1
|
Guo Y, Fu Y, Sun W. 50 Hz Magnetic Field Exposure Inhibited Spontaneous Movement of Zebrafish Larvae through ROS-Mediated syn2a Expression. Int J Mol Sci 2023; 24:ijms24087576. [PMID: 37108734 PMCID: PMC10144198 DOI: 10.3390/ijms24087576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/21/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Extremely low frequency electromagnetic field (ELF-EMF) exists widely in public and occupational environments. However, its potential adverse effects and the underlying mechanism on nervous system, especially behavior are still poorly understood. In this study, zebrafish embryos (including a transfected synapsin IIa (syn2a) overexpression plasmid) at 3 h post-fertilization (hpf) were exposed to a 50-Hz magnetic field (MF) with a series of intensities (100, 200, 400 and 800 μT, respectively) for 1 h or 24 h every day for 5 days. Results showed that, although MF exposure did not affect the basic development parameters including hatching rate, mortality and malformation rate, yet MF at 200 μT could significantly induce spontaneous movement (SM) hypoactivity in zebrafish larvae. Histological examination presented morphological abnormalities of the brain such as condensed cell nucleus and cytoplasm, increased intercellular space. Moreover, exposure to MF at 200 μT inhibited syn2a transcription and expression, and increased reactive oxygen species (ROS) level as well. Overexpression of syn2a could effectively rescue MF-induced SM hypoactivity in zebrafish. Pretreatment with N-acetyl-L-cysteine (NAC) could not only recover syn2a protein expression which was weakened by MF exposure, but also abolish MF-induced SM hypoactivity. However, syn2a overexpression did not affect MF-increased ROS. Taken together, the findings suggested that exposure to a 50-Hz MF inhibited spontaneous movement of zebrafish larvae via ROS-mediated syn2a expression in a nonlinear manner.
Collapse
Affiliation(s)
- Yixin Guo
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yiti Fu
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Wenjun Sun
- Bioelectromagnetics Key Laboratory, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
2
|
Lai H. Neurological effects of static and extremely-low frequency electromagnetic fields. Electromagn Biol Med 2022; 41:201-221. [DOI: 10.1080/15368378.2022.2064489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Henry Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Gao Q, Leung A, Yang YH, Lau BWM, Wang Q, Liao LY, Xie YJ, He CQ. Extremely low frequency electromagnetic fields promote cognitive function and hippocampal neurogenesis of rats with cerebral ischemia. Neural Regen Res 2021; 16:1252-1257. [PMID: 33318402 PMCID: PMC8284293 DOI: 10.4103/1673-5374.301020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Extremely low frequency electromagnetic fields (ELF-EMF) can improve the learning and memory impairment of rats with Alzheimer’s disease, however, its effect on cerebral ischemia remains poorly understood. In this study, we established rat models of middle cerebral artery occlusion/reperfusion. One day after modeling, a group of rats were treated with ELF-EMF (50 Hz, 1 mT) for 2 hours daily on 28 successive days. Our results showed that rats treated with ELF-EMF required shorter swimming distances and latencies in the Morris water maze test than those of untreated rats. The number of times the platform was crossed and the time spent in the target quadrant were greater than those of untreated rats. The number of BrdU+ /NeuN+ cells, representing newly born neurons, in the hippocampal subgranular zone increased more in the treated than in untreated rats. Up-regulation in the expressions of Notch1, Hes1, and Hes5 proteins, which are the key factors of the Notch signaling pathway, was greatest in the treated rats. These findings suggest that ELF-EMF can enhance hippocampal neurogenesis of rats with cerebral ischemia, possibly by affecting the Notch signaling pathway. The study was approved by the Institutional Ethics Committee of Sichuan University, China (approval No. 2019255A) on March 5, 2019.
Collapse
Affiliation(s)
- Qiang Gao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Aaron Leung
- Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Yong-Hong Yang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province; Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Benson Wui-Man Lau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region, China
| | - Qian Wang
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| | - Ling-Yi Liao
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Yun-Juan Xie
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng-Qi He
- Department of Rehabilitation Medicine, West China Hospital of Sichuan University; Institute of Disaster Management and Reconstruction, Sichuan University-The Hong Kong Polytechnic University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Gu QF, Yu JZ, Wu H, Li YH, Liu CY, Feng L, Zhang GX, Xiao BG, Ma CG. Therapeutic effect of Rho kinase inhibitor FSD-C10 in a mouse model of Alzheimer's disease. Exp Ther Med 2018; 16:3929-3938. [PMID: 30344671 PMCID: PMC6176147 DOI: 10.3892/etm.2018.6701] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/23/2018] [Indexed: 12/29/2022] Open
Abstract
Fasudil, a Rho kinase (ROCK) inhibitor, effectively inhibits disease severity in a mouse model of Alzheimer's disease (AD). However, given its significant limitations, including a relatively narrow safety window and poor oral bioavailability, Fasudil is not suitable for long-term use. Thus, screening for ROCK inhibitor(s) that are more efficient, safer, can be used orally and suitable for long-term use in the treatment of neurodegenerative disorders is required. The main purpose of the present study is to explore whether FSD-C10, a novel ROCK inhibitor, has therapeutic potential in amyloid precursor protein/presenilin-1 transgenic (APP/PS1 Tg) mice, and to determine possible mechanisms of its action. The results showed that FSD-C10 effectively improved learning and memory impairment, accompanied by reduced expression of amyloid-β 1-42 (Aβ1-42), Tau protein phosphorylation (P-tau) and β-site APP-cleaving enzyme in the hippocampus and cortex area of brain. In addition, FSD-C10 administration boosted the expression of synapse-associated proteins, such as postynaptic density protein 95, synaptophsin, α-amino 3-hydroxy-5-methyl-4-isoxa-zolep-propionate receptor and neurotrophic factors, e,g., brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. Taken together, our results demonstrate that FSD-C10 has therapeutic potential in the AD mouse model, possibly through inhibiting the formation of Aβ1-42 and P-tau, and promoting the generation of synapse-associated proteins and neurotrophic factors.
