1
|
Kong X, Lyu W, Lin X, Feng H, Xu L, Li C, Sun X, Lin C, Li J, Wei P. Transcranial direct current stimulation enhances the protective effect of isoflurane preconditioning on cerebral ischemia/reperfusion injury: A new mechanism associated with the nuclear protein Akirin2. CNS Neurosci Ther 2024; 30:e70033. [PMID: 39267282 PMCID: PMC11393012 DOI: 10.1111/cns.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
AIMS Ischemic stroke is a major cause of disability and mortality worldwide. Transcranial direct current stimulation (tDCS) and isoflurane (ISO) preconditioning exhibit neuroprotective properties. However, it remains unclear whether tDCS enhances the protective effect of ISO preconditioning on ischemic stroke, and the underlying mechanisms are yet to be clarified. METHOD A model of middle cerebral artery occlusion (MCAO), a rat ischemia-reperfusion (I/R) injury model, and an in vitro oxygen-glucose deprivation/re-oxygenation (O/R) model of ischemic injury were developed. ISO preconditioning and tDCS were administered daily for 7 days before MCAO modeling. Triphenyltetrazolium chloride staining, modified neurological severity score, and hanging-wire test were conducted to assess infarct volume and neurological outcomes. Untargeted metabolomic experiments, adeno-associated virus, lentiviral vectors, and small interfering RNA techniques were used to explore the underlying mechanisms. RESULTS tDCS/DCS enhanced the protective effects of ISO pretreatment on I/R injury-induced brain damage. This was evidenced by reduced infarct volume and improved neurological outcomes in rats with MCAO, as well as decreased cortical neuronal death after O/R injury. Untargeted metabolomic experiments identified oxidative phosphorylation (OXPHOS) as a critical pathological process for ISO-mediated neuroprotection from I/R injury. The combination of tDCS/DCS with ISO preconditioning significantly inhibited I/R injury-induced OXPHOS. Mechanistically, Akirin2, a small nuclear protein that regulates cell proliferation and differentiation, was found to decrease in the cortex of rats with MCAO and in cortical primary neurons subjected to O/R injury. Akirin2 functions upstream of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). tDCS/DCS was able to further upregulate Akirin2 levels and activate the Akirin2/PTEN signaling pathway in vivo and in vitro, compared with ISO pretreatment alone, thereby contributing to the improvement of cerebral I/R injury. CONCLUSION tDCS treatment enhances the neuroprotective effects of ISO preconditioning on ischemic stroke by inhibiting oxidative stress and activating Akirin2-PTEN signaling pathway, highlighting potential of combination therapy in ischemic stroke.
Collapse
Affiliation(s)
- Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xinyi Sun
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Chunlong Lin
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| |
Collapse
|
2
|
Xu J, Wen J, Mathena RP, Singh S, Boppana SH, Yoon OI, Choi J, Li Q, Zhang P, Mintz CD. Early Postnatal Exposure to Midazolam Causes Lasting Histological and Neurobehavioral Deficits via Activation of the mTOR Pathway. Int J Mol Sci 2024; 25:6743. [PMID: 38928447 PMCID: PMC11203812 DOI: 10.3390/ijms25126743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Exposure to general anesthetics can adversely affect brain development, but there is little study of sedative agents used in intensive care that act via similar pharmacologic mechanisms. Using quantitative immunohistochemistry and neurobehavioral testing and an established protocol for murine sedation, we tested the hypothesis that lengthy, repetitive exposure to midazolam, a commonly used sedative in pediatric intensive care, interferes with neuronal development and subsequent cognitive function via actions on the mechanistic target of rapamycin (mTOR) pathway. We found that mice in the midazolam sedation group exhibited a chronic, significant increase in the expression of mTOR activity pathway markers in comparison to controls. Furthermore, both neurobehavioral outcomes, deficits in Y-maze and fear-conditioning performance, and neuropathologic effects of midazolam sedation exposure, including disrupted dendritic arborization and synaptogenesis, were ameliorated via treatment with rapamycin, a pharmacologic mTOR pathway inhibitor. We conclude that prolonged, repetitive exposure to midazolam sedation interferes with the development of neural circuitry via a pathologic increase in mTOR pathway signaling during brain development that has lasting consequences for both brain structure and function.
