± 4,151 pmol‐min/mL, P = 0.002). The sum of 10 catechols increased 12‐fold (P < 0.0001). Eating olives produces large‐magnitude increases in plasma levels of catechols, mainly DOPAC. DOPET seems to go undergo extensive hepatic metabolism to DOPAC.
Collapse
Affiliation(s)
- David S Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Courtney Holmes
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie Cherup
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Yehonatan Sharabi
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA.,Hypertension Unit, Sheba Medical Center, Tel Hashomer affiliated with Sackler Faculty of Medicine, Tel Aviv University, Israel
| |
Collapse
|
13
|
Canine Models for Copper Homeostasis Disorders. Int J Mol Sci 2016; 17:196. [PMID: 26861285 PMCID: PMC4783930 DOI: 10.3390/ijms17020196] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/21/2016] [Accepted: 01/25/2016] [Indexed: 12/23/2022] Open
Abstract
Copper is an essential trace nutrient metal involved in a multitude of cellular processes. Hereditary defects in copper metabolism result in disorders with a severe clinical course such as Wilson disease and Menkes disease. In Wilson disease, copper accumulation leads to liver cirrhosis and neurological impairments. A lack in genotype-phenotype correlation in Wilson disease points toward the influence of environmental factors or modifying genes. In a number of Non-Wilsonian forms of copper metabolism, the underlying genetic defects remain elusive. Several pure bred dog populations are affected with copper-associated hepatitis showing similarities to human copper metabolism disorders. Gene-mapping studies in these populations offer the opportunity to discover new genes involved in copper metabolism. Furthermore, due to the relatively large body size and long life-span of dogs they are excellent models for development of new treatment strategies. One example is the recent use of canine organoids for disease modeling and gene therapy of copper storage disease. This review addresses the opportunities offered by canine genetics for discovery of genes involved in copper metabolism disorders. Further, possibilities for the use of dogs in development of new treatment modalities for copper storage disorders, including gene repair in patient-derived hepatic organoids, are highlighted.
Collapse
|
14
|
Kim JH, Lee BH, Kim YM, Choi JH, Kim GH, Cheon CK, Yoo HW. Novel mutations and clinical outcomes of copper-histidine therapy in Menkes disease patients. Metab Brain Dis 2015; 30:75-81. [PMID: 24919650 DOI: 10.1007/s11011-014-9569-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 05/19/2014] [Indexed: 01/08/2023]
Abstract
Menkes disease is a very rare X-linked copper metabolism disorder that results from an ATP7A gene mutation. With the advent of subcutaneous copper-histidine therapy, the early diagnosis of Menkes disease becomes of utmost importance for patients' prognosis. In the present study, the clinical characteristics of 12 Korean patients with Menkes disease (11 males and 1 female from 11 unrelated families) were described along with the mutation spectrum. Only 2 male patients were diagnosed in the neonatal period, and the other male patients were diagnosed at age 4.3 ± 1.9 months. The presenting signs included depigmented kinky hair, neurologic deficits, and hypotonia. Serum copper and ceruloplasmin levels were markedly decreased. Intracranial vessels were dilated with tortuosity and accompanied by regional cerebral infarctions, even at an early age. Of note, the female patient was diagnosed at age 18 months, during the evaluation for developmental delay, by characteristic MRA findings, biochemical profiles, and genetic evaluation. A total of 11 ATP7A mutations were identified, including five previously unreported mutations. Most mutations were truncated (except 1 missense mutation), including 3 frameshift, 2 nonsense, 3 large deletion, and 2 splice-site variants. The age at commencement of copper-histidine treatment was variable among patients age 7.3 ± 7.5 (0.5-27) months. Despite the treatment, seven patients died before age 5 years, and the remaining patients were severely retarded in neurodevelopment. The poor outcomes of our patients might be related to delayed therapy, but severe ATP7A mutations should be noted as well.
