1
|
Chen H, Liu C, Liu J, Yuan C, He H, Zhang Y, Yu S, Luo T, Shen W, Yu T. Zona Incerta GABAergic Neurons Facilitate Emergence from Isoflurane Anesthesia in Mice. Neurochem Res 2024; 49:3297-3307. [PMID: 39312079 PMCID: PMC11502554 DOI: 10.1007/s11064-024-04230-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 10/25/2024]
Abstract
The zona incerta (ZI) predominantly consists of gamma-aminobutyric acid (GABAergic) neurons, located adjacent to the lateral hypothalamus. GABA, acting on GABAA receptors, serves as a crucial neuromodulator in the initiation and maintenance of general anesthesia. In this study, we aimed to investigate the involvement of ZI GABAergic neurons in the general anesthesia process. Utilizing in-vivo calcium signal optical fiber recording, we observed a decrease in the activity of ZI GABAergic neurons during isoflurane anesthesia, followed by a significant increase during the recovery phase. Subsequently, we selectively ablated ZI GABAergic neurons to explore their role in general anesthesia, revealing no impact on the induction of isoflurane anesthesia but a prolonged recovery time, accompanied by a reduction in delta-band power in mice under isoflurane anesthesia. Finally, through optogenetic activation/inhibition of ZI GABAergic neurons during isoflurane anesthesia, we discovered that activation of these neurons facilitated emergence without affecting the induction process, while inhibition delayed emergence, leading to fluctuations in delta band activity. In summary, these findings highlight the involvement of ZI GABAergic neurons in modulating the emergence of isoflurane anesthesia.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, KweiChow Moutai Hospital, Renhuai, Guizhou, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Chengxi Liu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Junxiao Liu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, Zunyi Hospital of Traditional Chinese Medicine, Zunyi, Guizhou, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Chengdong Yuan
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Haifeng He
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Shouyang Yu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tianyuan Luo
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Wei Shen
- School of Life Science and Technology and Shanghai Institute of Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Tian Yu
- Key Laboratory of Anesthesia and Organ Protestion of Ministry of Education (In Cultivation), Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
2
|
Chen Y, Yu T, Jiang J. Effects of propofol on the electrophysiological properties of glutamatergic neurons in the ventrolateral medulla of mice. BMC Anesthesiol 2024; 24:432. [PMID: 39604849 PMCID: PMC11600619 DOI: 10.1186/s12871-024-02813-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Propofol, a commonly used intravenous anesthetic, is associated with various respiratory adverse events, most notably different degrees of respiratory depression, which pose significant concerns for patient safety. Respiration is a fundamental behavior, with the initiation of breathing in mammals dependent on neuronal activity in the lower brainstem. Previous studies have suggested that propofol-induced respiratory depression might be associated with glutamatergic neurons in the pre-Bötzinger complex (preBötC), though the precise mechanisms are not well understood. In this study, we classify glutamatergic neurons in the brainstem preBötC using whole-cell patch-clamp techniques and investigate the effects of propofol on the electrophysiological properties of these neurons. Our findings aim to shed light on the mechanisms of propofol-induced respiratory depression and provide new experimental insights. METHODS We first employed electrophysiological techniques to classify glutamatergic neurons within the preBötC as Type-1 or Type-2. Following this classification, we applied varying concentrations of propofol through bath application to examine its effects on the electrophysiological properties of each type of glutamatergic neuron. RESULTS We found that Type-1 neurons exhibited a longer latency in excitation, while Type-2 neurons did not show this delayed excitation. On this basis, we further observed that bath application of propofol at concentrations of 5 μM and 10 μM shortened the latency period of Type-1 glutamatergic neurons but did not affect the latency period of Type-2 glutamatergic neurons. CONCLUSION Our study focuses on the glutamatergic neurons in the preBötC of adult mice. It introduces a novel method for classifying these neurons and reveals how propofol affects the activity of the two different types of glutamatergic neurons within the preBötC. These findings contribute to understanding the cellular basis of propofol-induced respiratory depression.
Collapse
Affiliation(s)
- Ya Chen
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.
| | - Junli Jiang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
3
|
Jia L, Yin J, Liu T, Qi W, Du T, Li Q, Ma K, Si J, Yin J, Li Y. Activation of Ventral Tegmental Area Dopaminergic Neurons Projecting to the Parabrachial Nucleus Promotes Emergence from Propofol Anesthesia in Male Rats. Neurochem Res 2024; 49:2060-2074. [PMID: 38814359 DOI: 10.1007/s11064-024-04169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/22/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.
