1
|
Nabizadeh F, KamaliZonouzi S, Noori M. Cerebrospinal fluid biomarkers profile in scans without evidence of dopaminergic deficits (SWEDD). IBRO Neurosci Rep 2023; 15:320-326. [PMID: 37953806 PMCID: PMC10632530 DOI: 10.1016/j.ibneur.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/02/2023] [Accepted: 10/14/2023] [Indexed: 11/14/2023] Open
Abstract
Background A small proportion of patients with clinical parkinsonism have normal transporter-single photon emission computed tomography (DaTSPECT) which is commonly defined as scans without evidence of dopaminergic deficits (SWEDD). A better understanding of SWEDD can improve the current therapeutic options and appropriate disease monitoring. Aim We aimed to assess CSF biomarkers levels including α-synuclein (α-syn), amyloid βeta (Aβ1-42), total tau (t-tau), and phosphorylated tau (p-tau) in SWEDD and investigate the longitudinal alteration in the CSF profile. Methods In total, 406 early-stage PD, 58 SWEDD, and 187 healthy controls (HCs) were entered into our study from PPMI. We compared the level of CSF biomarkers at baseline, six months, one year, and two years. Furthermore, the longitudinal alteration of CSF biomarkers was explored in each group using linear mixed models. Results There was no significant difference in the level of CSF α-syn Aβ1-42, t-tau, and p-tau between HCs and SWEDD at different time points. Investigating the level of CSF α-syn in PD and SWEDD showed a significant difference at one (p = 0.016) and two years (p = 0.006). Also, we observed a significant difference in the level of CSF Aβ1-42 between SWEDD and PD at one year (p = 0.012). Moreover, there was a significant difference in the level of CSF t-tau between SWEDD and PD subjects at one (p = 0.013) and two years (p = 0.017). Furthermore, there was a significant difference in the level of CSF p-tau between SWEDD and PD groups at two years visits (p = 0.030). Longitudinal analysis showed a significant decrease after one (p = 0.029) and two years (p = 0.002) from baseline in the level of CSF α-syn only in the PD group. Also, we observed that the level of CSF Aβ1-42 significantly increased after one year in SWEDD (p = 0.031) and decreased after two years from baseline in PD subjects (p = 0.005). Moreover, there was a significant increase in the level of CSF t-tau after two years (p = 0.036) and CSF p-tau after six months from baseline in SWEDD subjects (p = 0.011). Conclusion This finding suggests a faster neurodegeneration process in PD patients compared to SWEDD at least based on these biomarkers. Future studies with longer follow-up duration and more sample sizes are necessary to validate our results.
Collapse
Affiliation(s)
- Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Noori
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Urology Research Center, Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
2
|
Lin X, Guo Y, Dong R, Wang B, Bi Y. Potential value of cerebrospinal fluid α-synuclein in the identification of postoperative delirium undergoing knee/hip arthroplasty: The perioperative neurocognitive disorder and biomarker lifestyle study. Front Neurosci 2022; 16:935869. [PMID: 36353596 PMCID: PMC9637833 DOI: 10.3389/fnins.2022.935869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/04/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Postoperative delirium (POD) is a common postoperative complication, which may be associated with α-synuclein (α-syn). The purpose of this study was to explore the association between the expression level of α-syn in cerebrospinal fluid (CSF) and POD. Methods We conducted a prospective observational cohort study, which involved in 740 participants (mean age of 61.86 years, range 40–90 years; 40% female) from the Perioperative Neurocognitive Disorder And Biomarker Lifestyle (PNDABLE) study in the final analysis. POD was diagnosed using the Confusion Assessment Scale (CAM), and its severity was measured using the Memorial Delirium Assessment Scale (MDAS). Enzyme-linked immune-sorbent assay (ELISA) was used to detect the concentrations of α-syn, Aβ40, Aβ42, T-tau, and P-tau in CSF. Results The incidence of POD was 11.22% (83/740). The logistic regression analysis showed that the increased concentrations of CSF α-syn (OR = 1.005, 95%CI 1.004–1.006, P < 0.001), P-tau (OR = 1.093, 95%CI 1.071–1.115, P < 0.001), and T-tau (OR = 1.008, 95%CI 1.006–1.009, P < 0.001) were risk factors of POD. Linear regression showed that CSF α-syn had positive correlations with P-tau (β = 0.480, P < 0.001), T-tau (β = 0.334, P < 0.001), while negative correlations with Aβ40 (β = –0.378 P < 0.001), Aβ42 (β = -0.800, P = 0.001) in POD patients. Mediation analyses showed the association between α-syn and POD was partially mediated by tau pathologies (proportion: 16–17%). Conclusion CSF α-syn is one of the preoperative risk factors for POD, which may be mediated through tau pathologies. Clinical trial registration [www.ClinicalTrials.gov], identifier [ChiCTR20 00033439].