Collapse
Affiliation(s)
- Ja Hye Kim
- Department of Pediatrics, Asan Medical Center Children's Hospital, University of Ulsan College of Medicine, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
15
|
Lee T, Yagi M, Kusunoki N, Nagasaka M, Koda T, Matsuo K, Yokota T, Miwa A, Shibata A, Morioka I, Kodama H, Takeshima Y, Iijima K. Standard values for the urine HVA/VMA ratio in neonates as a screen for Menkes disease. Brain Dev 2015; 37:114-9. [PMID: 24556394 DOI: 10.1016/j.braindev.2014.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 01/24/2014] [Accepted: 01/31/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Menkes disease is a lethal disorder associated with copper metabolism. Although early treatment with copper-histidine injections can improve outcomes, early diagnosis is difficult because the clinical features of Menkes disease are subtle or do not manifest in affected neonates. Previous report stated that the low activity of dopamine β-hydroxylase, a copper-dependent enzyme, leads to increases in the urine homovanillic acid/vanillylmandelic acid (HVA/VMA) ratios in patients with Menkes disease, and indicated that a urine HVA/VMA ratio cut-off value of >4 is useful in screening for Menkes disease. METHODS We examined the standard values of the urine HVA/VMA ratio in unaffected neonates and assessed its use as a screening parameter for Menkes disease among neonates. In total, 112 neonates, aged between 1 and 6 days, were enrolled in the study and were classified into 2 groups based on their urine HVA/VMA ratios: high (>4) and low (⩽ 4). RESULTS Multivariate logistic analysis revealed that mechanical ventilation was an independent risk factor for a high urine HVA/VMA ratio (odds ratio: 21.94; 95% confidence interval: 2.82-247.03; p=0.004). The mean urine HVA/VMA ratio was 2.47 ± 0.67 among 92 neonates who did not receive mechanical ventilation. CONCLUSION This study established standard values for the urine HVA/VMA ratio in newborn babies that could be useful in screening for Menkes disease among neonates.
Collapse
Affiliation(s)
- Tomoko Lee
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mariko Yagi
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan; Department of Pediatrics, Nikoniko House Medical and Welfare Center, Kobe, Japan.
| | - Noriko Kusunoki
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Miwako Nagasaka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tsubasa Koda
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kiyomi Matsuo
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomoyuki Yokota
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akihiro Miwa
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akio Shibata
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ichiro Morioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroko Kodama
- Department of Health and Dietetics, Teikyo Heisei University, Tokyo, Japan
| | - Yasuhiro Takeshima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Kazumoto Iijima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
16
|
Haddad MR, Patel KD, Sullivan PH, Goldstein DS, Murphy KM, Centeno JA, Kaler SG. Molecular and biochemical characterization of Mottled-dappled, an embryonic lethal Menkes disease mouse model. Mol Genet Metab 2014; 113:294-300. [PMID: 25456742 PMCID: PMC4259894 DOI: 10.1016/j.ymgme.2014.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 11/23/2022]
Abstract
Mottled-dappled (Mo-dp) is a mouse model of Menkes disease caused by a large, previously uncharacterized deletion in the 5' region of Atp7a, the mouse ortholog of ATP7A. Affected mutants die in utero at embryonic day 17, and show bending and thickening of the ribs and distortion of the pectoral and pelvic girdles and limbs. To characterize this allele, we designed a custom 4x180K microarray on the mouse X chromosome and performed comparative genomic hybridization using extracted DNA from normal and carrier Mo-dp females, and identified an approximately 9 kb deletion. We used PCR to fine-map the breakpoints and amplify a junction fragment of 630 bp. Sequencing of the junction fragment disclosed the exact breakpoint locations and that the Mo-dp deletion is precisely 8990 bp, including approximately 2 kb in the promoter region of Atp7a. Western blot analysis of Mo-dp heterozygous brains showed diminished amounts of Atp7a protein, consistent with reduced expression due to the promoter region deletion on one allele. In heterozygous females, brain copper levels tended to be lower compared to wild type whereas neurochemical analyses revealed higher dihydroxyphenylacetic acid:dihydroxyphenylglycol (DOPAC:DHPG) and dopamine:norepinephrine (DA:NE) ratios compared to normal (P=0.002 and 0.029, respectively), consistent with partial deficiency of dopamine-beta-hydroxylase, a copper-dependent enzyme. Heterozygous females showed no significant differences in body weight compared to wild type females. Our results delineate the molecular details of the Mo-dp mutation for the first time and define novel biochemical findings in heterozygous female carriers of this allele.
