1
|
Fang W, Chen X, He J. Cholecystokinin-expressing interneurons mediated inhibitory transmission and plasticity in basolateral amygdala modulate stress-induced anxiety-like behaviors in mice. Neurobiol Stress 2024; 33:100680. [PMID: 39502835 PMCID: PMC11536064 DOI: 10.1016/j.ynstr.2024.100680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/24/2024] [Accepted: 10/15/2024] [Indexed: 11/08/2024] Open
Abstract
The basolateral amygdala (BLA) hyperactivity has been implicated in the pathophysiology of anxiety disorders. We recently found that enhancing inhibitory transmission in BLA by chemo-genetic activation of local interneurons (INs) can reduce stress-induced anxiety-like behaviors in mice. Cholecystokinin interneurons (CCK-INs) are a major part of INs in BLA. It remains unknown whether CCK-INs modulated inhibition in BLA can mediate anxiety. In the present study, we found that BLA CCK-INs project extensively to most local excitatory neurons. Activating these CCK-INs using chemo-genetics and optogenetics can both effectively suppress electrical-induced neuronal activity within the BLA. Additionally, we observed that direct and sustained activation of CCK-INs within the BLA via chemo-genetics can mitigate stress-induced anxiety-like behaviors in mice and reduce stress-induced hyperactivity within the BLA itself. Furthermore, augmenting inhibitory plasticity within the BLA through a brief, 10-min high-frequency laser stimulation (HFLS) of CCK-INs also reduce stress-induced anxiety-like behaviors in mice. Collectively, these findings underscore the pivotal role of BLA CCK-IN-mediated inhibitory transmission and plasticity in modulating anxiety.
Collapse
Affiliation(s)
- Wei Fang
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Xi Chen
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Jufang He
- Department of Neuroscience, City University of Hong Kong, Kowloon, Hong Kong
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, People's Republic of China
| |
Collapse
|
2
|
Bramlett SN, Foster SL, Weinshenker D, Hepler JR. Endogenous Regulator of G protein Signaling 14 (RGS14) suppresses cocaine-induced emotionally motivated behaviors in female mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612719. [PMID: 39314405 PMCID: PMC11419016 DOI: 10.1101/2024.09.12.612719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Addictive drugs hijack the neuronal mechanisms of learning and memory in motivation and emotion processing circuits to reinforce their own use. Regulator of G-protein Signaling 14 (RGS14) is a natural suppressor of post-synaptic plasticity underlying learning and memory in the hippocampus. The present study used immunofluorescence and RGS14 knockout mice to assess the role of RGS14 in behavioral plasticity and reward learning induced by chronic cocaine in emotional-motivational circuits. We report that RGS14 is strongly expressed in discrete regions of the ventral striatum and extended amygdala in wild-type mice, and is co-expressed with D1 and D2 dopamine receptors in neurons of the nucleus accumbens (NAc). Of note, we found that RGS14 is upregulated in the NAc in mice with chronic cocaine history following acute cocaine treatment. We found significantly increased cocaine-induced locomotor sensitization, as well as enhanced conditioned place preference and conditioned locomotor activity in RGS14-deficient mice compared to wild-type littermates. Together, these findings suggest that endogenous RGS14 suppresses cocaine-induced plasticity in emotional-motivational circuits, implicating RGS14 as a protective agent against the maladaptive neuroplastic changes that occur during addiction.
Collapse
Affiliation(s)
- Sara N. Bramlett
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stephanie L. Foster
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - John R. Hepler
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Asano T, Takemoto H, Horita T, Tokutake T, Izuo N, Mochizuki T, Nitta A. Sleep disturbance after cessation of cannabis administration in mice. Neuropsychopharmacol Rep 2023; 43:505-512. [PMID: 36905178 PMCID: PMC10739061 DOI: 10.1002/npr2.12329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Cannabis withdrawal syndrome (CWS) in humans is characterized by various somatic symptoms, including sleep disturbances. In the present study, we investigated sleep alterations in mice after the cessation of arachidonylcyclopropylamide (ACPA), a cannabinoid type 1 receptor agonist, administration. ACPA-administered mice (ACPA mice) displayed an increased number of rearings after the cessation of ACPA administration compared to saline-administered mice (Saline mice). Moreover, the number of rubbings was also decreased in ACPA mice compared with those of the control mice. Electroencephalography (EEG) and electromyography (EMG) were measured for 3 days after the cessation of ACPA administration. During ACPA administration, there was no difference in the relative amounts of total sleep and wake time between ACPA and Saline mice. However, ACPA-induced withdrawal decreased total sleep time during the light period in ACPA mice after ACPA cessation. These results suggest that ACPA cessation induces sleep disturbances in the mouse model of CWS.
