1
|
Sun Q, Weng RX, Li JH, Li YC, Xu JT, Li R, Lu X, Xu GY. Rab27a-mediated exosome secretion in anterior cingulate cortex contributes to colorectal visceral pain in adult mice with neonatal maternal deprivation. Am J Physiol Gastrointest Liver Physiol 2023; 325:G356-G367. [PMID: 37529842 DOI: 10.1152/ajpgi.00029.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
Chronic visceral pain is a common symptom of irritable bowel syndrome (IBS). Exosomes are involved in the development of pain. Rab27a can mediate the release of exosomes. The purpose of this study is to investigate how Rab27a-mediated exosome secretion in the anterior cingulate cortex (ACC) regulates visceral hyperalgesia induced with neonatal maternal deprivation (NMD) in adult mice. The colorectal distension method was adopted to measure visceral pain. The BCA protein assay kit was applied to detect the exosome protein concentration. Western blotting, quantitative PCR, and immunofluorescence technique were adopted to detect the expression of Rab27a and the markers of exosomes. Exosomes extracted from ACC were more in NMD mice than in control (CON) mice. Injection of the exosome-specific inhibitor GW4869 in ACC attenuated colorectal visceral pain of NMD mice. Injection of NMD-derived exosomes produced colorectal visceral pain in CON mice. Rab27a was upregulated in ACC of NMD mice. Rab27a was highly expressed in ACC neurons of NMD mice, rather than astrocytes and microglia. Injection of Rab27a-siRNA reduced the release of exosomes and attenuated the colorectal visceral pain in NMD mice. This study suggested that overexpression of Rab27a increased exosome secretion in ACC neurons, thus contributing to visceral hyperalgesia in NMD mice.NEW & NOTEWORTHY This work demonstrated that the expression of Rab27a in the anterior cingulate cortex was upregulated, which mediated multivesicular bodies trafficking to the plasma membrane and led to the increased release of neuronal exosomes, thus contributing to colorectal visceral pain in neonatal maternal deprivation (NMD) mice. Blocking the release of exosomes or downregulation of Rab27a could alleviate colorectal visceral pain in NMD mice. These data may provide a promising strategy for the treatment of visceral pain in irritable bowel syndrome patients.
Collapse
Affiliation(s)
- Qian Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Rui-Xia Weng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jia-Hui Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Yong-Chang Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| | - Ji-Tian Xu
- Department of Physiology and Neurobiology, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Rui Li
- Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Xiaomin Lu
- Department of Oncology, Hai'an People's Hospital, Nantong, People's Republic of China
| | - Guang-Yin Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
2
|
Sorokina NS, Starostina MV. Myelopeptides Reduce Morphine Tolerance in C57BL/6j Mice. Bull Exp Biol Med 2021; 171:623-626. [PMID: 34617173 DOI: 10.1007/s10517-021-05282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/27/2022]
Abstract
The development of morphine tolerance in C57BL/6j mice was estimated by the analgesic effect in tail-flick and hot plate tests. Morphine hydrochloride (10 mg/kg body weight) was administered to animals twice for 5 days and once on the sixth day, saline or myelopeptides were injected 15 min before morphine administration (2 μg/kg body weight). In the tail-flick test, all studied myelopeptides suppressed the development of tolerance to morphine and did not show their own analgesic activity. In the hot plate test, only three myelopeptides (MP2, MP5, and MP6) were found to reduce the formation of morphine tolerance. MP1 significantly reduced the analgesic effect of morphine on days 1-3 of administration, but contributed to the preservation of the analgesic effect during the period of tolerance development.
Collapse
Affiliation(s)
- N S Sorokina
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - M V Starostina
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia.
| |
Collapse
|
3
|
Zhao G, Shi Y, Gong C, Liu T, Nan W, Ma L, Wu Z, Da C, Zhou K, Zhang H. Curcumin Exerts Antinociceptive Effects in Cancer-Induced Bone Pain via an Endogenous Opioid Mechanism. Front Neurosci 2021; 15:696861. [PMID: 34539332 PMCID: PMC8446608 DOI: 10.3389/fnins.2021.696861] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Cancer pain is one of the main complications in advanced cancer patients, and its management is still challenging. Therefore, there is an urgent need to develop novel pharmacotherapy for cancer pain. Several natural products have attracted the interest of researchers. In previous studies, curcumin has proved to exhibit antitumor, antiviral, antioxidant, anti-inflammatory, and analgesic effects. However, the analgesic mechanism of curcumin has not been elucidated. Thus, in this study, we aimed to elucidate the antinociceptive potency and analgesic mechanism of curcumin in cancer-induced bone pain. Our results showed that consecutive curcumin treatment (30, 60, 120 mg/kg, i.p., twice daily for 11 days) produced significant analgesic activity, but had no effect on the progress of the bone cancer pain. Notably, pretreatment with naloxone, a non-selective opioid receptor antagonist, markedly reversed the antinociceptive effect induced by curcumin. Moreover, in primary cultured rat dorsal root ganglion (DRG) neurons, curcumin significantly up-regulated the expression of proopiomelanocortin (Pomc) and promoted the release of β-endorphin and enkephalin. Furthermore, pretreatment with the antiserum of β-endorphin or enkephalin markedly attenuated curcumin-induced analgesia in cancer-induced bone pain. Our present study, for the first time, showed that curcumin attenuates cancer-induced bone pain. The results also suggested that stimulation of expression of DRG neurons β-endorphin and enkephalin mediates the antinociceptive effect of curcumin in pain hypersensitivity conditions.