Collapse
Affiliation(s)
- Marie Reine Haddad
- Section on Translational Neuroscience, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Keyur D Patel
- Section on Translational Neuroscience, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Patricia H Sullivan
- Clinical Neurocardiology Section, Clinical Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - David S Goldstein
- Clinical Neurocardiology Section, Clinical Neuroscience Program, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Kevin M Murphy
- Division of Biophysical Toxicology, Joint Pathology Center, Malcolm Grow Medical Clinic, Andrews Air Force Base, Camp Springs, MD 20762, USA.
| | - Jose A Centeno
- Division of Biophysical Toxicology, Joint Pathology Center, Malcolm Grow Medical Clinic, Andrews Air Force Base, Camp Springs, MD 20762, USA.
| | - Stephen G Kaler
- Section on Translational Neuroscience, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
17
|
Scheiber IF, Mercer JF, Dringen R. Metabolism and functions of copper in brain. Prog Neurobiol 2014; 116:33-57. [DOI: 10.1016/j.pneurobio.2014.01.002] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 01/08/2014] [Accepted: 01/08/2014] [Indexed: 12/15/2022]
|
18
|
Kaler SG. Translational research investigations on ATP7A: an important human copper ATPase. Ann N Y Acad Sci 2014; 1314:64-8. [PMID: 24735419 DOI: 10.1111/nyas.12422] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In more than 40 years since copper deficiency was delineated in pediatric subjects with Menkes disease, remarkable advances in our understanding of the clinical, biochemical, and molecular aspects of the human copper transporter ATP7A have emerged. Mutations in the gene encoding this multitasking molecule are now implicated in at least two other distinctive phenotypes: occipital horn syndrome and ATP7A-related isolated distal motor neuropathy. Several other novel inherited disorders of copper metabolism have been identified in the past several years, aided by advances in human gene mapping and automated DNA sequencing. In this paper, I review the history and evolution of our understanding of disorders caused by impaired ATP7A function, and outline future challenges.
Collapse
Affiliation(s)
- Stephen G Kaler
- Section on Translational Neuroscience, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
19
|
Craiu D, Kaler S, Craiu M. Role of optic microscopy for early diagnosis of Menkes disease. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2014; 55:953-956. [PMID: 25329126 PMCID: PMC6456807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report the case of a male patient with a normal development in the first three months of life, presenting for global regression, central axial hypotonic syndrome, pyramidal syndrome, focal epileptic seizures, and a particular aspect of the hair - almost absent, short, sparse, lightly colored, at age of five months, becoming coarse, twisted (kinky hair) by the age of 21 months. Different diseases associate similar neurological and macroscopic aspect of the hair (biotinidase deficiency, argininosuccinic aciduria, aminoaciduria, giant axonal neuropathy, trichothiodistrophy and Menkes syndrome). The microscopic aspect of the patient's hair showing normal hair, silver colored hair, hair shafts twisting 1800, trichoclasis, and trichoptilosis, was highly characteristic for Menkes disease. Diagnosis was further supported by the low concentration of serum copper and ceruloplasmin and exclusion of other metabolic disorders with similar macroscopic aspect of the hair. Molecular genetic testing by multiplex PCR indicated deletion of exon 22 in the ATP7A gene situated in Xq21.1 region, consistent with the clinical and biochemical phenotype. Physicians should use microscopic evaluation of the hair more often when suspicion of Menkes disease is raised, aiming a narrow further diagnostic workup and early positive diagnosis and genetic advice for the affected families.