Collapse
Affiliation(s)
- Takashi Asano
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Hiroki Takemoto
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tomoya Horita
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Tomohiro Tokutake
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| | - Takatoshi Mochizuki
- Department of BiologyGraduate School of Science & Engineering, University of ToyamaToyamaJapan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, Faculty of Pharmaceutical SciencesGraduate School of Medicine and Pharmaceutical Sciences, University of ToyamaToyamaJapan
| |
Collapse
|
4
|
Bietar B, Tanner S, Lehmann C. Neuroprotection and Beyond: The Central Role of CB1 and CB2 Receptors in Stroke Recovery. Int J Mol Sci 2023; 24:16728. [PMID: 38069049 PMCID: PMC10705908 DOI: 10.3390/ijms242316728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The endocannabinoid system, with its intricate presence in numerous cells, tissues, and organs, offers a compelling avenue for therapeutic interventions. Central to this system are the cannabinoid receptors 1 and 2 (CB1R and CB2R), whose ubiquity can introduce complexities in targeted treatments due to their wide-ranging physiological influence. Injuries to the central nervous system (CNS), including strokes and traumatic brain injuries, induce localized pro-inflammatory immune responses, termed neuroinflammation. Research has shown that compensatory immunodepression usually follows, and these mechanisms might influence immunity, potentially affecting infection risks in patients. As traditional preventive treatments like antibiotics face challenges, the exploration of immunomodulatory therapies offers a promising alternative. This review delves into the potential neuroprotective roles of the cannabinoid receptors: CB1R's involvement in mitigating excitotoxicity and CB2R's dual role in promoting cell survival and anti-inflammatory responses. However, the potential of cannabinoids to reduce neuroinflammation must be weighed against the risk of exacerbating immunodepression. Though the endocannabinoid system promises numerous therapeutic benefits, understanding its multifaceted signaling mechanisms and outcomes remains a challenge.
Collapse
Affiliation(s)
- Bashir Bietar
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Sophie Tanner
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Christian Lehmann
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (B.B.); (S.T.)
- Department of Anesthesia, Pain Management, and Perioperative Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
5
|
Sánchez-Zavaleta R, Becerril-Meléndez LA, Ruiz-Contreras AE, Escobar-Elías AP, Herrera-Solís A, Méndez-Díaz M, de la Mora MP, Prospéro-García OE. CB1R chronic intermittent pharmacological activation facilitates amphetamine seeking and self-administration and changes in CB1R/CRFR1 expression in the amygdala and nucleus accumbens in rats. Pharmacol Biochem Behav 2023:173587. [PMID: 37308040 DOI: 10.1016/j.pbb.2023.173587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/14/2023]
Abstract
Patterns of drug ingestion may have a dissimilar impact on the brain, and therefore also the development of drug addiction. One pattern is binge intoxication that refers to the ingestion of a high amount of drug on a single occasion followed by an abstinence period of variable duration. In this study, our goal was to contrast the effect of continuous low amounts with intermittent higher amounts of Arachidonyl-chloro-ethylamide (ACEA), a CB1R agonist, on amphetamine seeking and ingestion, and describe the effects on the expression of CB1R and CRFR1 in the central nucleus of the amygdala (CeA) and in the nucleus accumbens shell (NAcS). Adult male Wistar rats were treated with a daily administration of vehicle or 20 μg of ACEA, or four days of vehicle followed by 100 μg of ACEA on the fifth day, for a total of 30 days. Upon completion of this treatment, the CB1R and CRFR1 expression in the CeA and NAcS was evaluated by immunofluorescence. Additional groups of rats were evaluated for their anxiety levels (elevated plus maze, EPM), amphetamine (AMPH) self-administration (ASA) and breakpoint (A-BP), as well as AMPH-induced conditioned place preference (A-CPP). Results indicated that ACEA induced changes in the CB1R and CRFR1 expression in both the NAcS and CeA. An increase in anxiety-like behavior, ASA, A-BP and A-CPP was also observed. Since the intermittent administration of 100 μg of ACEA induced the most evident changes in most of the parameters studied, we concluded that binge-like ingestion of drugs induces changes in the brain that may make the subject more vulnerable to developing drug addiction.
Collapse
Affiliation(s)
- Rodolfo Sánchez-Zavaleta
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Lorena Alline Becerril-Meléndez
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Alejandra E Ruiz-Contreras
- Laboratorio de Neurogenómica Cognitiva, Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico
| | - Ana Paula Escobar-Elías
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Andrea Herrera-Solís
- Laboratorio de Efectos Terapéuticos de los Cannabinoides, Subdirección de Investigación Biomédica, Hospital General Dr. Manuel Gea González, Chile
| | - Mónica Méndez-Díaz
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico
| | - Miguel Pérez de la Mora
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Oscar E Prospéro-García
- Laboratorio de Cannabinoides, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
6
|
Gräfe EL, Reid HMO, Shkolnikov I, Conway K, Kit A, Acosta C, Christie BR. Women are Taking the Hit: Examining the Unique Consequences of Cannabis Use Across the Female Lifespan. Front Neuroendocrinol 2023; 70:101076. [PMID: 37217080 DOI: 10.1016/j.yfrne.2023.101076] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/28/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Cannabis use has risen dramatically in recent years due to global decriminalization and a resurgence in the interest of potential therapeutic benefits. While emerging research is shaping our understanding of the benefits and harms of cannabis, there remains a paucity of data specifically focused on how cannabis affects the female population. The female experience of cannabis use is unique, both in the societal context and because of the biological ramifications. This is increasingly important given the rise in cannabis potency, as well as the implications this has for the prevalence of Cannabis Use Disorder (CUD). Therefore, this scoping review aims to discuss the prevalence of cannabis use and CUD in women throughout their lifespan and provide a balanced prospective on the positive and negative consequences of cannabis use. In doing so, this review will highlight the necessity for continued research that goes beyond sex differences.
Collapse
Affiliation(s)
- E L Gräfe
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - H M O Reid
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - I Shkolnikov
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - K Conway
- Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada
| | - A Kit
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - C Acosta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - B R Christie
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Island Medical Program, University of British Columbia, Victoria, British Columbia, Canada.
| |
Collapse
|