1
|
Manengu C, Zhu CH, Zhang GD, Tian MM, Lan XB, Tao LJ, Ma L, Liu Y, Yu JQ, Liu N. HDAC inhibitors as a potential therapy for chemotherapy-induced neuropathic pain. Inflammopharmacology 2024; 32:2153-2175. [PMID: 38761314 DOI: 10.1007/s10787-024-01488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/22/2024] [Indexed: 05/20/2024]
Abstract
Cancer, a chronic disease characterized by uncontrolled cell development, kills millions of people globally. The WHO reported over 10 million cancer deaths in 2020. Anticancer medications destroy healthy and malignant cells. Cancer treatment induces neuropathy. Anticancer drugs cause harm to spinal cord, brain, and peripheral nerve somatosensory neurons, causing chemotherapy-induced neuropathic pain. The chemotherapy-induced mechanisms underlying neuropathic pain are not fully understood. However, neuroinflammation has been identified as one of the various pathways associated with the onset of chemotherapy-induced neuropathic pain. The neuroinflammatory processes may exhibit varying characteristics based on the specific type of anticancer treatment delivered. Neuroinflammatory characteristics have been observed in the spinal cord, where microglia and astrocytes have a significant impact on the development of chemotherapy-induced peripheral neuropathy. The patient's quality of life might be affected by sensory deprivation, loss of consciousness, paralysis, and severe disability. High cancer rates and ineffective treatments are associated with this disease. Recently, histone deacetylases have become a novel treatment target for chemotherapy-induced neuropathic pain. Chemotherapy-induced neuropathic pain may be treated with histone deacetylase inhibitors. Histone deacetylase inhibitors may be a promising therapeutic treatment for chemotherapy-induced neuropathic pain. Common chemotherapeutic drugs, mechanisms, therapeutic treatments for neuropathic pain, and histone deacetylase and its inhibitors in chemotherapy-induced neuropathic pain are covered in this paper. We propose that histone deacetylase inhibitors may treat several aspects of chemotherapy-induced neuropathic pain, and identifying these inhibitors as potentially unique treatments is crucial to the development of various chemotherapeutic combination treatments.
Collapse
Affiliation(s)
- Chalton Manengu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
- School of International Education, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Chun-Hao Zhu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Guo-Dong Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Miao-Miao Tian
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Xiao-Bing Lan
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Li-Jun Tao
- Department of Pharmacy, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, 750004, China
| | - Lin Ma
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Yue Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China
| | - Jian-Qiang Yu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| | - Ning Liu
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, 750004, Ningxia Hui Autonomous Region, China.
| |
Collapse
|
2
|
Long Q, Wu B, Yang Y, Wang S, Shen Y, Bao Q, Xu F. Nerve guidance conduit promoted peripheral nerve regeneration in rats. Artif Organs 2021; 45:616-624. [PMID: 33270261 DOI: 10.1111/aor.13881] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/19/2020] [Accepted: 11/27/2020] [Indexed: 12/13/2022]
Abstract
Nerve growth factor (NGF) is important for peripheral nerve regeneration. However, its short half-life and rapid diffusion in body fluids limit its clinical efficacy. Collagen has favorable biocompatibility and biodegradability, and weak immunogenicity. Because it possesses an NGF binding domain, we cross-linked heparin to collagen tubes to construct nerve guidance conduits for delivering NGF. The conduits were implanted to bridge a facial nerve defect in rats. Histological and functional analyses were performed to assess the effect of the nerve guidance conduit on facial nerve regeneration. Heparin enhanced the binding of NGF to collagen while retaining its bioactivity. Also, the nerve guidance conduit significantly promoted axonal growth and Schwan cell proliferation at 12 weeks after surgery. The nerve regeneration and functional recovery outcomes using the nerve guidance conduit were similar to those of autologous nerve grafting. Therefore, the nerve guidance conduit may promote safer nerve regeneration.
Collapse
Affiliation(s)
- Qingshan Long
- Department of Neurosurgery, Huizhou Third People's Hospital, Guangzhou Medical University, Huizhou, China
| | - Bingshan Wu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei City, China
| | - Yu Yang
- Department of Psychiatry, Zigong Mental Health Center, Zigong City, China
| | - Shanhong Wang
- Department of Psychiatry, Zigong Mental Health Center, Zigong City, China
| | - Yiwen Shen
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qinghua Bao
- Department of Neurosurgery, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, China
| | - Feng Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Kahanovitch U, Olsen ML. Glial SIK3: A central player in ion and volume homeostasis in Drosophila peripheral nerves. J Cell Biol 2019; 218:3888-3889. [PMID: 31723008 PMCID: PMC6891086 DOI: 10.1083/jcb.201910017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The electrical properties of neuronal cells rely on gradients of ions across their membranes and the extracellular fluid (ECF) in which they are bathed. Little is known regarding how the ECF volume and content is maintained. In this issue, Li et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201907138) identify the kinase SIK3 in glia as a key signal transduction regulator in ion and volume homeostasis in Drosophila peripheral nerves.