Collapse
Affiliation(s)
- Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yuwei Guo
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Medical College of Nanjing University, Nanjing, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Bin Wang,
| | - Yanlin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
- Yanlin Bi,
| |
Collapse
|
3
|
Li JQ, Bi YL, Shen XN, Wang HF, Xu W, Tan CC, Dong Q, Wang YJ, Tan L, Yu JT. Cerebrospinal fluid α-synuclein predicts neurodegeneration and clinical progression in non-demented elders. Transl Neurodegener 2020; 9:41. [PMID: 33228804 PMCID: PMC7685645 DOI: 10.1186/s40035-020-00222-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022] Open
Abstract
Background Accumulating reports have suggested that α-synuclein is involved in the pathogenesis of Alzheimer’s disease (AD). As the cerebrospinal fluid (CSF) α-synuclein has been suggested as a potential biomarker of AD, this study was set out to test whether CSF α-synuclein is associated with other AD biomarkers and could predict neurodegeneration and clinical progression in non-demented elders. Methods The associations between CSF α-synuclein and other AD biomarkers were investigated at baseline in non-demented Chinese elders. The predictive values of CSF α-synuclein for longitudinal neuroimaging change and the conversion risk of non-demented elders were assessed using linear mixed effects models and multivariate Cox proportional hazard models, respectively, in the Alzheimer’s disease Neuroimaging Initiative (ADNI) database. Results The CSF α-synuclein levels correlated with AD-specific biomarkers, CSF total tau and phosphorylated tau levels, in 651 Chinese Han participants (training set). These positive correlations were replicated in the ADNI database (validation set). Using a longitudinal cohort from ADNI, the CSF α-synuclein concentrations were found to increase with disease severity. The CSF α-synuclein had high diagnostic accuracy for AD based on the “ATN” (amyloid, tau, neurodegeneration) system (A + T+ versus A − T − control) (area under the receiver operating characteristic curve, 0.84). Moreover, CSF α-synuclein predicted longitudinal hippocampus atrophy and conversion from MCI to AD dementia. Conclusions CSF α-synuclein is associated with CSF tau levels and could predict neurodegeneration and clinical progression in non-demented elders. This finding indicates that CSF α-synuclein is a potentially useful early biomarker for AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-020-00222-1.
Collapse
Affiliation(s)
- Jie-Qiong Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 20040, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.,Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Xue-Ning Shen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 20040, China
| | - Hui-Fu Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Wei Xu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 20040, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, 20040, China.
| | | |
Collapse
|
4
|
von Rüden EL, Zellinger C, Gedon J, Walker A, Bierling V, Deeg CA, Hauck SM, Potschka H. Regulation of Alzheimer's disease-associated proteins during epileptogenesis. Neuroscience 2019; 424:102-120. [PMID: 31705965 DOI: 10.1016/j.neuroscience.2019.08.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 07/26/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
Abstract
Clinical evidence and pathological studies suggest a bidirectional link between temporal lobe epilepsy and Alzheimer's disease (AD). Data analysis from omic studies offers an excellent opportunity to identify the overlap in molecular alterations between the two pathologies. We have subjected proteomic data sets from a rat model of epileptogenesis to a bioinformatics analysis focused on proteins functionally linked with AD. The data sets have been obtained for hippocampus (HC) and parahippocampal cortex samples collected during the course of epileptogenesis. Our study confirmed a relevant dysregulation of proteins linked with Alzheimer pathogenesis. When comparing the two brain areas, a more prominent regulation was evident in parahippocampal cortex samples as compared to the HC. Dysregulated protein groups comprised those affecting mitochondrial function and calcium homeostasis. Differentially expressed mitochondrial proteins included proteins of the mitochondrial complexes I, III, IV, and V as well as of the accessory subunit of complex I. The analysis also revealed a regulation of the microtubule associated protein Tau in parahippocampal cortex tissue during the latency phase. This was further confirmed by immunohistochemistry. Moreover, we demonstrated a complex epileptogenesis-associated dysregulation of proteins involved in amyloid β processing and its regulation. Among others, the amyloid precursor protein and the α-secretase alpha disintegrin metalloproteinase 17 were included. Our analysis revealed a relevant regulation of key proteins known to be associated with AD pathogenesis. The analysis provides a comprehensive overview of shared molecular alterations characterizing epilepsy development and manifestation as well as AD development and progression.
Collapse
Affiliation(s)
- Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Christina Zellinger
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Julia Gedon
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Bierling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany; Experimental Ophthalmology, Philipps University of Marburg, Marburg, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
5
|
Rangachari V, Dean DN, Rana P, Vaidya A, Ghosh P. Cause and consequence of Aβ - Lipid interactions in Alzheimer disease pathogenesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2018; 1860:1652-1662. [PMID: 29526709 PMCID: PMC6133763 DOI: 10.1016/j.bbamem.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/28/2018] [Accepted: 03/02/2018] [Indexed: 12/14/2022]
Abstract
Self-templating propagation of protein aggregate conformations is increasingly becoming a significant factor in many neurological diseases. In Alzheimer disease (AD), intrinsically disordered amyloid-β (Aβ) peptides undergo aggregation that is sensitive to environmental conditions. High-molecular weight aggregates of Aβ that form insoluble fibrils are deposited as senile plaques in AD brains. However, low-molecular weight aggregates called soluble oligomers are known to be the primary toxic agents responsible for neuronal dysfunction. The aggregation process is highly stochastic involving both homotypic (Aβ-Aβ) and heterotypic (Aβ with interacting partners) interactions. Two of the important members of interacting partners are membrane lipids and surfactants, to which Aβ shows a perpetual association. Aβ-membrane interactions have been widely investigated for more than two decades, and this research has provided a wealth of information. Although this has greatly enriched our understanding, the objective of this review is to consolidate the information from the literature that collectively showcases the unique phenomenon of lipid-mediated Aβ oligomer generation, which has largely remained inconspicuous. This is especially important because Aβ aggregate "strains" are increasingly becoming relevant in light of the correlations between the structure of aggregates and AD phenotypes. Here, we will focus on aspects of Aβ-lipid interactions specifically from the context of how lipid modulation generates a wide variety of biophysically and biochemically distinct oligomer sub-types. This, we believe, will refocus our thinking on the influence of lipids and open new approaches in delineating the mechanisms of AD pathogenesis. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Vijayaraghavan Rangachari
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA.