Collapse
Affiliation(s)
- Lei Jia
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jieting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tielong Liu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Wenqiang Qi
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Tongyu Du
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Quntao Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Junqiang Si
- Department of Physiology, School of Medicine, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
4
|
Szabadi E. Three paradoxes related to the mode of action of pramipexole: The path from D2/D3 dopamine receptor stimulation to modification of dopamine-modulated functions. J Psychopharmacol 2024; 38:581-596. [PMID: 39041250 DOI: 10.1177/02698811241261022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Pramipexole, a D2/D3 dopamine receptor agonist, is used to treat the motor symptoms of Parkinson's disease, caused by degeneration of the dopaminergic nigrostriatal pathway. There are three paradoxes associated with its mode of action. Firstly, stimulation of D2/D3 receptors leads to neuronal inhibition, although pramipexole does not inhibit but promotes some dopamine-modulated functions, such as locomotion and reinforcement. Secondly, another dopamine-modulated function, arousal, is not promoted but inhibited by pramipexole, leading to sedation. Thirdly, pramipexole-evoked sedation is associated with an increase in pupil diameter, although sedation is expected to cause pupil constriction. To resolve these paradoxes, the path from stimulation of D2/D3 receptors to the modification of dopamine-modulated functions has been tracked. The functions considered are modulated by midbrain dopaminergic nuclei: locomotion - substantia nigra pars compacta (SNc), reinforcement/motivation - ventral tegmental area (VTA), sympathetic activity (as reflected in pupil function) - VTA; arousal - ventral periaqueductal grey (vPAG), with contributions from VTA and SNc. The application of genetics-based molecular techniques (optogenetics and chemogenetics) has enabled tracing the chains of neurones from the dopaminergic nuclei to their final targets executing the functions. The functional neuronal circuits linked to the D2/D3 receptors in the dorsal and ventral striata, stimulated by inputs from SNc and VTA, respectively, may explain how neuronal inhibition induced by pramipexole is translated into the promotion of locomotion, reinforcement/motivation and sympathetic activity. As the vPAG may increase arousal mainly by stimulating cortical D1 dopamine receptors, pramipexole would stimulate only presynaptic D2/D3 receptors on vPAG neurones, curtailing their activity and leading to sedation.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, University of Nottingham, Nottingham, UK
| |
Collapse
|
5
|
Zhang H, Zhu Z, Ma WX, Kong LX, Yuan PC, Bu LF, Han J, Huang ZL, Wang YQ. The contribution of periaqueductal gray in the regulation of physiological and pathological behaviors. Front Neurosci 2024; 18:1380171. [PMID: 38650618 PMCID: PMC11034386 DOI: 10.3389/fnins.2024.1380171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/25/2024] Open
Abstract
Periaqueductal gray (PAG), an integration center for neuronal signals, is located in the midbrain and regulates multiple physiological and pathological behaviors, including pain, defensive and aggressive behaviors, anxiety and depression, cardiovascular response, respiration, and sleep-wake behaviors. Due to the different neuroanatomical connections and functional characteristics of the four functional columns of PAG, different subregions of PAG synergistically regulate various instinctual behaviors. In the current review, we summarized the role and possible neurobiological mechanism of different subregions of PAG in the regulation of pain, defensive and aggressive behaviors, anxiety, and depression from the perspective of the up-down neuronal circuits of PAG. Furthermore, we proposed the potential clinical applications of PAG. Knowledge of these aspects will give us a better understanding of the key role of PAG in physiological and pathological behaviors and provide directions for future clinical treatments.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhe Zhu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Wei-Xiang Ma
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ling-Xi Kong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Ping-Chuan Yuan
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Li-Fang Bu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Anhui Provincial Engineering Research Center for Polysaccharide Drugs, Wannan Medical College, Wuhu, China
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi-Qun Wang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Joint International Research Laboratory of Sleep, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lu X, Xue J, Lai Y, Tang X. Heterogeneity of mesencephalic dopaminergic neurons: From molecular classifications, electrophysiological properties to functional connectivity. FASEB J 2024; 38:e23465. [PMID: 38315491 DOI: 10.1096/fj.202302031r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
The mesencephalic dopamine (DA) system is composed of neuronal subtypes that are molecularly and functionally distinct, are responsible for specific behaviors, and are closely associated with numerous brain disorders. Existing research has made significant advances in identifying the heterogeneity of mesencephalic DA neurons, which is necessary for understanding their diverse physiological functions and disease susceptibility. Moreover, there is a conflict regarding the electrophysiological properties of the distinct subsets of midbrain DA neurons. This review aimed to elucidate recent developments in the heterogeneity of midbrain DA neurons, including subpopulation categorization, electrophysiological characteristics, and functional connectivity to provide new strategies for accurately identifying distinct subtypes of midbrain DA neurons and investigating the underlying mechanisms of these neurons in various diseases.