Collapse
Affiliation(s)
- Dana Craiu
- Discipline Pediatric Neurology, Department of Neurology, Pediatric Neurology, Psychiatry, Neurosurgery, Psychiatry for Children and Adolescents, "Carol Davila" University of Medicine and Pharmacy, Clinic of Pediatric Neurology, "Alexandru Obregia" Clinical Psychiatric Hospital, Bucharest, Romania;
| | | | | |
Collapse
|
20
|
Gaier ED, Miller MB, Ralle M, Aryal D, Wetsel WC, Mains RE, Eipper BA. Peptidylglycine α-amidating monooxygenase heterozygosity alters brain copper handling with region specificity. J Neurochem 2013; 127:605-19. [PMID: 24032518 DOI: 10.1111/jnc.12438] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/22/2013] [Accepted: 08/26/2013] [Indexed: 12/19/2022]
Abstract
Copper (Cu), an essential trace element present throughout the mammalian nervous system, is crucial for normal synaptic function. Neuronal handling of Cu is poorly understood. We studied the localization and expression of Atp7a, the major intracellular Cu transporter in the brain, and its relation to peptidylglycine α-amidating monooxygenase (PAM), an essential cuproenzyme and regulator of Cu homeostasis in neuroendocrine cells. Based on biochemical fractionation and immunostaining of dissociated neurons, Atp7a was enriched in post-synaptic vesicular fractions. Cu followed a similar pattern, with ~ 20% of total Cu in synaptosomes. A mouse model heterozygous for the Pam gene (PAM+/−) was selectively Cu deficient in the amygdala. As in cortex and hippocampus, Atp7a and PAM expression overlap in the amygdala, with highest expression in interneurons. Messenger RNA levels of Atox-1 and Atp7a, which deliver Cu to the secretory pathway, were reduced in the amygdala but not in the hippocampus in PAM+/− mice, GABAB receptor mRNA levels were similarly affected. Consistent with Cu deficiency, dopamine β-monooxygenase function was impaired as evidenced by elevated dopamine metabolites in the amygdala, but not in the hippocampus, of PAM+/− mice. These alterations in Cu delivery to the secretory pathway in the PAM+/− amygdala may contribute to the physiological and behavioral deficits observed. Atp7a, a Cu-transporting P-type ATPase, is localized to the trans-Golgi network and to vesicles distributed throughout the dendritic arbor. Tissue-specific alterations in Atp7a expression were found in mice heterozygous for peptidylglycine α-amidating monooxygenase (PAM), an essential neuropeptide-synthesizing cuproenzyme. Atp7a and PAM are highly expressed in amygdalar interneurons. Reduced amygdalar expression of Atox-1 and Atp7a in PAM heterozygous mice may lead to reduced synaptic Cu levels, contributing to the behavioral and neurochemical alterations seen in these mice.
Collapse
Affiliation(s)
- Eric D Gaier
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Donsante A, Sullivan P, Goldstein DS, Brinster LR, Kaler SG. L-threo-dihydroxyphenylserine corrects neurochemical abnormalities in a Menkes disease mouse model. Ann Neurol 2013; 73:259-65. [PMID: 23224983 PMCID: PMC3597755 DOI: 10.1002/ana.23787] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/21/2012] [Accepted: 10/05/2012] [Indexed: 11/05/2022]
Abstract
OBJECTIVE Menkes disease is a lethal neurodegenerative disorder of infancy caused by mutations in a copper-transporting adenosine triphosphatase gene, ATP7A. Among its multiple cellular tasks, ATP7A transfers copper to dopamine beta hydroxylase (DBH) within the lumen of the Golgi network or secretory granules, catalyzing the conversion of dopamine to norepinephrine. In a well-established mouse model of Menkes disease, mottled-brindled (mo-br), we tested whether systemic administration of L-threo-dihydroxyphenylserine (L-DOPS), a drug used successfully to treat autosomal recessive norepinephrine deficiency, would improve brain neurochemical abnormalities and neuropathology. METHODS At 8, 10, and 12 days of age, wild-type and mo-br mice received intraperitoneal injections of 200μg/g body weight of L-DOPS, or mock solution. Five hours after the final injection, the mice were euthanized, and brains were removed. We measured catecholamine metabolites affected by DBH via high-performance liquid chromatography with electrochemical detection, and assessed brain histopathology. RESULTS Compared to mock-treated controls, mo-br mice that received intraperitoneal L-DOPS showed significant increases in brain norepinephrine (p < 0.001) and its deaminated metabolite, dihydroxyphenylglycol (p < 0.05). The ratio of a non-beta-hydroxylated metabolite in the catecholamine biosynthetic pathway, dihydroxyphenylacetic acid, to the beta-hydroxylated metabolite, dihydroxyphenylglycol, improved equivalently to results obtained previously with brain-directed ATP7A gene therapy (p < 0.01). However, L-DOPS treatment did not arrest global brain pathology or improve somatic growth, as gene therapy had. INTERPRETATION We conclude that (1) L-DOPS crosses the blood-brain barrier in mo-br mice and corrects brain neurochemical abnormalities, (2) norepinephrine deficiency is not the cause of neurodegeneration in mo-br mice, and (3) L-DOPS treatment may ameliorate noradrenergic hypofunction in Menkes disease.