| | - Dexter N Dean
- Department of Chemistry & Biochemistry, University of Southern Mississippi, Hattiesburg, MS 39406, USA
| | - Pratip Rana
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Ashwin Vaidya
- Department of Mathematical Science, Montclair State University, Montclair, NJ 07043, USA
| | - Preetam Ghosh
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
6
|
Coskuner-Weber O, Uversky VN. Insights into the Molecular Mechanisms of Alzheimer's and Parkinson's Diseases with Molecular Simulations: Understanding the Roles of Artificial and Pathological Missense Mutations in Intrinsically Disordered Proteins Related to Pathology. Int J Mol Sci 2018; 19:E336. [PMID: 29364151 PMCID: PMC5855558 DOI: 10.3390/ijms19020336] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/14/2018] [Accepted: 01/16/2018] [Indexed: 12/18/2022] Open
Abstract
Amyloid-β and α-synuclein are intrinsically disordered proteins (IDPs), which are at the center of Alzheimer's and Parkinson's disease pathologies, respectively. These IDPs are extremely flexible and do not adopt stable structures. Furthermore, both amyloid-β and α-synuclein can form toxic oligomers, amyloid fibrils and other type of aggregates in Alzheimer's and Parkinson's diseases. Experimentalists face challenges in investigating the structures and thermodynamic properties of these IDPs in their monomeric and oligomeric forms due to the rapid conformational changes, fast aggregation processes and strong solvent effects. Classical molecular dynamics simulations complement experiments and provide structural information at the atomic level with dynamics without facing the same experimental limitations. Artificial missense mutations are employed experimentally and computationally for providing insights into the structure-function relationships of amyloid-β and α-synuclein in relation to the pathologies of Alzheimer's and Parkinson's diseases. Furthermore, there are several natural genetic variations that play a role in the pathogenesis of familial cases of Alzheimer's and Parkinson's diseases, which are related to specific genetic defects inherited in dominant or recessive patterns. The present review summarizes the current understanding of monomeric and oligomeric forms of amyloid-β and α-synuclein, as well as the impacts of artificial and pathological missense mutations on the structural ensembles of these IDPs using molecular dynamics simulations. We also emphasize the recent investigations on residual secondary structure formation in dynamic conformational ensembles of amyloid-β and α-synuclein, such as β-structure linked to the oligomerization and fibrillation mechanisms related to the pathologies of Alzheimer's and Parkinson's diseases. This information represents an important foundation for the successful and efficient drug design studies.
Collapse
Affiliation(s)
- Orkid Coskuner-Weber
- Türkisch-Deutsche Universität, Theoretical and Computational Biophysics Group, Molecular Biotechnology, Sahinkaya Caddesi, No. 86, Beykoz, Istanbul 34820, Turkey.
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia.
| |
Collapse
|
7
|
Takeshita Y, Shibata N, Kasanuki K, Nagata T, Shinagawa S, Kobayashi N, Ohnuma T, Suzuki A, Kawai E, Takayama T, Nishioka K, Motoi Y, Hattori N, Nakayama K, Yamada H, Arai H. Genetic association between RAGE polymorphisms and Alzheimer's disease and Lewy body dementias in a Japanese cohort: a case-control study. Int J Geriatr Psychiatry 2017; 32:1241-1246. [PMID: 27699858 DOI: 10.1002/gps.4600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 11/06/2022]
Abstract
BACKGROUND/AIMS Interaction of receptor for advanced glycation end products (RAGE) with amyloid-β increases amplification of oxidative stress and plays pathological roles in Alzheimer's disease (AD). Oxidative stress leads to α-synuclein aggregation and is also a major contributing factor in the pathogenesis of Lewy body dementias (LBDs). Therefore, we aimed to investigate whether RAGE gene polymorphisms were associated with AD and LBDs. METHODS Four single nucleotide polymorphisms (SNPs)-rs1800624, rs1800625, rs184003, and rs2070600-of the gene were analyzed using a case-control study design comprising 288 AD patients, 76 LBDs patients, and 105 age-matched controls. RESULTS Linkage disequilibrium (LD) examination showed strong LD from rs1800624 to rs2070600 on the gene (1.1 kb) in our cases in Japan. Rs184003 was associated with an increased risk of AD. Although there were no statistical associations for the other three SNPs, haplotypic analyses detected genetic associations between AD and the RAGE gene. Although relatively few cases were studied, results from the SNPs showed that they did not modify the risk of developing LBDs in the Japanese population. CONCLUSION Our findings suggested that polymorphisms in the RAGE gene are involved in genetic susceptibility to AD. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yoshihide Takeshita
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kasanuki
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Nagata
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan.,Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | | | - Nobuyuki Kobayashi
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Ayako Suzuki
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Eri Kawai
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Takayama
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhiko Nakayama
- Department of Psychiatry, Jikei University School of Medicine, Tokyo, Japan
| | - Hisashi Yamada
- Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Heii Arai
- Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Baldassarre M, Baronio CM, Morozova-Roche LA, Barth A. Amyloid β-peptides 1-40 and 1-42 form oligomers with mixed β-sheets. Chem Sci 2017; 8:8247-8254. [PMID: 29568473 PMCID: PMC5857929 DOI: 10.1039/c7sc01743j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 10/12/2017] [Indexed: 12/16/2022] Open
Abstract
Two main amyloid-β peptides of different length (Aβ40 and Aβ42) are involved in Alzheimer's disease. Their relative abundance is decisive for the severity of the disease and mixed oligomers may contribute to the toxic species. However, little is know about the extent of mixing. To study whether Aβ40 and Aβ42 co-aggregate, we used Fourier transform infrared spectroscopy in combination with 13C-labeling and spectrum calculation and focused on the amide I vibration, which is sensitive to backbone structure. Mixtures of monomeric labeled Aβ40 and unlabeled Aβ42 (and vice versa) were co-incubated for ∼20 min and their infrared spectrum recorded. The position of the main 13C-amide I' band shifted to higher wavenumbers with increasing admixture of 12C-peptide due to the presence of 12C-amides in the vicinity of 13C-amides. The results indicate that Aβ40 and Aβ42 form mixed oligomers with a largely random distribution of Aβ40 and Aβ42 strands in their β-sheets. The structures of the mixed oligomers are intermediate between those of the pure oligomers. There is no indication that one of the peptides forces the backbone structure of its oligomers on the other peptide when they are mixed as monomers. We also demonstrate that isotope-edited infrared spectroscopy can distinguish aggregation modulators that integrate into the backbone structure of their interaction partner from those that do not. As an example for the latter case, the pro-inflammatory calcium binding protein S100A9 is shown not to incorporate into the β-sheets of Aβ42.