Collapse
Affiliation(s)
- Xiaying Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Jinhua Xue
- Department of Pathophysiology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Yudong Lai
- Department of Human Anatomy, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | - Xiaolu Tang
- The First Clinical Medical College, Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Wang J, Miao X, Sun Y, Li S, Wu A, Wei C. Dopaminergic System in Promoting Recovery from General Anesthesia. Brain Sci 2023; 13:brainsci13040538. [PMID: 37190503 DOI: 10.3390/brainsci13040538] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023] Open
Abstract
Dopamine is an important neurotransmitter that plays a biological role by binding to dopamine receptors. The dopaminergic system regulates neural activities, such as reward and punishment, memory, motor control, emotion, and sleep-wake. Numerous studies have confirmed that the dopaminergic system has the function of maintaining wakefulness in the body. In recent years, there has been increasing evidence that the sleep-wake cycle in the brain has similar neurobrain network mechanisms to those associated with the loss and recovery of consciousness induced by general anesthesia. With the continuous development and innovation of neurobiological techniques, the dopaminergic system has now been proved to be involved in the emergence from general anesthesia through the modulation of neuronal activity. This article is an overview of the dopaminergic system and the research progress into its role in wakefulness and general anesthesia recovery. It provides a theoretical basis for interpreting the mechanisms regulating consciousness during general anesthesia.
Collapse
Affiliation(s)
- Jinxu Wang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Xiaolei Miao
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Sijie Li
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| |
Collapse
|
8
|
Guo J, Xu K, Yin JW, Zhang H, Yin JT, Li Y. Dopamine transporter in the ventral tegmental area modulates recovery from propofol anesthesia in rats. J Chem Neuroanat 2022; 121:102083. [PMID: 35181484 DOI: 10.1016/j.jchemneu.2022.102083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 02/12/2022] [Accepted: 02/12/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVE(S) To investigate the role of the dopamine transporter (DAT) in the ventral tegmental area (VTA) in the recovery from propofol anesthesia in rats. MATERIALS AND METHODS A total of 150 Sprague-Dawley (SD) rats were randomly split into a normal control group (NC), saline group (S), propofol anesthesia group (P), adeno-associated viral-NC-mCherry (AAV-NC) group, and AAV-DAT-RNAi (DAT-RNAi) group (n = 30 per group). In rats in the AAV intervention group, AAV was injected into the VTA nucleus via a stereotaxer. The rats in each group were continuously pumped with propofol through the tail vein at a dose of 70mg/kg/h, and the control group was infused with the same dose of saline at the same speed for 30min. Immunofluorescence staining was used to observe the expression of c-fos protein in the prefrontal cortex (PFC). The induction and recovery time of propofol anesthesia were recorded based on the time of disappearance of the righting reflex (LORR) and recovery (RORR). The anesthesia depth score was performed on all rats 10min after starting the administration and 10min after withdrawal, which represented the depth of anesthesia during anesthesia and the degree of recovery during anesthesia recovery, respectively. electroencephalogram (EEG) was recorded during propofol anesthesia and recovery. RESULTS Compared to the NC group, the RORR of the DAT-RNAi group was shortened, and the anesthesia depth score was higher (P < 0.05). In the DAT-RNAi group, during the period of propofol anesthesia, the β wave frequencies increased, the θ wave frequencies decreased, and the expression of c-fos protein in PFC increased and during the recovery from propofol anesthesia, the α wave and β wave frequencies were increased (P < 0.05). CONCLUSION Knockdown of the DAT in the VTA region can enhance the activity of PFC neurons and promote the recovery of rats from propofol anesthesia.