Collapse
Affiliation(s)
- Jing Xu
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an 710061, China
| | - Jieqiong Wen
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an 710000, China;
| | - Reilley Paige Mathena
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Shreya Singh
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Sri Harsha Boppana
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Olivia Insun Yoon
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Jun Choi
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Qun Li
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| | - Pengbo Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Xi’an Jiaotong University School of Medicine, Xi’an 710000, China;
| | - Cyrus David Mintz
- Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD 21209, USA; (J.X.); (J.W.); (R.P.M.); (S.S.); (S.H.B.); (J.C.); (Q.L.)
| |
Collapse
|
3
|
Liu J, Miao M, Wei F. Angelicin Alleviates Maternal Isoflurane Exposure-Induced Offspring Cognitive Defects Through the Carbonic Anhydrase 4/Aquaporin-4 Pathway. Mol Biotechnol 2024; 66:34-43. [PMID: 36997697 DOI: 10.1007/s12033-023-00723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023]
Abstract
An increasing number of studies reveal the deleterious effects of isoflurane (Iso) exposure during pregnancy on offspring cognition. However, no effective therapeutic strategy for Iso-induced deleterious effects has been well developed. Angelicin exerts an anti-inflammatory effect on neurons and glial cells. This study investigated the roles and mechanism of action of angelicin in Iso-induced neurotoxicity in vitro and in vivo. After exposing C57BL/6 J mice on embryonic day 15 (E15) to Iso for 3 and 6 h, respectively, neonatal mice on embryonic day 18 (E18) displayed obvious anesthetic neurotoxicity, which was revealed by the elevation of cerebral inflammatory factors and blood-brain barrier (BBB) permeability and cognitive dysfunction in mice. Angelicin treatment could not only significantly reduce the Iso-induced embryonic inflammation and BBB disruption but also improve the cognitive dysfunction of offspring mice. Iso exposure resulted in an increase of carbonic anhydrase (CA) 4 and aquaporin-4 (AQP4) expression at both mRNA and protein levels in vascular endothelial cells and mouse brain tissue collected from neonatal mice on E18. Remarkably, the Iso-induced upregulation of CA4 and AQP4 expression could be partially reversed by angelicin treatment. Moreover, GSK1016790A, an AQP4 agonist, was used to confirm the role of AQP4 in the protective effect of angelicin. Results showed that GSK1016790A abolished the therapeutic effect of angelicin on Iso-induced inflammation and BBB disruption in the embryonic brain and on the cognitive function of offspring mice. In conclusion, angelicin may serve as a potential therapeutic for Iso-induced neurotoxicity in neonatal mice by regulating the CA4/AQP4 pathway.
Collapse
Affiliation(s)
- Jingying Liu
- Department of Obstetrical, Yantaishan Hospital, Yantai, 264000, Shandong, China
| | - Meijuan Miao
- Department of Anesthesiology, Feicheng People's Hospital, Feicheng, 271600, Shandong, China
| | - Fujiang Wei
- Department of Anesthesiology, Yantaishan Hospital, No. 91 Jiefang Road, Zhifu District, Yantai, 264000, Shandong, China.
| |
Collapse
|
4
|
Occupational Exposure to Inhalational Anesthetics and Teratogenic Effects: A Systematic Review. Healthcare (Basel) 2023; 11:healthcare11060883. [PMID: 36981540 PMCID: PMC10048231 DOI: 10.3390/healthcare11060883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/27/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
(1) Background: In the current healthcare environment, there is a large proportion of female staff of childbearing age, so, according to existing conflicting studies, the teratogenic effects that inhalational anesthetics may have on exposed pregnant workers should be assessed. This investigation aims to analyze the teratogenic effects of inhalational anesthetics in conditions of actual use, determining any association with spontaneous abortion or congenital malformations. (2) Methods: A systematic review was carried out according to the PRISMA statement based on PICO (problem of interest–intervention to be considered–intervention compared–outcome) (Do inhalational anesthetics have teratogenic effects in current clinical practice?). The level of evidence of the selected articles was evaluated using the SIGN scale. The databases used were PubMed, Embase, Scopus, Web of Science, Google academic and Opengrey. Primary studies conducted in professionals exposed to inhalational anesthetics that evaluate spontaneous abortions or congenital malformations, conducted in any country and language and published within the last ten years were selected. (3) Results: Of the 541 studies identified, 6 met all inclusion criteria in answering the research question. Since many methodological differences were found in estimating exposure to inhalational anesthetics, a qualitative systematic review was performed. The selected studies have a retrospective cohort design and mostly present a low level of evidence and a low grade of recommendation. Studies with the highest level of evidence do not find an association between the use of inhalational anesthetics and the occurrence of miscarriage or congenital malformations. (4) Conclusions: The administration of inhalational anesthetics, especially with gas extraction systems (scavenging systems) and the adequate ventilation of operating rooms, is not associated with the occurrence of spontaneous abortions or congenital malformations.