Collapse
Affiliation(s)
- Maurizio Baldassarre
- Department of Biochemistry and Biophysics , Stockholm University , Arrhenius Laboratories , 10691 Stockholm , Sweden .
| | - Cesare M Baronio
- Department of Biochemistry and Biophysics , Stockholm University , Arrhenius Laboratories , 10691 Stockholm , Sweden .
| | | | - Andreas Barth
- Department of Biochemistry and Biophysics , Stockholm University , Arrhenius Laboratories , 10691 Stockholm , Sweden .
| |
Collapse
|
9
|
Van Dam D, Vermeiren Y, Dekker AD, Naudé PJW, Deyn PPD. Neuropsychiatric Disturbances in Alzheimer's Disease: What Have We Learned from Neuropathological Studies? Curr Alzheimer Res 2017; 13:1145-64. [PMID: 27137218 PMCID: PMC5070416 DOI: 10.2174/1567205013666160502123607] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/04/2016] [Accepted: 04/27/2016] [Indexed: 12/16/2022]
Abstract
Neuropsychiatric symptoms (NPS) are an integral part of the dementia syndrome and were therefore recently included in the core diagnostic criteria of dementia. The near universal prevalence of NPS in Alzheimer's disease (AD), combined with their disabling effects on patients and caregivers, is contrasted by the fact that few effective and safe treatments exist, which is in part to be attributed to our incomplete understanding of the neurobiology of NPS. In this review, we describe the pathological alterations typical for AD, including spreading and evolution of burden, effect on the molecular and cellular integrity, functional consequences and atrophy of NPS-relevant brain regions and circuits in correlation with specific NPS assessments. It is thereby clearly established that NPS are fundamental expressions of the underlying neurodegenerative brain disease and not simply reflect the patients' secondary response to their illness. Neuropathological studies, moreover, include a majority of end-stage patient samples, which may not correctly represent the pathophysiological environment responsible for particular NPS that may already be present in an early stage, or even prior to AD diagnosis. The burdensome nature and high prevalence of NPS, in combination with the absence of effective and safe pharmacotherapies, provide a strong incentive to continue neuropathological and neurochemical, as well as imaging and other relevant approaches to further improve our apprehension of the neurobiology of NPS.
Collapse
Affiliation(s)
| | | | | | | | - Peter P De Deyn
- Laboratory of Neurochemistry and Behaviour, Institute Born-Bunge, Department of Biomedical Sciences, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, and, Faculty of Medical and Health Care Sciences, University of Antwerp, Universiteitsplein 1, BE-2610 Wilrijk (Antwerp), Belgium
| |
Collapse
|
10
|
Suzuki A, Shibata N, Kasanuki K, Nagata T, Shinagawa S, Kobayashi N, Ohnuma T, Takeshita Y, Kawai E, Takayama T, Nishioka K, Motoi Y, Hattori N, Nakayama K, Yamada H, Arai H. Genetic Association between Presenilin 2 Polymorphisms and Alzheimer's Disease and Dementia of Lewy Body Type in a Japanese Population. Dement Geriatr Cogn Dis Extra 2016; 6:90-7. [PMID: 27065294 PMCID: PMC4821141 DOI: 10.1159/000444080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background/Aims Mutations in the presenilin 2 (PSEN2) gene cause familial Alzheimer's disease (AD). Common polymorphisms affect gene activity and increase the risk of AD. Nonsynonymous polymorphisms in the PSEN2 gene showed Lewy body dementia (LBD) phenotypes clinically. Therefore, we aimed to investigate whether PSEN2 gene polymorphisms were associated with AD or LBD. Methods Seven single nucleotide polymorphisms (SNPs) of the gene were analyzed using a case-control study design comprising 288 AD patients, 76 LBD patients, and 105 age-matched controls. Results Linkage disequilibrium (LD) examination showed strong LD from rs1295645 to rs8383 on the gene in our cases from Japan. There were no associations between the SNPs studied here and AD onset, and haplotypic analyses did not detect genetic associations between AD and the PSEN2 gene. Although the number of the cases was small, the SNPs studied did not modify the risk of developing LBD in a Japanese population. Conclusion The common SNPs of the PSEN2 gene did not affect the risk of AD or LBD in a Japanese population. Because genetic variability of the PSEN2 gene is associated with behavioral and psychological symptoms of dementia (BPSD) in AD and LBD, further detailed analyses considering BPSD of both diseases would be required.