Collapse
Affiliation(s)
- Uri Kahanovitch
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Michelle L Olsen
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
4
|
Lu G, Zhang M, Wang J, Zhang K, Wu S, Zhao X. Epigenetic regulation of myelination in health and disease. Eur J Neurosci 2019; 49:1371-1387. [DOI: 10.1111/ejn.14337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/22/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Guozhen Lu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Ming Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Jian Wang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Kaixiang Zhang
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| | - Xianghui Zhao
- Department of Neurobiology and Collaborative Innovation Center for Brain ScienceSchool of Basic MedicineFourth Military Medical University Xi'an China
| |
Collapse
|
5
|
Runx2 was Correlated with Neurite Outgrowth and Schwann Cell Differentiation, Migration After Sciatic Nerve Crush. Neurochem Res 2018; 43:2423-2434. [PMID: 30374602 DOI: 10.1007/s11064-018-2670-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/09/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022]
Abstract
Runx2, also known as Cbfa1, is a multifunctional transcription factor essential for osteoblast differentiation. It also plays major roles in chondrocyte maturation, mesenchymal stem cell differentiation, cleidocranial dysplasia, and the growth and metastasis of tumors. The present study was performed to investigate the functions of Runx2 in the differentiation and migration of Schwann cells and outgrowth of neurites after peripheral nervous system injury. In a model of sciatic nerve crush (SNC) injury, we found a gradual increase in the expression of Runx2, which reached a peak after 1 week. Immunofluorescence revealed increased expression of Runx2 in Schwann cells and axons after SNC injury. Runx2 and Oct-6 expression trends were consistent with each other in western blotting, and colocalization of Runx2 and Oct-6 was observed in immunofluorescence. In vitro, Runx2 promoted Schwann cell differentiation by activation of the Akt-GSK3β signaling pathway. In addition, Runx2 promoted the migration of Schwann cells and outgrowth of neurites. These findings suggest that Runx2 may be involved in neurite outgrowth and Schwann cell differentiation and migration after sciatic nerve injury.
Collapse
|
6
|
Zheng X, Wu Z, Xu K, Qiu Y, Su X, Zhang Z, Zhou M. Interfering histone deacetylase 4 inhibits the proliferation of vascular smooth muscle cells via regulating MEG3/miR-125a-5p/IRF1. Cell Adh Migr 2018; 13:41-49. [PMID: 30156956 PMCID: PMC6527374 DOI: 10.1080/19336918.2018.1506653] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this study, we investigated the role ofhistone deacetylase 4 (HDAC4) and MEG3/miR-125a-5p/interferonregulatoryfactor 1 (IRF1) on vascular smooth muscle cell (VSMCs)proliferation. Platelet derived growth factor (PDGF)-BB was used toinduce the proliferation and migration of VSMCs. The expressionsof MEG3, miR-125a-5p, HDAC4 and IRF1in VSMCs were detectedby qRT-PCR and western blot, respectively. ChIP assay was usedto determine the relationship between MEG3 and HDAC4. Doubleluciferase reporter assay was used to test the regulation betweenmiR-125-5p and IRF1. Results showed that PDGF-BB decreasedthe expression of MEG3 and IRF1, while increased the expressionof miR-125a-5p and HDAC4. In addition, HDAC4 knockdowninhibited the proliferation and migration of VSMCs via upregulatingMEG3 and downregulating miR-125a-5p. MiR-125a-5p inhibitorcould repress the proliferation and migration of VSMCs andalleviate intimal hyperplasia (IH) by directly upregulating IRF1expression. These results suggested that HDAC4 interferenceinhibited PDGF-BB-induced VSMCs proliferation via regulatingMEG3/miR-125a-5p/IRF1 axis, and then alleviated IH.
Collapse
Affiliation(s)
- Xiangtao Zheng
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Ziheng Wu
- b Department of Vascular Surgery, The First Affiliated Hospital, School of Medicine , Zhejiang University , Hangzhou , China
| | - Ke Xu
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Yihui Qiu
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Xiang Su
- a Department of Vascular Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Zhen Zhang
- c Department of Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| | - Mengtao Zhou
- c Department of Surgery , The First Affiliated Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
7
|
Sun Y, Qin B. Long noncoding RNA MALAT1 regulates HDAC4-mediated proliferation and apoptosis via decoying of miR-140-5p in osteosarcoma cells. Cancer Med 2018; 7:4584-4597. [PMID: 30094957 PMCID: PMC6144160 DOI: 10.1002/cam4.1677] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 06/18/2018] [Indexed: 12/11/2022] Open
Abstract
Noncoding RNAs regulate the initiation and progression of osteosarcoma (OS). The role of long noncoding RNA metastasis‐associated lung adenocarcinoma transcript 1 (MALAT1) playing in OS and whether the function it working out was achieved through HDAC4 pathway remain uncovered. In this study, we illustrated that MALAT1 was upregulated and was correlated with poor prognosis in OS patients. Meanwhile, we demonstrated that a depression of MALAT1 suppressed proliferation and promoted apoptosis in OS cell line HOS and 143B. Further, we verified that MALAT1 exerting its function via upregulating of histone deacetylase 4 (HDAC4). Through an online prediction, a series of luciferase assays and RNA pull‐down assays, we demonstrated that both MALAT1 and HDAC4 were the targets of microRNA‐140‐5p (miR‐140‐5p) via sharing a similar microRNA responding elements. Even further, we revealed that MALAT1 served as a ceRNA of HDAC4 via decoying of miR‐140‐5p. Finally, we proved that MALAT1 promoted OS tumor growth in an in vivo animal study. In summary, the outcomes of this study demonstrated the complex ceRNA network among MALAT, miR‐140‐5p, and HDAC4‐mediated proliferation and apoptosis in OS. This study might provide a new axial in molecular treatment of OS.
