1
|
Chen L, Liu Z, Zhou B, Wei C, Zhou Y, Rosenfeld MG, Fu XD, Chisholm AD, Jin Y. CELF RNA binding proteins promote axon regeneration in C. elegans and mammals through alternative splicing of Syntaxins. eLife 2016; 5. [PMID: 27253061 PMCID: PMC4946901 DOI: 10.7554/elife.16072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 06/01/2016] [Indexed: 01/08/2023] Open
Abstract
Axon injury triggers dramatic changes in gene expression. While transcriptional regulation of injury-induced gene expression is widely studied, less is known about the roles of RNA binding proteins (RBPs) in post-transcriptional regulation during axon regeneration. In C. elegans the CELF (CUGBP and Etr-3 Like Factor) family RBP UNC-75 is required for axon regeneration. Using crosslinking immunoprecipitation coupled with deep sequencing (CLIP-seq) we identify a set of genes involved in synaptic transmission as mRNA targets of UNC-75. In particular, we show that UNC-75 regulates alternative splicing of two mRNA isoforms of the SNARE Syntaxin/unc-64. In C. elegans mutants lacking unc-75 or its targets, regenerating axons form growth cones, yet are deficient in extension. Extending these findings to mammalian axon regeneration, we show that mouse Celf2 expression is upregulated after peripheral nerve injury and that Celf2 mutant mice are defective in axon regeneration. Further, mRNAs for several Syntaxins show CELF2 dependent regulation. Our data delineate a post-transcriptional regulatory pathway with a conserved role in regenerative axon extension. DOI:http://dx.doi.org/10.7554/eLife.16072.001 Nerve cells or neurons carry information around the body along projections known as axons. An injury or trauma, such as a stroke, can damage the axons and lead to permanent disability because the damaged axons fail to regenerate over long distances. Axon damage triggers large changes in the activity of many genes that promote regeneration. When a gene is active, its DNA is copied to make molecules of messenger RNA (mRNA), which are then used as templates to make proteins. Many mRNAs undergo a process called alternative splicing, in which different combinations of mRNA sections may be removed from the final molecule. This enables a single gene to produce more than one type of protein. Recent studies point to an important role for so-called RNA binding proteins in regulating the alternative splicing process. An RNA binding protein called UNC-75 in a worm known as Caenorhabditis elegans has previously been shown to be involved in axon regeneration, but it was not clear how UNC-75 acts on neurons. Here, Chen et al. combined a technique called CLIP-seq (Cross-linking ImmunoPrecipitation-deep sequencing) with genetic testing to identify the mRNAs that UNC-75 regulates during axon regeneration. The experiments found a set of C. elegans genes required for information to pass between neurons whose mRNAs are also targeted by UNC-75. Many of these genes are also required for axon regeneration. Chen et al. studied one of the mRNA targets – which encodes a protein called syntaxin – in more detail and found that the syntaxin mRNA is required for regenerating axons over long distances. UNC-75 alternatively splices this mRNA to produce a particular form of syntaxin that is mainly found in neurons. Mutant worms that lack either UNC-75 or syntaxin are unable to properly regenerate axons over long distances. Further experiments show that a mouse protein known as CELF2 that is equivalent to worm UNC-75 plays a similar role in regenerating axons. Moreover, mouse CELF2 restores the ability of worm neurons that lack UNC-75 to regenerate. Like worm UNC-75, the mouse protein is also involved in alternative splicing of syntaxin. The next step is to examine the other mRNA targets of UNC-75 to find out what role they play in axon regeneration and other processes in neurons. DOI:http://dx.doi.org/10.7554/eLife.16072.002
Collapse
Affiliation(s)
- Lizhen Chen
- Section of Neurobiology, University of California, San Diego, Division of Biological Sciences, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, United States
| | - Zhijie Liu
- Department of Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| | - Bing Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| | - Chaoliang Wei
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| | - Michael G Rosenfeld
- Howard Hughes Medical Institute, University of California, San Diego, United States.,Department of Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| | - Andrew D Chisholm
- Section of Neurobiology, University of California, San Diego, Division of Biological Sciences, San Diego, United States
| | - Yishi Jin
- Section of Neurobiology, University of California, San Diego, Division of Biological Sciences, San Diego, United States.,Howard Hughes Medical Institute, University of California, San Diego, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, San Diego, United States
| |
Collapse
|