Collapse
Affiliation(s)
- Ayako Suzuki
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobuto Shibata
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Koji Kasanuki
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoyuki Nagata
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan; Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Shunichiro Shinagawa
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Tohru Ohnuma
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshihide Takeshita
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Eri Kawai
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiki Takayama
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kenya Nishioka
- Departments of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumiko Motoi
- Departments of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Departments of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuhiko Nakayama
- Department of Psychiatry, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hisashi Yamada
- Division of Molecular Genetics, Institute of DNA Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Heii Arai
- Departments of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
11
|
Martorana A, Di Lorenzo F, Belli L, Sancesario G, Toniolo S, Sallustio F, Sancesario GM, Koch G. Cerebrospinal Fluid Aβ42 Levels: When Physiological Become Pathological State. CNS Neurosci Ther 2015; 21:921-5. [PMID: 26555572 DOI: 10.1111/cns.12476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 12/31/2022] Open
Abstract
Impaired amyloid beta (Aβ) metabolism is currently considered central to understand the pathophysiology of Alzheimer's disease (AD). Measurements of cerebrospinal fluid Aβ levels remain the most useful marker for diagnostic purposes and to individuate people at risk for AD. Despite recent advances criticized the direct role in neurodegeneration of cortical neurons, Aβ is considered responsible for synaptopathy and impairment of neurotransmission and therefore remains the major trigger of AD and future pharmacological treatment remain Aβ oriented. However, experimental and clinical findings showed that Aβ peptides could have a wider range of action responsible for cell dysfunction and for appearance of clinico-pathological entities different from AD. Such findings may induce misunderstanding of the real role played by Aβ in AD and therefore strengthen criticism on its centrality and need for CSF measurements. Aim of this review is to discuss the role of CSF Aβ levels in light of experimental, clinical pathologic, and electrophysiological results in AD and other pathological entities to put in a correct frame the value of Aβ changes.
Collapse
Affiliation(s)
- Alessandro Martorana
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Lorenzo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy.,Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Lorena Belli
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Giuseppe Sancesario
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Sofia Toniolo
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | - Fabrizio Sallustio
- Clinica Neurologica, Sytem Medicine Department, University of Rome "Tor Vergata", Rome, Italy
| | | | - Giacomo Koch
- Non-Invasive Brain Stimulation Unit, Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| |
Collapse
|
12
|
Fröhlich C, Zschiebsch K, Gröger V, Paarmann K, Steffen J, Thurm C, Schropp EM, Brüning T, Gellerich F, Radloff M, Schwabe R, Lachmann I, Krohn M, Ibrahim S, Pahnke J. Activation of Mitochondrial Complex II-Dependent Respiration Is Beneficial for α-Synucleinopathies. Mol Neurobiol 2015; 53:4728-44. [PMID: 26319560 PMCID: PMC4965489 DOI: 10.1007/s12035-015-9399-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 08/17/2015] [Indexed: 02/06/2023]
Abstract
Parkinson’s disease and dementia with Lewy bodies are major challenges in research and clinical medicine world-wide and contribute to the most common neurodegenerative disorders. Previously, specific mitochondrial polymorphisms have been found to enhance clearance of amyloid-β from the brain of APP-transgenic mice leading to beneficial clinical outcome. It has been discussed whether specific mitochondrial alterations contribute to disease progression or even prevent toxic peptide deposition, as seen in many neurodegenerative diseases. Here, we investigated α-synuclein-transgenic C57BL/6J mice with the A30P mutation, and a novel A30P C57BL/6J mouse model with three mitochondrial DNA polymorphisms in the ND3, COX3 and mtRNAArg genes, as found in the inbred NOD/LtJ mouse strain. We were able to detect that the new model has increased mitochondrial complex II-respiration which occurs in parallel to neuronal loss and improved motor performance, although it exhibits higher amounts of high molecular weight species of α-synuclein. High molecular weight aggregates of different peptides are controversially discussed in the light of neurodegeneration. A favourable hypothesis states that high molecular weight species are protective and of minor importance for the pathogenesis of neurodegenerative disorders as compared to the extreme neurotoxic monomers and oligomers. Summarising, our results point to a potentially protective and beneficial effect of specific mitochondrial polymorphisms which cause improved mitochondrial complex II-respiration in α-synucleinopathies, an effect that could be exploited further for pharmaceutical interventions.
Collapse
Affiliation(s)
- Christina Fröhlich
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Katja Zschiebsch
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,University of Frankfurt, Institute of Clinical Pharmacology/ZAFES, Frankfurt, Germany
| | - Victoria Gröger
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,Fraunhofer Institute for Cell Therapy and Immunology (IZI), Halle, Germany
| | - Kristin Paarmann
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,LIED, University of Lübeck (UzL), Lübeck, Germany
| | - Johannes Steffen
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany.,LIED, University of Lübeck (UzL), Lübeck, Germany
| | - Christoph Thurm
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Eva-Maria Schropp
- Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Thomas Brüning
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | - Frank Gellerich
- Department of Neurology, University of Magdeburg/Leibniz Institut for Neurobiology, Magdeburg, Germany
| | - Martin Radloff
- Institute for Mathematical Stochastics, University of Magdeburg, Magdeburg, Germany
| | - Rainer Schwabe
- Institute for Mathematical Stochastics, University of Magdeburg, Magdeburg, Germany
| | | | - Markus Krohn
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway.,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany
| | | | - Jens Pahnke
- Department of Pathology (PAT), Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) and Oslo University Hospital (OUS), Postboks 4950 Nydalen, 0424, Oslo, Norway. .,Department of Neurology, Neurodegeneration Research Lab (NRL), University of Magdeburg, Magdeburg, Germany. .,LIED, University of Lübeck (UzL), Lübeck, Germany. .,Department of Bioorganic Chemistry, Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany.
