1
|
Kim JE, Lee DS, Wang SH, Kim TH, Kang TC. GPx1-ERK1/2-CREB pathway regulates the distinct vulnerability of hippocampal neurons to oxidative stress via modulating mitochondrial dynamics following status epilepticus. Neuropharmacology 2024; 260:110135. [PMID: 39214451 DOI: 10.1016/j.neuropharm.2024.110135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/18/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Glutathione peroxidase-1 (GPx1) and cAMP/Ca2+ responsive element (CRE)-binding protein (CREB) regulate neuronal viability by maintaining the redox homeostasis. Since GPx1 and CREB reciprocally regulate each other, it is likely that GPx1-CREB interaction may play a neuroprotective role against oxidative stress, which are largely unknown. Thus, we investigated the underlying mechanisms of the reciprocal regulation between GPx1 and CREB in the male rat hippocampus. Under physiological condition, L-buthionine sulfoximine (BSO)-induced oxidative stress increased GPx1 expression, extracellular signal-regulated kinase 1/2 (ERK1/2) activity and CREB serine (S) 133 phosphorylation in CA1 neurons, but not dentate granule cells (DGC), which were diminished by GPx1 siRNA, U0126 or CREB knockdown. GPx1 knockdown inhibited ERK1/2 and CREB activations induced by BSO. CREB knockdown also decreased the efficacy of BSO on ERK1/2 activation. BSO facilitated dynamin-related protein 1 (DRP1)-mediated mitochondrial fission in CA1 neurons, which abrogated by GPx1 knockdown and U0126. CREB knockdown blunted BSO-induced DRP1 upregulation without affecting DRP1 S616 phosphorylation ratio. Following status epilepticus (SE), GPx1 expression was reduced in CA1 neurons and DGC. SE also decreased CREB activity CA1 neurons, but not DGC. SE degenerated CA1 neurons, but not DGC, accompanied by mitochondrial elongation. These post-SE events were ameliorated by N-acetylcysteine (NAC, an antioxidant), but deteriorated by GPx1 knockdown. These findings indicate that a transient GPx1-ERK1/2-CREB activation may be a defense mechanism to protect hippocampal neurons against oxidative stress via maintenance of proper mitochondrial dynamics.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| | - Duk-Shin Lee
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| | - Su Hyeon Wang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Hyun Kim
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiology, Institute of Epilepsy Research, College of Medicine, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
2
|
Wang J, Zhang F, Luo Z, Zhang H, Yu C, Xu Z. VPS13D affects epileptic seizures by regulating mitochondrial fission and autophagy in epileptic rats. Genes Dis 2024; 11:101266. [PMID: 39286655 PMCID: PMC11402929 DOI: 10.1016/j.gendis.2024.101266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/28/2024] [Indexed: 09/19/2024] Open
Abstract
Abnormal mitochondrial dynamics can lead to seizures, and improved mitochondrial dynamics can alleviate seizures. Vacuolar protein sorting 13D (VPS13D) is closely associated with regulating mitochondrial homeostasis and autophagy. However, further investigation is required to determine whether VPS13D affects seizures by influencing mitochondrial dynamics and autophagy. We aimed to investigate the influence of VPS13D on behavior in a rat model of acute epileptic seizures. Hence, we established an acute epileptic seizure rat model and employed the CRISPR/CAS9 technology to construct a lentivirus to silence the Vps13d gene. Furthermore, we used the HT22 mouse hippocampal neuron cell line to establish a stable strain with suppressed expression of Vps13d in vitro. Then, we performed quantitative proteomic and bioinformatics analyses to confirm the mechanism by which VPS13D influences mitochondrial dynamics and autophagy, both in vitro and in vivo using the experimental acute epileptic seizure model. We found that knockdown of Vps13d resulted in reduced seizure latency and increased seizure frequency in the experimental rats. Immunofluorescence staining and western blot analysis revealed a significant increase in mitochondrial dynamin-related protein 1 expression following Vps13d knockdown. Moreover, we observed a significant reduction in LC3II protein expression levels and the LC3II/LC3I ratio (indicators for autophagy) accompanied by a significant increase in P62 expression (an autophagy adaptor protein). The proteomic analysis confirmed the up-regulation of P62 protein expression. Therefore, we propose that VPS13D plays a role in modulating seizures by influencing mitochondrial dynamics and autophagy.