Collapse
Affiliation(s)
- Qing-Fang Gu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Jie-Zhong Yu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Hao Wu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yan-Hua Li
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Chun-Yun Liu
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Ling Feng
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200025, P.R. China
| | - Cun-Gen Ma
- Department of Neurology, Institute of Brain Science, Medical School, Shanxi Datong University, Datong, Shanxi 037009, P.R. China.,2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi 030024, P.R. China
| |
Collapse
|
5
|
Purmorphamine as a Shh Signaling Activator Small Molecule Promotes Motor Neuron Differentiation of Mesenchymal Stem Cells Cultured on Nanofibrous PCL Scaffold. Mol Neurobiol 2016; 54:5668-5675. [DOI: 10.1007/s12035-016-0090-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022]
|
6
|
The Role of Stem Cells in the Treatment of Cerebral Palsy: a Review. Mol Neurobiol 2016; 54:4963-4972. [PMID: 27520277 DOI: 10.1007/s12035-016-0030-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
Cerebral palsy (CP) is a neuromuscular disease due to injury in the infant's brain. The CP disorder causes many neurologic dysfunctions in the patient. Various treatment methods have been used for the management of CP disorder. However, there has been no absolute cure for this condition. Furthermore, some of the procedures which are currently used for relief of symptoms in CP cause discomfort or side effects in the patient. Recently, stem cell therapy has attracted a huge interest as a new therapeutic method for treatment of CP. Several investigations in animal and human with CP have demonstrated positive potential of stem cell transplantation for the treatment of CP disorder. The ultimate goal of this therapeutic method is to harness the regenerative capacity of the stem cells causing a formation of new tissues to replace the damaged tissue. During the recent years, there have been many investigations on stem cell therapy. However, there are still many unclear issues regarding this method and high effort is needed to create a technology as a perfect treatment. This review will discuss the scientific background of stem cell therapy for cerebral palsy including evidences from current clinical trials.
Collapse
|
7
|
Zhang L, Han X, Cheng X, Tan XF, Zhao HY, Zhang XH. Denervated hippocampus provides a favorable microenvironment for neuronal differentiation of endogenous neural stem cells. Neural Regen Res 2016; 11:597-603. [PMID: 27212920 PMCID: PMC4870916 DOI: 10.4103/1673-5374.180744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Fimbria-fornix transection induces both exogenous and endogenous neural stem cells to differentiate into neurons in the hippocampus. This indicates that the denervated hippocampus provides an environment for neuronal differentiation of neural stem cells. However, the pathways and mechanisms in this process are still unclear. Seven days after fimbria fornix transection, our reverse transcription polymerase chain reaction, western blot assay, and enzyme linked immunosorbent assay results show a significant increase in ciliary neurotrophic factor mRNA and protein expression in the denervated hippocampus. Moreover, neural stem cells derived from hippocampi of fetal (embryonic day 17) Sprague-Dawley rats were treated with ciliary neurotrophic factor for 7 days, with an increased number of microtubule associated protein-2-positive cells and decreased number of glial fibrillary acidic protein-positive cells detected. Our results show that ciliary neurotrophic factor expression is up-regulated in the denervated hippocampus, which may promote neuronal differentiation of neural stem cells in the denervated hippocampus.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao Han
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xiang Cheng
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xue-Feng Tan
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - He-Yan Zhao
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| | - Xin-Hua Zhang
- Department of Human Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
8
|
Inhibitor of PI3K/Akt Signaling Pathway Small Molecule Promotes Motor Neuron Differentiation of Human Endometrial Stem Cells Cultured on Electrospun Biocomposite Polycaprolactone/Collagen Scaffolds. Mol Neurobiol 2016; 54:2547-2554. [PMID: 26993294 DOI: 10.1007/s12035-016-9828-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/03/2016] [Indexed: 12/20/2022]
Abstract
Small molecules as useful chemical tools can affect cell differentiation and even change cell fate. It is demonstrated that LY294002, a small molecule inhibitor of phosphatidylinositol 3-kinase (PI3K)/Akt signal pathway, can inhibit proliferation and promote neuronal differentiation of mesenchymal stem cells (MSCs). The purpose of this study was to investigate the differentiation effect of Ly294002 small molecule on the human endometrial stem cells (hEnSCs) into motor neuron-like cells on polycaprolactone (PCL)/collagen scaffolds. hEnSCs were cultured in a neurogenic inductive medium containing 1 μM LY294002 on the surface of PCL/collagen electrospun fibrous scaffolds. Cell attachment and viability of cells on scaffolds were characterized by scanning electron microscope (SEM) and 3-(4,5-dimethylthiazoyl-2-yl)2,5-diphenyltetrazolium bromide (MTT) assay. The expression of neuron-specific markers was assayed by real-time PCR and immunocytochemistry analysis after 15 days post induction. Results showed that attachment and differentiation of hEnSCs into motor neuron-like cells on the scaffolds with Ly294002 small molecule were higher than that of the cells on tissue culture plates as control group. In conclusion, PCL/collagen electrospun scaffolds with Ly294002 have potential for being used in neural tissue engineering because of its bioactive and three-dimensional structure which enhances viability and differentiation of hEnSCs into neurons through inhibition of the PI3K/Akt pathway. Thus, manipulation of this pathway by small molecules can enhance neural differentiation.
Collapse
|