Collapse
Affiliation(s)
- Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yongqiang Shi
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoyang Gong
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Taicong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Wei Nan
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Lin Ma
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Zuolong Wu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Chaoming Da
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| | - Kaisheng Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, China.,The Second Clinical Medical College, Lanzhou University, Lanzhou, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Liang M, Dang H, Li Q, Huang W, Liu C. Effects of rapamycin and OSI-027 on α-SMA in lung tissue of SD rat pups with hyperoxic lung injury. Biochem Biophys Res Commun 2021; 556:39-44. [PMID: 33836346 DOI: 10.1016/j.bbrc.2021.02.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the effect and significance of mammalian target of rapamycin (mTOR) inhibitors on the expression of α-SMA in lung injury induced by high volume fraction of inspired oxygen (hyperoxygen) in SD rat pups. METHODS Seventy-two Sprague-Dawley rat pups (age: 3 weeks) were randomly divided into air + saline, hyperoxia + saline, hyperoxia + OSI-027, and hyperoxia + rapamycin groups. Animal models were constructed (n = 18). Hyperoxia was induced by continuous administration of 90% oxygen. Normal saline, OSI-027, and rapamycin are administered by intraperitoneal injection on 1d, 3d, 6d, 8d, 10d, 13d of the observation period, respectively. Following assessments were made on the 3rd, 7th, and 14th day of modeling: pathological changes in lung tissues, lung injury score, Western Blot to assess the distribution and expressions of mTOR, pS6K1, and α-SMA protein in lung tissues. RESULTS In terms of time factors, the protein expressions of mTOR, pS6K1, and α-SMA increased with time. Except for the air group, the lung injury scores of the other groups increased with time, In terms of grouping factors, lung injury score in the air group was significantly lower than that in the other groups. In the hyperoxia group, the protein expressions of mTOR, PS6K1, and α-SMA were significantly higher than those in the other groups. The lung injury score in the hyperoxia group was significantly higher than that in the other groups. The lung injury score in the hyperoxia OSI group was significantly lower than that in the hyperoxia rapamycin group. CONCLUSION In hyperoxia lung injury, inhibiting the activation of mTOR signaling pathway can effectively reduce the expression of α-SMA; however, only mTORC1/2 dual inhibitor OSI-027 exhibited an anti-proliferative effect, and alleviated hyperoxia-induced lung injury and fibrosis in SD rat pups.
Collapse
Affiliation(s)
- Mulin Liang
- Department of Neonatal Intensive Care Unit, The Fifth Affiliated Hospital, Southern Medical University Guangzhou, China
| | - Hongxing Dang
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qinghe Li
- Department of Neonatal Intensive Care Unit, The Fifth Affiliated Hospital, Southern Medical University Guangzhou, China
| | - Weiben Huang
- Department of Neonatal Intensive Care Unit, The Fifth Affiliated Hospital, Southern Medical University Guangzhou, China
| | - Chengjun Liu
- Department of Pediatric Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
5
|
Injection of minocycline into the periaqueductal gray attenuates morphine withdrawal signs. Neurosci Lett 2020; 736:135283. [PMID: 32739271 DOI: 10.1016/j.neulet.2020.135283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/07/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of minocycline microinjections, into the midbrain periaqueductal gray (PAG), on morphine withdrawal and the expression of pannexin-1 (panx1), phosphorylated mammalian target of rapamycin (p-mTOR), protein kinase A (PKA), and cAMP response element-binding protein (CREB). Rats were injected with morphine, intraperitoneally, at increasing doses, twice per day, to establish animal models of morphine exposure. Minocycline was administered into the PAG before the first intraperitoneal (i.p.) injection of morphine each day, on days 1-4. On the last day of the experiment, all rats were injected with naloxone, and morphine withdrawal was observed, and then changes in the expression levels of ionized calcium-binding adaptor molecule 1 (Iba1) and its downstream factors, panx1, p-mTOR, PKA, and CREB were evaluated by western blot and immunohistochemistry analyses. Morphine withdrawal increased microglial activation, whereas minocycline could inhibit microglial activation and withdrawal and the downregulation of panx1, p-mTOR, PKA, and CREB expression, reducing the effects of morphine withdrawal.
Collapse
|