Collapse
Affiliation(s)
- Jian Wang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Neurology, Affiliated Aerospace Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Fan Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
- Department of Clinical Medicine, Zunyi Medical and Pharmaceutical College, Zunyi, Guizhou 563000, China
| | - Zhong Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Changyin Yu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, China
| |
Collapse
|
3
|
Wang Z, Zhong Y, Xin M, Zhang J, Dong X, Zhang W, Lu X, Li L, Tu Y, Zhang L. Swiprosin-1 participates in the berberine-regulated AMPK/MLCK pathway to attenuate colitis-induced tight junction damage. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156111. [PMID: 39369569 DOI: 10.1016/j.phymed.2024.156111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/16/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND PURPOSE Activation of AMP-activated protein kinase (AMPK) is essential in maintaining the epithelial tight junction (TJ) barrier. Berberine, a phytochemical AMPK agonist, has been widely reported to ameliorate colitis. Berberine or AMPK activation inhibits cytoskeletal contraction induced by myosin light chain kinase (MLCK), thereby ameliorating TJ barrier defects. We previously found that swiprosin-1, an actin-binding protein, affects MLCK expression. Here, we aimed to reveal the role of swiprosin-1 in the regulation of AMPK/MLCK by berberine. METHODS Caco-2 monolayer transfected with AMPKα1 (or swiprosin-1) siRNA was treated with berberine after being stimulated with TNFα/IFNγ to assess the effect on the TJ barrier. Intestinal epithelial conditional knockout mice for AMPKα1 (or swiprosin-1) were treated with berberine after experimental colitis to evaluate the effect on the TJ barrier. TJ integrity was evaluated by immunoblotting and immunofluorescence for ZO-1 and Occludin. RESULTS The protection of berberine against TJ barrier damage was blocked by AMPK inhibitor or knockout of AMPKα1 in epithelial cells. Swiprosin-1 was distributed in colonic epithelial cells and upregulated in colitis. Knockout of swiprosin-1 in intestinal epithelial cells ameliorated TJ barrier damage and abolished the protective effect of berberine. Impaired assembly of TJ caused by overexpression of swiprosin-1 was alleviated by MLCK inhibitor, and inhibition of the MLCK pathway by berberine also required the presence of swiprosin-1. In addition, berberine downregulated swiprosin-1 expression in an AMPK-dependent manner. CONCLUSION Swiprosin-1 may be a key intermediate molecule in the regulation of the AMPK/MLCK pathway by berberine to attenuate colitis-induced TJ barrier damage.
Collapse
Affiliation(s)
- Zhibin Wang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Yuting Zhong
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; The People's Hospital of Sixian County, Anhui province, China
| | - Meng Xin
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Jiaqi Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China; Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaohui Dong
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China
| | - Wenzhao Zhang
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Xin Lu
- Department of Critical Care Medicine, School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Ling Li
- Shanghai TCM-Integrated Institute of Vascular Disease, Shanghai TCM- Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| | - Ye Tu
- Department of Pharmacy, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200120, China.