| |
Collapse
|
13
|
Saleh H, Saleh A, Yao H, Cui J, Shen Y, Li R. Mini review: linkage between α-Synuclein protein and cognition. Transl Neurodegener 2015; 4:5. [PMID: 25834729 PMCID: PMC4381459 DOI: 10.1186/s40035-015-0026-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/17/2015] [Indexed: 11/10/2022] Open
Abstract
α-synuclein is a protein that plays important roles in cognitive function in the normal brain, although its exact role is not fully understood. However, current studies reveal that defects in α-synuclein function could contribute to various neurodegenerative disorders, such as Parkinson’s disease (PD), a disease with symptomatic progression of deterioration in motor and cognitive function. Recent studies show that the level of α -synuclein in cerebrospinal fluid (CSF) is highly correlated with speed of cognitive decline, suggesting a potential role of α-synuclein in cognitive function. In this mini review, we will be focus on literatures of α-synuclein in cognitive function in the non-diseased brain, as well as the impact that defective α-synuclein has on cognition in disease brain. This will be accomplished by assessing the effects of soluble α-synuclein, α-synuclein oligomers, and extracellular α-synuclein transport, on neurodegeneration.
Collapse
Affiliation(s)
- Huda Saleh
- Center for Advanced Therapeutic Strategies for Brain Disorders Roskamp Institute, Sarasota, FL 34243 USA
| | - Ayeh Saleh
- Center for Advanced Therapeutic Strategies for Brain Disorders Roskamp Institute, Sarasota, FL 34243 USA
| | - Hailan Yao
- Center for Advanced Therapeutic Strategies for Brain Disorders Roskamp Institute, Sarasota, FL 34243 USA
| | - Jie Cui
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243 USA
| | - Yong Shen
- Center for Advanced Therapeutic Strategies for Brain Disorders Roskamp Institute, Sarasota, FL 34243 USA ; Neurodegenerative Disease Research Center, School of Life Sciences, University of Science and Technology of China, Anhui, 230027 China
| | - Rena Li
- Center for Hormone Advanced Science and Education, Roskamp Institute, Sarasota, FL 34243 USA ; Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100088 China
| |
Collapse
|
14
|
Viola KL, Klein WL. Amyloid β oligomers in Alzheimer's disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 2015; 129:183-206. [PMID: 25604547 DOI: 10.1007/s00401-015-1386-3] [Citation(s) in RCA: 457] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/11/2015] [Accepted: 01/11/2015] [Indexed: 12/22/2022]
Abstract
Protein aggregation is common to dozens of diseases including prionoses, diabetes, Parkinson's and Alzheimer's. Over the past 15 years, there has been a paradigm shift in understanding the structural basis for these proteinopathies. Precedent for this shift has come from investigation of soluble Aβ oligomers (AβOs), toxins now widely regarded as instigating neuron damage leading to Alzheimer's dementia. Toxic AβOs accumulate in AD brain and constitute long-lived alternatives to the disease-defining Aβ fibrils deposited in amyloid plaques. Key experiments using fibril-free AβO solutions demonstrated that while Aβ is essential for memory loss, the fibrillar Aβ in amyloid deposits is not the agent. The AD-like cellular pathologies induced by AβOs suggest their impact provides a unifying mechanism for AD pathogenesis, explaining why early stage disease is specific for memory and accounting for major facets of AD neuropathology. Alternative ideas for triggering mechanisms are being actively investigated. Some research favors insertion of AβOs into membrane, while other evidence supports ligand-like accumulation at particular synapses. Over a dozen candidate toxin receptors have been proposed. AβO binding triggers a redistribution of critical synaptic proteins and induces hyperactivity in metabotropic and ionotropic glutamate receptors. This leads to Ca(2+) overload and instigates major facets of AD neuropathology, including tau hyperphosphorylation, insulin resistance, oxidative stress, and synapse loss. Because different species of AβOs have been identified, a remaining question is which oligomer is the major pathogenic culprit. The possibility has been raised that more than one species plays a role. Despite some key unknowns, the clinical relevance of AβOs has been established, and new studies are beginning to point to co-morbidities such as diabetes and hypercholesterolemia as etiological factors. Because pathogenic AβOs appear early in the disease, they offer appealing targets for therapeutics and diagnostics. Promising therapeutic strategies include use of CNS insulin signaling enhancers to protect against the presence of toxins and elimination of the toxins through use of highly specific AβO antibodies. An AD-dependent accumulation of AβOs in CSF suggests their potential use as biomarkers and new AβO probes are opening the door to brain imaging. Overall, current evidence indicates that Aβ oligomers provide a substantive molecular basis for the cause, treatment and diagnosis of Alzheimer's disease.
