1
|
Zhang Q, Liu Z, Li B, Mu L, Sheng K, Xiong Y, Cheng J, Zhou J, Xiong Z, Zhou L, Jiang L, Wu J, Cai X, Zheng Y, Du W, Li Y, Zhu Y. Platinum-Loaded Cerium Oxide Capable of Repairing Neuronal Homeostasis for Cerebral Ischemia-Reperfusion Injury Therapy. Adv Healthc Mater 2024; 13:e2303027. [PMID: 38323853 DOI: 10.1002/adhm.202303027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/12/2024] [Indexed: 02/08/2024]
Abstract
Effective neuroprotective agents are required to prevent neurological damage caused by reactive oxygen species (ROS) generated by cerebral ischemia-reperfusion injury (CIRI) following an acute ischemic stroke. Herein, it is aimed to develop the neuroprotective agents of cerium oxide loaded with platinum clusters engineered modifications (Ptn-CeO2). The density functional theory calculations show that Ptn-CeO2 could effectively scavenge ROS, including hydroxyl radicals (·OH) and superoxide anions (·O2 -). In addition, Ptn-CeO2 exhibits the superoxide dismutase- and catalase-like enzyme activities, which is capable of scavenging hydrogen peroxide (H2O2). The in vitro studies show that Ptn-CeO2 could adjust the restoration of the mitochondrial metabolism to ROS homeostasis, rebalance cytokines, and feature high biocompatibility. The studies in mice CIRI demonstrate that Ptn-CeO2 could also restore cytokine levels, reduce cysteine aspartate-specific protease (cleaved Caspase 3) levels, and induce the polarization of microglia to M2-type macrophages, thus inhibiting the inflammatory responses. As a result, Ptn-CeO2 inhibits the reperfusion-induced neuronal apoptosis, relieves the infarct volume, reduces the neurological severity score, and improves cognitive function. Overall, these findings suggest that the prominent neuroprotective effect of the engineered Ptn-CeO2 has a significant neuroprotective effect and provides a potential therapeutic alternative for CIRI.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Zihao Liu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Bo Li
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
- Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
| | - Liuhua Mu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
- School of Physical Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kai Sheng
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yijia Xiong
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jiahui Cheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160, Pujian Road, Pudong District, Shanghai, 200127, China
| | - Jia Zhou
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Zhi Xiong
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lingling Zhou
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Lixian Jiang
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Jianrong Wu
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Xiaojun Cai
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuanyi Zheng
- Department of Ultrasound in Medicine, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Wenxian Du
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yuehua Li
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| | - Yueqi Zhu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 600, Yishan Road, Xuhui District, Shanghai, 200233, China
| |
Collapse
|