Collapse
Affiliation(s)
- Anthony Donsante
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Patricia Sullivan
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - David S. Goldstein
- Clinical Neurocardiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD USA
| | - Lauren R. Brinster
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD USA
| | - Stephen G. Kaler
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
22
|
Catecholamine metabolites affected by the copper-dependent enzyme dopamine-beta-hydroxylase provide sensitive biomarkers for early diagnosis of menkes disease and viral-mediated ATP7A gene therapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 68:223-33. [PMID: 24054147 DOI: 10.1016/b978-0-12-411512-5.00011-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Menkes disease is a lethal X-linked recessive disorder of copper metabolism caused by mutations in ATP7A, a copper-transporting ATPase with diverse and important biological functions. Partial deficiency of dopamine-beta-hydroxylase is a biochemical hallmark of this illness due to the normal role of ATP7A in delivery of copper as an enzymatic cofactor. We exploited this fact to develop a diagnostic test for Menkes disease, which proved highly sensitive and specific. The assay has enabled early identification of affected patients, leading to enhanced survival and improved neurodevelopment after early copper treatment, including some completely normal outcomes. In preclinical efforts to develop improved therapies for patients with non-copper-responsive ATP7A mutations, we used brain-directed adeno-associated viral gene therapy to rescue a murine model of the disease. Statistically significant improvement in brain catechol ratios correlated with enhanced survival, and cerebrospinal fluid catechols represent candidate surrogate markers of treatment effect in a future gene therapy clinical trial.
Collapse
|
23
|
Torres-Vega A, Pliego-Rivero BF, Otero-Ojeda GA, Gómez-Oliván LM, Vieyra-Reyes P. Limbic system pathologies associated with deficiencies and excesses of the trace elements iron, zinc, copper, and selenium. Nutr Rev 2012. [PMID: 23206282 DOI: 10.1111/j.1753-4887.2012.00521.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Deficiencies of nutrients such as amino acids, vitamins, lipids, and trace elements during gestation and early infanthood have strong deleterious effects on the development of the limbic system; these effects may be irreversible, even when adequate supplementation is provided at later developmental stages. Recent advances in the neurochemistry of biometals are increasingly establishing the roles of the trace elements iron, copper, zinc, and selenium in a variety of cell functions and are providing insight into the repercussions of deficiencies and excesses of these elements on the development of the central nervous system, especially the limbic system. The limbic system comprises diverse areas with high metabolic demands and differential storage of iron, copper, zinc, and selenium. This review summarizes available evidence suggesting the involvement of these trace elements in pathological disorders of the limbic system.
Collapse
Affiliation(s)
- Adriana Torres-Vega
- Neurofisiología de la Conducta, Facultad de Medicina, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | | | | | | | | |
Collapse
|
24
|
Møller LB, Hicks JD, Holmes CS, Goldstein DS, Brendl C, Huppke P, Kaler SG. Diagnosis of copper transport disorders. CURRENT PROTOCOLS IN HUMAN GENETICS 2011; Chapter 17:Unit17.9. [PMID: 21735378 DOI: 10.1002/0471142905.hg1709s70] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Techniques for the diagnosis of copper transport disorders are increasingly important due to recent recognition of previously unappreciated clinical phenotypes and emerging advances in the treatment of these conditions. Here, we collate the diagnostic approaches and techniques currently employed for biochemical and molecular assessment of at-risk individuals in whom abnormal copper metabolism is suspected.
