1
|
Jia X, Chen S, Li X, Tao S, Lai J, Liu H, Huang K, Tian Y, Wei P, Yang F, Lu Z, Chen Z, Liu XA, Xu F, Wang L. Divergent neurocircuitry dissociates two components of the stress response: glucose mobilization and anxiety-like behavior. Cell Rep 2022; 41:111586. [DOI: 10.1016/j.celrep.2022.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/19/2022] [Accepted: 10/07/2022] [Indexed: 11/09/2022] Open
|
2
|
Suh HW, Sim YB, Park SH, Sharma N, Im HJ, Hong JS. Effect of pertussis toxin pretreated centrally on blood glucose level induced by stress. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 20:467-76. [PMID: 27610033 PMCID: PMC5014993 DOI: 10.4196/kjpp.2016.20.5.467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/23/2016] [Accepted: 05/11/2016] [Indexed: 01/08/2023]
Abstract
In the present study, we examined the effect of pertussis toxin (PTX) administered centrally in a variety of stress-induced blood glucose level. Mice were exposed to stress after the pretreatment of PTX (0.05 or 0.1 µg) i.c.v. or i.t. once for 6 days. Blood glucose level was measured at 0, 30, 60 and 120 min after stress stimulation. The blood glucose level was increased in all stress groups. The blood glucose level reached at maximum level after 30 min of stress stimulation and returned to a normal level after 2 h of stress stimulation in restraint stress, physical, and emotional stress groups. The blood glucose level induced by cold-water swimming stress was gradually increased up to 1 h and returned to the normal level. The intracerebroventricular (i.c.v.) or intrathecal (i.t.) pretreatment with PTX, a Gi inhibitor, alone produced a hypoglycemia and almost abolished the elevation of the blood level induced by stress stimulation. The central pretreatment with PTX caused a reduction of plasma insulin level, whereas plasma corticosterone level was further up-regulated in all stress models. Our results suggest that the hyperglycemia produced by physical stress, emotional stress, restraint stress, and the cold-water swimming stress appear to be mediated by activation of centrally located PTX-sensitive G proteins. The reduction of blood glucose level by PTX appears to due to the reduction of plasma insulin level. The reduction of blood glucose level by PTX was accompanied by the reduction of plasma insulin level. Plasma corticosterone level up-regulation by PTX in stress models may be due to a blood glucose homeostatic mechanism.
Collapse
Affiliation(s)
- Hong-Won Suh
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Yun-Beom Sim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea.; Adult Stem Cell Research Center in Kangstem Biotech, Seoul National University, Seoul 08826, Korea
| | - Soo-Hyun Park
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Naveen Sharma
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine, Hallym University, Chuncheon 24252, Korea
| | - Hyun-Ju Im
- College of Physical Education, Kookmin University, Seoul 02707, Korea
| | - Jae-Seung Hong
- Department of Physical Education, College of Natural Science, Hallym University, Chuncheon 24252, Korea
| |
Collapse
|
3
|
Bassi GS, do C Malvar D, Cunha TM, Cunha FQ, Kanashiro A. Spinal GABA-B receptor modulates neutrophil recruitment to the knee joint in zymosan-induced arthritis. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:851-61. [PMID: 27106212 DOI: 10.1007/s00210-016-1248-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 04/14/2016] [Indexed: 12/25/2022]
Abstract
Recent studies have demonstrated that the central nervous system controls inflammatory responses by activating complex efferent neuroimmune pathways. The present study was designed to evaluate the role that central gamma-aminobutyric acid type B (GABA-B) receptor plays in neutrophil migration in a murine model of zymosan-induced arthritis by using different pharmacological tools. We observed that intrathecal administration of baclofen, a selective GABA-B agonist, exacerbated the inflammatory response in the knee after zymosan administration characterized by an increase in the neutrophil recruitment and knee joint edema, whereas saclofen, a GABA-B antagonist, exerted the opposite effect. Intrathecal pretreatment of the animals with SB203580 (an inhibitor of p38 mitogen-activated protein kinase) blocked the pro-inflammatory effect of baclofen. On the other hand, systemic administration of guanethidine, a sympatholytic drug that inhibits catecholamine release, and nadolol, a beta-adrenergic receptor antagonist, reversed the effect of saclofen. Moreover, saclofen suppressed the release of the pro-inflammatory cytokines into the knee joint (ELISA) and pain-related behaviors (open field test). Since the anti-inflammatory effect of saclofen depends on the sympathetic nervous system integrity, we observed that isoproterenol, a beta-adrenergic receptor agonist, mimics the central GABA-B blockade decreasing knee joint neutrophil recruitment. Together, these results demonstrate that the pharmacological manipulation of spinal GABAergic transmission aids control of neutrophil migration to the inflamed joint by modulating the activation of the knee joint-innervating sympathetic terminal fibers through a mechanism dependent on peripheral beta-adrenergic receptors and central components, such as p38 MAPK.