| | - Lichao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| |
Collapse
|
4
|
Antmen FM, Fedaioglu Z, Acar D, Sayar AK, Yavuz IE, Ada E, Karakose B, Rzayeva L, Demircan S, Kardouh F, Senay S, Kolgazi M, Suyen G, Oz-Arslan D. Exploring Liraglutide in Lithium-Pilocarpine-Induced Temporal Lobe Epilepsy Model in Rats: Impact on Inflammation, Mitochondrial Function, and Behavior. Biomedicines 2024; 12:2205. [PMID: 39457518 PMCID: PMC11505538 DOI: 10.3390/biomedicines12102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Glucagon-like peptide-1 receptor agonists such as liraglutide are known for their neuroprotective effects in neurodegenerative disorders, but their role in temporal lobe epilepsy (TLE) remains unclear. We aimed to investigate the effects of liraglutide on several biological processes, including inflammation, antioxidant defense mechanisms, mitochondrial dynamics, and function, as well as cognitive and behavioral changes in the TLE model. Methods: Low-dose, repeated intraperitoneal injections of lithium chloride-pilocarpine hydrochloride were used to induce status epilepticus (SE) in order to develop TLE in rats. Fifty-six male Sprague Dawley rats were subjected and allocated to the groups. The effects of liraglutide on inflammatory markers (NLRP3, Caspase-1, and IL-1β), antioxidant pathways (Nrf-2 and p-Nrf-2), and mitochondrial dynamics proteins (Pink1, Mfn2, and Drp1) were evaluated in hippocampal tissues via a Western blot. Mitochondrial function in peripheral blood mononuclear cells (PBMCs) was examined using flow cytometry. Cognitive-behavioral outcomes were assessed using the open-field, elevated plus maze, and Morris water maze tests. Results: Our results showed that liraglutide modulates NLRP3-mediated inflammation, reduces oxidative stress, and triggers antioxidative pathways through Nrf2 in SE-induced rats. Moreover, liraglutide treatment restored Pink1, Mfn2, and Drp1 levels in SE-induced rats. Liraglutide treatment also altered the mitochondrial function of PBMCs in both healthy and epileptic rats. This suggests that treatment can modulate mitochondrial dynamics and functions in the brain and periphery. Furthermore, in the behavioral aspect, liraglutide reversed the movement-enhancing effect of epilepsy. Conclusions: This research underscores the potential of GLP-1RAs as a possibly promising therapeutic strategy for TLE.
Collapse
Affiliation(s)
- Fatma Merve Antmen
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
- Biobank Unit, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Zeynep Fedaioglu
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Dilan Acar
- Department of Physiology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye; (F.M.A.)
| | - Ahmed Kerem Sayar
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ilayda Esma Yavuz
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Ece Ada
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Bengisu Karakose
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Lale Rzayeva
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Sevcan Demircan
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Farah Kardouh
- School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Simge Senay
- Department of Medical Biotechnology, Graduate School of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Meltem Kolgazi
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Guldal Suyen
- Department of Physiology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| | - Devrim Oz-Arslan
- Department of Biophysics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34752, Türkiye
| |
Collapse
|
5
|
Chen T, Yang J, Zheng Y, Zhou X, Huang H, Zhang H, Xu Z. ERK1/2 Regulates Epileptic Seizures by Modulating the DRP1-Mediated Mitochondrial Dynamic. Synapse 2024; 78:e22309. [PMID: 39285628 DOI: 10.1002/syn.22309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 08/29/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
After seizures, the hyperactivation of extracellular signal-regulated kinases (ERK1/2) causes mitochondrial dysfunction. Through the guidance of dynamin-related protein 1 (DRP1), ERK1/2 plays a role in the pathogenesis of several illnesses. Herein, we speculate that ERK1/2 affects mitochondrial division and participates in the pathogenesis of epilepsy by regulating the activity of DRP1. LiCl-Pilocarpine was injected intraperitoneally to establish a rat model of status epilepticus (SE) for this study. Before SE induction, PD98059 and Mdivi-1 were injected intraperitoneally. The number of seizures and the latency period before the onset of the first seizure were then monitored. The analysis of Western blot was also used to measure the phosphorylated and total ERK1/2 and DRP1 protein expression levels in the rat hippocampus. In addition, immunohistochemistry revealed the distribution of ERK1/2 and DRP1 in neurons of hippocampal CA1 and CA3. Both PD98059 and Mdivi-1 reduced the susceptibility of rats to epileptic seizures, according to behavioral findings. By inhibiting ERK1/2 phosphorylation, the Western blot revealed that PD98059 indirectly reduced the phosphorylation of DRP1 at Ser616 (p-DRP1-Ser616). Eventually, the ERK1/2 and DRP1 were distributed in the cytoplasm of neurons by immunohistochemistry. Inhibition of ERK1/2 signaling pathways downregulates p-DRP1-Ser616 expression, which could inhibit DRP1-mediated excessive mitochondrial fission and then regulate the pathogenesis of epilepsy.