Collapse
|
25
|
Abstract
This Review summarizes recent advances in understanding copper-transporting ATPase 1 (ATP7A), and examines the neurological phenotypes associated with dysfunction of this protein. Involvement of ATP7A in axonal outgrowth, synapse integrity and neuronal activation underscores the fundamental importance of copper metabolism to neurological function. Defects in ATP7A cause Menkes disease, an infantile-onset, lethal condition. Neonatal diagnosis and early treatment with copper injections enhance survival in patients with this disease, and can normalize clinical outcomes if mutant ATP7A molecules retain small amounts of residual activity. Gene replacement rescues a mouse model of Menkes disease, suggesting a potential therapeutic approach for patients with complete loss-of-function ATP7A mutations. Remarkably, a newly discovered ATP7A disorder-isolated distal motor neuropathy-has none of the characteristic clinical or biochemical abnormalities of Menkes disease or its milder allelic variant occipital horn syndrome (OHS), instead resembling Charcot-Marie-Tooth disease type 2. These findings indicate that ATP7A has a crucial but previously unappreciated role in motor neuron maintenance, and that the mechanism underlying ATP7A-related distal motor neuropathy is distinct from Menkes disease and OHS pathophysiology. Collectively, these insights refine our knowledge of the neurology of ATP7A-related copper transport diseases and pave the way for further progress in understanding ATP7A function.
Collapse
|
26
|
Bousquet-Moore D, Mains RE, Eipper BA. Peptidylgycine α-amidating monooxygenase and copper: a gene-nutrient interaction critical to nervous system function. J Neurosci Res 2011; 88:2535-45. [PMID: 20648645 DOI: 10.1002/jnr.22404] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Peptidylgycine alpha-amidating monooxygenase (PAM), a highly conserved copper-dependent enzyme, is essential for the synthesis of all amidated neuropeptides. Biophysical studies revealed that the binding of copper to PAM affects its structure, and cell biological studies demonstrated that the endocytic trafficking of PAM was sensitive to copper. We review data indicating that genetic reduction of PAM expression and mild copper deficiency in mice cause similar alterations in several physiological functions known to be regulated by neuropeptides: thermal regulation, seizure sensitivity, and anxiety-like behavior.
Collapse
|
27
|
Desai V, Donsante A, Swoboda KJ, Martensen M, Thompson J, Kaler SG. Favorably skewed X-inactivation accounts for neurological sparing in female carriers of Menkes disease. Clin Genet 2011; 79:176-82. [PMID: 20497190 DOI: 10.1111/j.1399-0004.2010.01451.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Classical Menkes disease is an X-linked recessive neurodegenerative disorder caused by mutations in ATP7A, which is located at Xq13.1-q21. ATP7A encodes a copper-transporting P-type ATPase and plays a critical role in development of the central nervous system. With rare exceptions involving sex chromosome aneuploidy or X-autosome translocations, female carriers of ATP7A mutations are asymptomatic except for subtle hair and skin abnormalities, although the mechanism for this neurological sparing has not been reported. We studied a three-generation family in which a severe ATP7A mutation, a 5.5-kb genomic deletion spanning exons 13 and 14, segregated. The deletion junction fragment was amplified from the proband by long-range polymerase chain reaction and sequenced to characterize the breakpoints. We screened at-risk females in the family for this junction fragment and analyzed their X-inactivation patterns using the human androgen-receptor (HUMARA) gene methylation assay. We detected the junction fragment in the proband, two obligate heterozygotes, and four of six at-risk females. Skewed inactivation of the X chromosome harboring the deletion was noted in all female carriers of the deletion (n = 6), whereas random X-inactivation was observed in all non-carriers (n = 2). Our results formally document one mechanism for neurological sparing in female carriers of ATP7A mutations. Based on review of X-inactivation patterns in female carriers of other X-linked recessive diseases, our findings imply that substantial expression of a mutant ATP7A at the expense of the normal allele could be associated with neurologic symptoms in female carriers of Menkes disease and its allelic variants, occipital horn syndrome, and ATP7A-related distal motor neuropathy.
Collapse
Affiliation(s)
- V Desai
- Unit on Human Copper Metabolism, Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1832, USA
| | | | | | | | | | | |
Collapse
|
28
|
Lutsenko S, Bhattacharjee A, Hubbard AL. Copper handling machinery of the brain. Metallomics 2010; 2:596-608. [DOI: 10.1039/c0mt00006j] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|