Collapse
Affiliation(s)
- Yuxiu Sun
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Baoli Qin
- Department of Internal Medicine, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
8
|
Role of miR-22 in intestinal mucosa tissues and peripheral blood CD4+ T cells of inflammatory bowel disease. Pathol Res Pract 2018; 214:1095-1104. [PMID: 29880327 DOI: 10.1016/j.prp.2018.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE miR-22 is known to be involved in the pathogenesis of several autoimmune diseases, but it remains unclear whether miR-22 is associated with inflammatory intestinal disease (IBD). METHODS The patients with ulcerative colitis (UC) and Crohn's disease (CD) were enrolled in this study. After the CD4+ T cells from healthy controls and active IBD patients were isolated and then transfected with miR-22 mimics/inhibitors, Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to measure expressions of miR-22, HDAC4, specific transcription factors in intestinal mucosa tissue and CD4+ T cells, while enzyme-linked immuno sorbent assay (ELISA) to detect expressions of inflammatory cytokines in PB. Antisense miR-22 was administered into mice during trinitrobenzene sulphoni cacid (TNBS)-induced colitis to determine its role in IBD. RESULTS A significant elevation of miR-22 but an evident decrease of HDAC4 was found in CD4+ T cells in PB and intestinal mucosa tissues from IBD patients. In addition, there was a great reduction in HDAC4 and a dramatic enhancement in Th17 cell specific transcription factor (RORC) and inflammatory cytokines (IL-17A, IL-6 and TNF-α) after overexpression miR-22, which was opposite to the effect of inhibition of miR-22. Furthermore, administration of antisense miR-22 in TNBS-induced mouse colitis model significantly decreased numbers of interleukin (IL)-17A+ CD4+ T cells and the expressions of IL-17A, RORC, IL-6 and TNF-α. CONCLUSION MiR-22 was up-regulated in CD4+ T cells in PB and intestinal mucosa tissues of IBD patients, which could promote Th17 cell differentiation via targeting HDAC4 to be involved in IBD progression.
Collapse
|
9
|
Activation of AMPK inhibits TGF-β1-induced airway smooth muscle cells proliferation and its potential mechanisms. Sci Rep 2018; 8:3624. [PMID: 29483552 PMCID: PMC5827654 DOI: 10.1038/s41598-018-21812-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 02/09/2018] [Indexed: 02/08/2023] Open
Abstract
The aims of the present study were to examine signaling mechanisms underlying transforming growth factor β1 (TGF-β1)-induced airway smooth muscle cells (ASMCs) proliferation and to determine the effect of adenosine monophosphate-activated protein kinase (AMPK) activation on TGF-β1-induced ASMCs proliferation and its potential mechanisms. TGF-β1 reduced microRNA-206 (miR-206) level by activating Smad2/3, and this in turn up-regulated histone deacetylase 4 (HDAC4) and consequently increased cyclin D1 protein leading to ASMCs proliferation. Prior incubation of ASMCs with metformin induced AMPK activation and blocked TGF-β1-induced cell proliferation. Activation of AMPK slightly attenuated TGF-β1-induced miR-206 suppression, but dramatically suppressed TGF-β1-caused HDAC4 up-expression and significantly increased HDAC4 phosphorylation finally leading to reduction of up-regulated cyclin D1 protein expression. Our study suggests that activation of AMPK modulates miR-206/HDAC4/cyclin D1 signaling pathway, particularly targeting on HDAC4, to suppress ASMCs proliferation and therefore has a potential value in the prevention and treatment of asthma by alleviating airway remodeling.
Collapse
|
10
|
Liu Y, Wu W, Yang H, Zhou Z, Zhu X, Sun C, Liu Y, Yu Z, Chen Y, Wang Y. Upregulated Expression of TRIM32 Is Involved in Schwann Cell Differentiation, Migration and Neurite Outgrowth After Sciatic Nerve Crush. Neurochem Res 2016; 42:1084-1095. [DOI: 10.1007/s11064-016-2142-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 11/06/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
|
11
|
Up-Regulation of NF45 Correlates with Schwann Cell Proliferation After Sciatic Nerve Crush. J Mol Neurosci 2015; 56:216-27. [DOI: 10.1007/s12031-014-0484-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022]
|