Collapse
|
15
|
Wang Y, Yu Z, Ren H, Wang J, Wu J, Chen Y, Ding Z. The synergistic effect between β-amyloid(1-42) and α-synuclein on the synapses dysfunction in hippocampal neurons. J Chem Neuroanat 2014; 63:1-5. [PMID: 25445382 DOI: 10.1016/j.jchemneu.2014.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 11/09/2014] [Accepted: 11/09/2014] [Indexed: 01/23/2023]
Abstract
OBJECTIVE This study was to explore the molecular mechanisms underpinning the synergetic effect between β-amyloid (Aβ) and α-synuclein (α-syn) on synapses dysfunction during the development of neurodegenerative disorders including Parkinson's disease (PD), dementia with Lewy bodies (DLB) and Alzheimer disease (AD). METHODS The primary cultured hippocampal neurons prepared from the fetal tissue of mice were divided into six groups and treated with DMSO, Aβ(42-1), α-syn, Aβ(1-42), α-syn plus Aβ(42-1) and α-syn plus Aβ(1-42), respectively. After incubation for 24 h, the synapsin I content was calculated by immunofluorescence and the synaptic vesicle recycling was monitored by FM1-43 staining. Furthermore, the expression of cysteine string protein-α (CSPα) detected by western blot was also conducted. RESULTS Either Aβ(1-42) or α-syn alone could induce a significant synapses dysfunction through reducing the content of synapsin I, inhibiting the synaptic vesicle recycling as well as down-regulating the expression of CSPα compared with the controls (P<0.05). However, simultaneous intervention with both α-syn and Aβ(1-42) aggravated these effects in cultured hippocampal neurons compared with the treatment with α-syn (synapsin I content: P<0.001; synaptic vesicle recycling: P=0.007; CSPα expression: P<0.001) or Aβ(1-42) (synapsin I number: P<0.001; synaptic vesicle recycling: P=0.007 CSPα expression: P<0.001) alone. CONCLUSION There was synergistic effect between Aβ and α-syn on synapses dysfunction through reducing the synapsin I content, inhibiting the synaptic vesicle recycling and down-regulating the expression of CSPα in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Yixuan Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zheming Yu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Huimin Ren
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jian Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jianjun Wu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Yan Chen
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Zhengtong Ding
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200040, China; Department & Institute of Neurology, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| |
Collapse
|
16
|
Eugene C, Laghaei R, Mousseau N. Early oligomerization stages for the non-amyloid component of α-synuclein amyloid. J Chem Phys 2014; 141:135103. [DOI: 10.1063/1.4896381] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Cindie Eugene
- Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Rozita Laghaei
- Département de Physique and Groupe de recherche sur les protéines membranaires (GEPROM), Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
- Department of Chemistry, University of Pittsburgh, 319 Eberly Hall, Pittsburgh, Pennsylvania 15260, USA
| | - Normand Mousseau
- Department of Chemistry, University of Pittsburgh, 319 Eberly Hall, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
17
|
Morris GP, Clark IA, Vissel B. Inconsistencies and controversies surrounding the amyloid hypothesis of Alzheimer's disease. Acta Neuropathol Commun 2014; 2:135. [PMID: 25231068 PMCID: PMC4207354 DOI: 10.1186/s40478-014-0135-5] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 12/16/2022] Open
Abstract
The amyloid hypothesis has driven drug development strategies for Alzheimer's disease for over 20 years. We review why accumulation of amyloid-beta (Aβ) oligomers is generally considered causal for synaptic loss and neurodegeneration in AD. We elaborate on and update arguments for and against the amyloid hypothesis with new data and interpretations, and consider why the amyloid hypothesis may be failing therapeutically. We note several unresolved issues in the field including the presence of Aβ deposition in cognitively normal individuals, the weak correlation between plaque load and cognition, questions regarding the biochemical nature, presence and role of Aβ oligomeric assemblies in vivo, the bias of pre-clinical AD models toward the amyloid hypothesis and the poorly explained pathological heterogeneity and comorbidities associated with AD. We also illustrate how extensive data cited in support of the amyloid hypothesis, including genetic links to disease, can be interpreted independently of a role for Aβ in AD. We conclude it is essential to expand our view of pathogenesis beyond Aβ and tau pathology and suggest several future directions for AD research, which we argue will be critical to understanding AD pathogenesis.
Collapse
Affiliation(s)
- Gary P Morris
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Ian A Clark
- />Research School of Biology, Australian National University, Canberra, Australia
| | - Bryce Vissel
- />Garvan Institute of Medical Research, Neuroscience Department, Neurodegenerative Disorders Laboratory, 384 Victoria Street, Darlinghurst, NSW 2010 Australia
- />Faculty of Medicine, University of New South Wales, Sydney, Australia
| |
Collapse
|
18
|
Jose JC, Chatterjee P, Sengupta N. Cross dimerization of amyloid-β and αsynuclein proteins in aqueous environment: a molecular dynamics simulations study. PLoS One 2014; 9:e106883. [PMID: 25210774 PMCID: PMC4161357 DOI: 10.1371/journal.pone.0106883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Self-assembly of the intrinsically unstructured proteins, amyloid beta (Aβ) and alpha synclein (αSyn), are associated with Alzheimer's Disease, and Parkinson's and Lewy Body Diseases, respectively. Importantly, pathological overlaps between these neurodegenerative diseases, and the possibilities of interactions between Aβ and αSyn in biological milieu emerge from several recent clinical reports and in vitro studies. Nevertheless, there are very few molecular level studies that have probed the nature of spontaneous interactions between these two sequentially dissimilar proteins and key characteristics of the resulting cross complexes. In this study, we have used atomistic molecular dynamics simulations to probe the possibility of cross dimerization between αSyn1-95 and Aβ1-42, and thereby gain insights into their plausible early assembly pathways in aqueous environment. Our analyses indicate a strong probability of association between the two sequences, with inter-protein attractive electrostatic interactions playing dominant roles. Principal component analysis revealed significant heterogeneity in the strength and nature of the associations in the key interaction modes. In most, the interactions of repeating Lys residues, mainly in the imperfect repeats 'KTKEGV' present in αSyn1-95 were found to be essential for cross interactions and formation of inter-protein salt bridges. Additionally, a hydrophobicity driven interaction mode devoid of salt bridges, where the non-amyloid component (NAC) region of αSyn1-95 came in contact with the hydrophobic core of Aβ1-42 was observed. The existence of such hetero complexes, and therefore hetero assembly pathways may lead to polymorphic aggregates with variations in pathological attributes. Our results provide a perspective on development of therapeutic strategies for preventing pathogenic interactions between these proteins.