Collapse
Affiliation(s)
- Jia Guo
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Ke Xu
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jiang-Wen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Han Zhang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Jie-Ting Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi 832000, China.
| |
Collapse
|
9
|
Zhang Y, Gui H, Duan Z, Yu T, Zhang J, Liang X, Liu C. Dopamine D1 Receptor in the Nucleus Accumbens Modulates the Emergence from Propofol Anesthesia in Rat. Neurochem Res 2021; 46:1435-1446. [PMID: 33683630 DOI: 10.1007/s11064-021-03284-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 01/26/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
It has been reported that systemic activation of D1 receptors promotes emergence from isoflurane-induced unconsciousness, suggesting that the central dopaminergic system is involved in the process of recovering from general anesthesia. The nucleus accumbens (NAc) contains abundant GABAergic medium spiny neurons (MSNs) expressing the D1 receptor (D1R), which plays a key role in sleep-wake behavior. However, the role of NAc D1 receptors in the process of emergence from general anesthesia has not been identified. Here, using real-time in vivo fiber photometry, we found that neuronal activity in the NAc was markedly disinhibited during recovery from propofol anesthesia. Subsequently, microinjection of a D1R selective agonist (chloro-APB hydrobromide) into the NAc notably reduced the time to emerge from propofol anesthesia with a decrease in δ-band power and an increase in β-band power evident in the cortical electroencephalogram. These effects were prevented by pretreatment with a D1R antagonist (SCH-23390). Whole-cell patch clamp recordings were performed to further explore the cellular mechanism underlying the modulation of D1 receptors on MSNs under propofol anesthesia. Our data primarily demonstrated that propofol increased the frequency and prolonged the decay time of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) of MSNs expressing D1 receptors. A D1R agonist attenuated the effect of propofol on the frequency of sIPSCs and mIPSCs, and the effects of the agonist were eliminated by preapplication of SCH-23390. Collectively, these results indicate that modulation of the D1 receptor on the activity of NAc MSNs is vital for emergence from propofol-induced unconsciousness.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Huan Gui
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zikun Duan
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jie Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Xiaoli Liang
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chengxi Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
- Guizhou Key Laboratory of Brain Science, Guizhou Key Laboratory of Anesthesia and Organ Protection, The Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
10
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 PMCID: PMC7960927 DOI: 10.3389/fnins.2021.643871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I. Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R. B. Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K. Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A. Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
11
|
Luppi AI, Spindler LRB, Menon DK, Stamatakis EA. The Inert Brain: Explaining Neural Inertia as Post-anaesthetic Sleep Inertia. Front Neurosci 2021; 15:643871. [PMID: 33737863 DOI: 10.3389/fnins.2021.64387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/05/2021] [Indexed: 05/20/2023] Open
Abstract
"Neural inertia" is the brain's tendency to resist changes in its arousal state: it is manifested as emergence from anaesthesia occurring at lower drug doses than those required for anaesthetic induction, a phenomenon observed across very different species, from invertebrates to mammals. However, the brain is also subject to another form of inertia, familiar to most people: sleep inertia, the feeling of grogginess, confusion and impaired performance that typically follows awakening. Here, we propose a novel account of neural inertia, as the result of sleep inertia taking place after the artificial sleep induced by anaesthetics. We argue that the orexinergic and noradrenergic systems may be key mechanisms for the control of these transition states, with the orexinergic system exerting a stabilising effect through the noradrenergic system. This effect may be reflected at the macroscale in terms of altered functional anticorrelations between default mode and executive control networks of the human brain. The hypothesised link between neural inertia and sleep inertia could explain why different anaesthetic drugs induce different levels of neural inertia, and why elderly individuals and narcoleptic patients are more susceptible to neural inertia. This novel hypothesis also enables us to generate several empirically testable predictions at both the behavioural and neural levels, with potential implications for clinical practice.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Lennart R B Spindler
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
12
|
Chen L, Li S, Zhou Y, Liu T, Cai A, Zhang Z, Xu F, Manyande A, Wang J, Peng M. Neuronal mechanisms of adenosine A 2A receptors in the loss of consciousness induced by propofol general anesthesia with functional magnetic resonance imaging. J Neurochem 2020; 156:1020-1032. [PMID: 32785947 DOI: 10.1111/jnc.15146] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 01/04/2023]
Abstract
Propofol is the most common intravenous anesthetic agent for induction and maintenance of anesthesia, and has been used clinically for more than 30 years. However, the mechanism by which propofol induces loss of consciousness (LOC) remains largely unknown. The adenosine A2A receptor (A2A R) has been extensively proven to have an effect on physiological sleep. It is, therefore, important to investigate the role of A2A R in the induction of LOC using propofol. In the present study, the administration of the highly selective A2A R agonist (CGS21680) and antagonist (SCH58261) was utilized to investigate the function of A2A R under general anesthesia induced by propofol by means of animal behavior studies, resting-state magnetic resonance imaging and c-Fos immunofluorescence staining approaches. Our results show that CGS21680 significantly prolonged the duration of LOC induced by propofol, increased the c-Fos expression in nucleus accumbens (NAc) and suppressed the functional connectivity of NAc-dorsal raphe nucleus (DR) and NAc-cingulate cortex (CG). However, SCH58261 significantly shortened the duration of LOC induced by propofol, decreased the c-Fos expression in NAc, increased the c-Fos expression in DR, and elevated the functional connectivity of NAc-DR and NAc-CG. Collectively, our findings demonstrate the important roles played by A2A R in the LOC induced by propofol and suggest that the neural circuit between NAc-DR maybe controlled by A2A R in the mechanism of anesthesia induced by propofol.