Collapse
Affiliation(s)
- Gabriel S Bassi
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - David do C Malvar
- Department of Pharmaceutical Sciences, Federal Rural University of Rio de Janeiro, BR 465/Km 07, 23890-000, Seropédica, RJ, Brazil
| | - Thiago M Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil
| | - Alexandre Kanashiro
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Shi B, Huang Z, Xiang X, Huang M, Wang WX, Ke C. Transcriptome analysis of the key role of GAT2 gene in the hyper-accumulation of copper in the oyster Crassostrea angulata. Sci Rep 2015; 5:17751. [PMID: 26648252 PMCID: PMC4673431 DOI: 10.1038/srep17751] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 11/03/2015] [Indexed: 11/26/2022] Open
Abstract
One paradigm of oysters as the hyper-accumulators of many toxic metals is the inter-individual variation of metals, but the molecular mechanisms remain very elusive. A comprehensive analysis of the transcriptome of Crassostrea angulata was conducted to reveal the relationship between gene expression and differential Cu body burden in oysters. Gene ontology analysis for the differentially expressed genes showed that the neurotransmitter transporter might affect the oyster behavior, which in turn led to difference in Cu accumulation. The ATP-binding cassette transporters superfamily played an important role in the maintenance of cell Cu homeostasis, vitellogenin and apolipophorin transport, and elimination of excess Cu. Gill and mantle Cu concentrations were significantly reduced after silencing the GABA transporter 2 (GAT2) gene, but increased after the injection of GABA receptor antagonists, suggesting that the function of GABA transporter 2 gene was strongly related to Cu accumulation. These findings demonstrated that GABA transporter can control the action of transmitter GABA in the nervous system, thereby affecting the Cu accumulation in the gills and mantles.
Collapse
Affiliation(s)
- Bo Shi
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Zekun Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xu Xiang
- School of Life Sciences, Xiamen University, Xiamen 361102, PR China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Wen-Xiong Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.,College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| |
Collapse
|
5
|
Sim YB, Park SH, Kim SS, Lim SM, Jung JS, Suh HW. Activation of spinal α2 adrenergic receptors induces hyperglycemia in mouse though activating sympathetic outflow. Eur J Pharmacol 2014; 741:316-22. [DOI: 10.1016/j.ejphar.2014.08.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 11/28/2022]
|
6
|
Sim YB, Park SH, Kang YJ, Jung JS, Ryu OH, Choi MG, Choi SS, Suh HW. Interleukin-1β (IL-1β) increases pain behavior and the blood glucose level: possible involvement of glucocorticoid system. Cytokine 2013; 64:351-6. [PMID: 23773309 DOI: 10.1016/j.cyto.2013.05.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/04/2013] [Accepted: 05/17/2013] [Indexed: 10/26/2022]
Abstract
The possible involvement of glucocorticoid system in interleukin-1β (IL-1β)-induced nociception and the blood glucose level was studied in ICR mice. In the first experiment, mice were treated intrathecally (i.t.) with IL-1β (100 pg). Corticotrophin releasing hormone (CRH) mRNA (hypothalamus) and c-Fos mRNA (pituitary gland, spinal cord, and the adrenal gland) levels were measured at 30, 60 and 120 min after IL-1β administration. We found that i.t. injection with IL-1β increased CRH mRNA level in the hypothalamus. The IL-1β administered i.t. elevated c-Fos mRNA levels in the spinal cord, pituitary and adrenal glands. Furthermore, i.t. administration of IL-1β significantly increased the plasma corticosterone level up to 60 min. In addition, the adrenalectomy caused the reductions of the blood glucose level and pain behavior induced by IL-1β injected i.t. in normal and D-glucose-fed groups. Furthermore, intraperitoneal (i.p.) pretreatment with RU486 (100mg/kg) attenuated the blood glucose level and pain behavior induced by IL-1β administered i.t. in normal and D-glucose-fed groups. Our results suggest that IL-1β administered i.t. increases the blood glucose level and pain behavior via an activation of the glucocorticoid system.
Collapse
Affiliation(s)
- Yun-Beom Sim
- Department of Pharmacology, Institute of Natural Medicine, College of Medicine Hallym University, 39 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|