Collapse
Affiliation(s)
- Jaya C. Jose
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Prathit Chatterjee
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
| | - Neelanjana Sengupta
- Physical Chemistry Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
19
|
Surgucheva I, Newell KL, Burns J, Surguchov A. New α- and γ-synuclein immunopathological lesions in human brain. Acta Neuropathol Commun 2014; 2:132. [PMID: 25209836 PMCID: PMC4172890 DOI: 10.1186/s40478-014-0132-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/20/2014] [Indexed: 11/23/2022] Open
Abstract
Introduction Several neurodegenerative diseases are classified as proteopathies as they are associated with the aggregation of misfolded proteins. Synucleinopathies are a group of neurodegenerative disorders associated with abnormal deposition of synucleins. α-Synucleinopathies include Parkinson’s disease, dementia with Lewy bodies, and multiple system atrophy. Recently accumulation of another member of the synuclein family- γ−synuclein in neurodegenerative diseases compelled the introduction of the term γ−synucleinopathy. The formation of aggregates and deposits of γ−synuclein is facilitated after its oxidation at methionine 38 (Met38). Results Several types of intracytoplasmic inclusions containing post-translationally modified α- and γ−synucleins are detected. Oxidized Met38-γ-synuclein forms aberrant inclusions in amygdala and substantia nigra. Double staining revealed colocalization of oxidized-γ-synuclein with α-synuclein in the cytoplasm of neurons. Another type of synuclein positive inclusions in the amygdala of dementia with Lewy bodies patients has the appearance of Lewy bodies. These inclusions are immunoreactive when analyzed with antibodies to α-synuclein phosphorylated on serine 129, as well as with antibodies to oxidized-γ-synuclein. Some of these Lewy bodies have doughnut-like shape with round or elongated shape. The separate immunofluorescent images obtained with individual antibodies specific to oxidized-γ-synuclein and phospho-α-synuclein clearly shows the colocalization of these synuclein isoforms in substantia nigra inclusions. Phospho-α-synuclein is present almost exclusively at the periphery of these structures, whereas oxidized-γ-syn immunoreactivity is also located in the internal parts forming dot-like pattern of staining. We also identified several types of oxidized-γ-syn positive astrocytes with different morphology and examined their immunohistochemical phenotypes. Some of them are compact cells with short processes, others have longer processes. Oxidized-γ-synuclein positive astrocytes may also display mixed morphological and immunocytochemical phenotypes between protoplasmic and fibrous astrocytes. Conclusions These results reveal new γ−synuclein positive lesions in human brain. Oxidized-γ-synuclein is colocalized with phospho-α-synuclein in doughnut-like inclusions. Several types of astrocytes with different morphology are immunopositive for oxidized-γ-synuclein.
Collapse
|
20
|
Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014; 19:317-26. [PMID: 24503167 DOI: 10.1016/j.intimp.2014.01.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/07/2014] [Accepted: 01/15/2014] [Indexed: 01/09/2023]
Abstract
Neuroinflammatory responses play a crucial role in the pathogenesis of Alzheimer's disease (AD). Ginsenoside Rg5 (Rg5), an abundant natural compound in Panax ginseng, has been found to be beneficial in treating AD. In the present study, we demonstrated that Rg5 improved cognitive dysfunction and attenuated neuroinflammatory responses in streptozotocin (STZ)-induced memory impaired rats. Cognitive deficits were ameliorated with Rg5 (5, 10 and 20mg/kg) treatment in a dose-dependent manner together with decreased levels of inflammatory cytokines TNF-α and IL-1β (P<0.05) in brains of STZ rats. Acetylcholinesterase (AChE) activity was also significantly reduced by Rg5 whereas choline acetyltransferase (ChAT) activity was remarkably increased in the cortex and hippocampus of STZ-induced AD rats (P<0.05). In addition, Congo red and immunohistochemistry staining results showed that Rg5 alleviated Aβ deposition but enhanced the expressions of insulin-like growth factors 1 (IGF-1) and brain derived neurophic factor (BDNF) in the hippocampus and cerebral cortex (P<0.05). Western blot analysis also demonstrated that Rg5 increased remarkably BDNF and IGF-1 expressions whereas decreased significantly Aβ deposits (P<0.05). Furthermore, it was observed that the expressions of COX-2 and iNOS were significantly up-regulated in STZ-induced AD rats and down-regulated strongly (P<0.05) by Rg5 compared with control rats. These data demonstrated that STZ-induced learning and memory impairments in rats could be improved by Rg5, which was associated with attenuating neuroinflammatory responses. Our findings suggested that Rg5 could be a beneficial agent for the treatment of AD.
Collapse
|