Collapse
Affiliation(s)
- Lei Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China.,Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Shuang Li
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China
| | - Ying Zhou
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Aoling Cai
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Zongze Zhang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| | - Fuqiang Xu
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, PR China.,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, P. R. China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, P. R. China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Jie Wang
- Center of Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, PR China
| | - Mian Peng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, P.R. China
| |
Collapse
|
13
|
Liu C, Zhou X, Zhu Q, Fu B, Cao S, Zhang Y, Zhang L, Zhang Y, Yu T. Dopamine neurons in the ventral periaqueductal gray modulate isoflurane anesthesia in rats. CNS Neurosci Ther 2020; 26:1121-1133. [PMID: 32881314 PMCID: PMC7564192 DOI: 10.1111/cns.13447] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
Aims General anesthesia has been applied in surgery for more than 170 years, and there is little doubt that GABAA receptors have an important role as anesthetic molecular targets, but its neural mechanisms remain unclear. Increasing researchers have shown that dopaminergic pathways in the brain are crucial for sleep and wake. General anesthesia‐induced unconsciousness and natural sleep share some neural correlates. However, the role of GABAA receptors in ventral periaqueductal gray (vPAG) dopamine (DA) neurons in the isoflurane‐induced unconsciousness has yet to be identified. Methods In the present study, we used calcium fiber photometry recording to explore that the activity of ventral periaqueductal gray (vPAG) neurons. Then, rats were unilaterally microinjected with 6‐hydroxydopamine into the vPAG area to determine the role of vPAG‐DA neurons in isoflurane‐induced‐anesthesia. Furthermore, thirty SD rats were divided into three groups: a GABAAR agonist‐muscimol group, a GABAAR antagonist‐gabazine group, and a control group. Finally, whole‐cell patch clamp was used to examine the effects of isoflurane and GABAA receptor agonist/antagonist on vPAG‐DA neurons. Results The vPAG neurons were markedly inhibited during isoflurane anesthesia induction and that these neurons were activated during emergence from isoflurane anesthesia. Lesion to the vPAG‐DA neurons shortened the induction time and prolonged the emergence time while increasing δ power in isoflurane anesthesia. Intracerebral injection of the GABAA receptor agonist (muscimol) into the vPAG accelerated the induction of anesthesia and delayed recovery from isoflurane anesthesia, with a decrease of δ power and an augment of β power. Injection of GABAA receptor antagonist gabazine generated the opposite effects. Isoflurane enhanced GABAergic transmission, and GABAA receptor agonist partly increased isoflurane‐induced inhibition of vPAG‐DA neurons, while GABAA receptor antagonist evidently attenuated GABAergic transmission. Conclusion Our results suggest that vPAG‐DA neurons are involved in isoflurane anesthesia through activation of the GABAA receptor.