Collapse
|
5
|
mTORC1-Dependent and GSDMD-Mediated Pyroptosis in Developmental Sevoflurane Neurotoxicity. Mol Neurobiol 2023; 60:116-132. [PMID: 36224321 DOI: 10.1007/s12035-022-03070-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/05/2022] [Indexed: 12/30/2022]
Abstract
Developmental sevoflurane exposure leads to neuronal cell death, and subsequent learning and memory cognitive defects. The underlyi\ng mechanism remains to be elucidated. Gasdermin D (GSDMD)-mediated pyroptosis is a form of inflammatory cell death and participates in a variety of neurodegenerative diseases. Several studies illustrated that dysregulation of mTOR activity is involved in pyroptotic cell death. The current study was designed to interrogate the role of GSDMD-mediated pyroptosis and mTOR activity in developmental sevoflurane exposure. We found that inhibition of GSDMD pore formation with Disulfiram (DSF) or Necrosulfonamide (NSA) significantly attenuated sevoflurane neurotoxicity in vitro. In addition, treatment with DSF or NSA also mitigated damage-associated molecular patterns (DAMPs) release and subsequent plasma membrane rupture (PMR) induced by sevoflurane challenge. Further investigation showed that the overactivation of mTOR signaling is involved in sevoflurane induced pyroptosis both in vivo and in vitro. Intriguingly, we found that the DAMPs release and subsequent PMR triggered by developmental sevoflurane priming were compromised by knocking down the expression of mTORC1 component Raptor, but not mTORC2 component Rictor. Moreover, sevoflurane induced pyroptosis could also be restored by suppressing mTOR activity or knocking down the expressions of Ras-related small GTPases RagA or RagC. Finally, administration of DSF or NSA dramatically improved the spatial and emotional cognitive disorders without alternation of locomotor activity. Taken together, these results indicate that mTORC1-dependent and GSDMD-mediated pyroptosis contributes to the developmental sevoflurane neurotoxicity. Characterizing these processes may provide experimental evidence for the possible prevention of developmental sevoflurane neurotoxicity.
Collapse
|
6
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
7
|
Wang J, Liu Z. Research progress on molecular mechanisms of general anesthetic-induced neurotoxicity and cognitive impairment in the developing brain. Front Neurol 2022; 13:1065976. [PMID: 36504660 PMCID: PMC9729288 DOI: 10.3389/fneur.2022.1065976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/10/2022] [Indexed: 11/25/2022] Open
Abstract
General anesthetics-induced neurotoxicity and cognitive impairment in developing brains have become one of the current research hotspots in the medical science community. The underlying mechanisms are complex and involve various related molecular signaling pathways, cell mediators, autophagy, and other pathological processes. However, few drugs can be directly used to treat neurotoxicity and cognitive impairment caused by general anesthetics in clinical practice. This article reviews the molecular mechanism of general anesthesia-induced neurotoxicity and cognitive impairment in the neonatal brain after surgery in the hope of providing critical references for the treatments of clinical diseases.
Collapse
Affiliation(s)
- Jiaojiao Wang
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,Baotou Clinical Medical College, Inner Mongolia Medical University, Baotou, China
| | - Zhihui Liu
- Department of Anesthesiology, Baotou Central Hospital, Baotou, China,*Correspondence: Zhihui Liu
| |
Collapse
|
8
|
Zeiss CJ. Comparative Milestones in Rodent and Human Postnatal Central Nervous System Development. Toxicol Pathol 2021; 49:1368-1373. [PMID: 34569375 DOI: 10.1177/01926233211046933] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Within the substantially different time scales characterizing human and rodent brain development, key developmental processes are remarkably preserved. Shared processes include neurogenesis, myelination, synaptogenesis, and neuronal and synaptic pruning. In general, altricial rodents experience greater central nervous system (CNS) immaturity at birth and accelerated postnatal development compared to humans, in which protracted development of certain processes such as neocortical myelination and synaptic maturation extend into adulthood. Within this generalization, differences in developmental rates of various structures must be understood to accurately model human neurodevelopmental toxicity in rodents. Examples include greater postnatal neurogenesis in rodents, particularly within the dentate gyrus of rats, ongoing generation of neurons in the rodent olfactory bulb, differing time lines of neurotransmitter maturation, and differing time lines of cerebellar development. Comparisons are made to the precocial guinea pig and the long-lived naked mole rat, which, like primates, experiences more advanced CNS development at birth, with more protracted postnatal development. Methods to study various developmental processes are summarized using examples of comparative postnatal injury in humans and rodents.
Collapse
Affiliation(s)
- Caroline J Zeiss
- Department of Comparative Medicine, 12228Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|