Collapse
Affiliation(s)
- Chengxi Liu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Xiao Zhou
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Qiuyu Zhu
- Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Bao Fu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.,Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Song Cao
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Yu Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Lin Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| | - Yi Zhang
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.,Department of Anesthesiology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
14
|
Lee J, Jung SM, Jeon S. Delayed emergence from propofol anesthesia in a patient with Lesch-Nyhan syndrome: A case report. Medicine (Baltimore) 2020; 99:e21847. [PMID: 32846834 PMCID: PMC7447411 DOI: 10.1097/md.0000000000021847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Lesch-Nyhan syndrome (LNS) is an X-linked recessive disorder presenting with uric acid overproduction, neurocognitive disability, and behavioral disturbances. Inhalational anesthesia has been frequently used in LNS patients undergoing surgery. Characteristic compulsive self-injurious behavior and high risk of emesis may hinder inhalational induction. Propofol may be beneficial for these patients because of its easy and rapid titration for anesthetic depth during induction, early recovery from anesthesia, and antiemetic effect as well as uricosuric effect. PATIENT CONCERNS A 16-year-old male adolescent was scheduled for percutaneous nephrolithotomy. He exhibited poorly controlled muscle, self-injurious behaviors and intellectual disability. DIAGNOSIS The patient presented with neurodevelopmental delay in the first year of life, and was diagnosed with LNS, with a substitution of phenylalanine to leucine in hypoxanthine-guanine phosphoribosyltransferase (HPRT) 1 gene on the X-chromosome at 3 years of age. INTERVENTIONS Total intravenous anesthesia was used for induction and maintenance of anesthesia with propofol and remifentanil using target-controlled infusion. OUTCOMES Time to recovery of consciousness was prolonged after uneventful surgery. Serum uric acid levels gradually increased during postoperative period. LESSONS Propofol anesthesia using target-controlled infusion does not provide significant clinical advantages in rapid emergence from anesthesia and management of hyperuricemia in LNS patients undergoing urological surgery.
Collapse
|
15
|
Hypocretin (orexin) immunoreactivity in the feline midbrain: Relevance for the generation of wakefulness. J Chem Neuroanat 2020; 105:101769. [PMID: 32145304 DOI: 10.1016/j.jchemneu.2020.101769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/19/2020] [Accepted: 02/19/2020] [Indexed: 01/08/2023]
Abstract
Hypocretins (Hcrt) 1 and 2 are two neuropeptides synthesized from neurons that are located in the perifornical area of the lateral hypothalamus. These neurons project diffusely throughout the central nervous system, and have been implicated in the generation and maintenance of wakefulness, as well as in critical physiological processes that occur during this behavioral state, such as motivation. The hypocretinergic projections towards the feline midbrain have not been studied before. Therefore, the aim of the present study was to analyze their relationship to the midbrain neurons, that are critically involved in the control of sleep and wakefulness. With this purpose, we examined the distribution of Hcrt1-positive fibers in the midbrain and pontomesencephalic area of the domestic cat (Felis catus), and their relationship with catecholaminergic and cholinergic neurons by means of single and double immunohistochemistry. Hcrtergic axons with distinctive varicosities and buttons were heterogeneously distributed, exhibiting different densities in distinct regions of the midbrain. High Hcrtergic fiber densities were observed in the periaqueductal gray, interpeduncular nucleus, locus coeruleus and cholinergic mesopontine regions. In addition, we studied in detail the Hcrtergic projection towards the dopaminergic nuclei of the midbrain. While very few Hcrt + fibers were observed in the substantia nigra pars compacta, the highest density of Hcrtergic fibers was found in the dopaminergic ventral periaqueductal gray area (also called A10dc area); appositions between Hcrtergic terminals and dopaminergic somata and dendrites were observed within this area. Because this dopaminergic area has been involved in the control of wakefulness, the present anatomical data provides relevant support about the role of the Hcrtergic system in the generation of this behavioral state.
Collapse
|
16
|
Escape From Oblivion: Neural Mechanisms of Emergence From General Anesthesia. Anesth Analg 2019; 128:726-736. [PMID: 30883418 DOI: 10.1213/ane.0000000000004006] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The question of how general anesthetics suppress consciousness has persisted since the mid-19th century, but it is only relatively recently that the field has turned its focus to a systematic understanding of emergence. Once assumed to be a purely passive process, spontaneously occurring as residual levels of anesthetics dwindle below a critical value, emergence from general anesthesia has been reconsidered as an active and controllable process. Emergence is driven by mechanisms that can be distinct from entry to the anesthetized state. In this narrative review, we focus on the burgeoning scientific understanding of anesthetic emergence, summarizing current knowledge of the neurotransmitter, neuromodulators, and neuronal groups that prime the brain as it prepares for its journey back from oblivion. We also review evidence for possible strategies that may actively bias the brain back toward the wakeful state.
Collapse
|