Collapse
Affiliation(s)
- Ting Chen
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Juan Yang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Yongsu Zheng
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Xuejiao Zhou
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Hao Huang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Haiqing Zhang
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
| | - Zucai Xu
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P. R. China
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, P. R. China
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, Guizhou, P. R. China
| |
Collapse
|
6
|
Kakebaraei S, Gholami M, Nasta TZ, Arkan E, Bahrehmand F, Fakhri S, Jalili C. Oral administration of crocin-loaded solid lipid nanoparticles inhibits neuroinflammation in a rat model of epileptic seizures by activating SIRT1 expression. Res Pharm Sci 2024; 19:397-414. [PMID: 39399725 PMCID: PMC11468164 DOI: 10.4103/rps.rps_68_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/14/2024] [Accepted: 07/27/2024] [Indexed: 10/15/2024] Open
Abstract
Background and purpose Epilepsy is a group of chronic neurological diseases caused by a complex set of neuronal hyper electrical activities and oxidative stress of neurons. Crocin is a natural bioactive agent of saffron with different pharmacological properties and low bioavailability. This study aimed to evaluate crocin-loaded solid lipid nanoparticles (SLNC) for neuroprotection activity and efficacy against pentylenetetrazol (PTZ)- induced epilepsy. Experimental approach The rats were pretreated with SLNC and pure-crocin (PC; 25 and 50 mg/kg/day; P.O.) for 28 days before PTZ induction. Behavioral functions were evaluated by passive avoidance learning (PAL) tasks. Then, total antioxidant capacity (TAC), malondialdehyde (MDA), and pro-inflammatory factors were measured in the brain tissue using ELISA kits. Gene expression levels were analyzed with real-time polymerase chain reaction and immunohistochemical assay was used to assess the protein expression of sirtuin1 SIRT 1). Findings/Results SLNC was prepared with an average particle size of 98.25 nm and 98.33% encapsulation efficiency. Memory deficit improved in rats treated with SLNC. Administering SLNC at 25 and 50 mg/kg significantly reduced MDA and proinflammatory cytokines while increasing TAC. Additionally, administering SLNC before treatment increased the levels of SIRT1, peroxisome proliferator-activated receptor coactivator 1α, cAMP-regulated enhancer binding protein, and brain-derived neurotrophic factor. Furthermore, SLNC administration resulted in the downregulation of caspase-3 and inflammation factor expression. Conclusion and implications Overall, the obtained results showed that SLNC has better protective effects on oxidative stress in neurons, neurocognitive function, and anti-apoptotic and neuromodulatory activity than PC, suggesting that it is a promising therapeutic strategy for inhibiting seizures.
Collapse
Affiliation(s)
- Seyran Kakebaraei
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammadreza Gholami
- Department of Anatomical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fariborz Bahrehmand
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
7
|
Guo H, Chen LQ, Zou ZR, Cheng S, Hu Y, Mao L, Tian H, Mei XF. Zinc remodels mitochondrial network through SIRT3/Mfn2-dependent mitochondrial transfer in ameliorating spinal cord injury. Eur J Pharmacol 2024; 968:176368. [PMID: 38316246 DOI: 10.1016/j.ejphar.2024.176368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/07/2024]
Abstract
Spinal cord injury (SCI) is a traumatic neuropathic condition that results in motor, sensory and autonomic dysfunction. Mitochondrial dysfunction caused by primary trauma is one of the critical pathogenic mechanisms. Moderate levels of zinc have antioxidant effects, promote neurogenesis and immune responses. Zinc normalises mitochondrial morphology in neurons after SCI. However, how zinc protects mitochondria within neurons is unknown. In the study, we used transwell culture, Western blot, Quantitative Real-time Polymerase Chain Reaction (QRT-PCR), ATP content detection, reactive oxygen species (ROS) activity assay, flow cytometry and immunostaining to investigate the relationship between zinc-treated microglia and injured neurons through animal and cell experiments. We found that zinc promotes mitochondrial transfer from microglia to neurons after SCI through Sirtuin 3 (SIRT3) regulation of Mitofusin 2 protein (Mfn2). It can rescue mitochondria in damaged neurons and inhibit oxidative stress, increase ATP levels and promote neuronal survival. Therefore, it can improve the recovery of motor function in SCI mice. In conclusion, our work reveals a potential mechanism to describe the communication between microglia and neurons after SCI, which may provide a new idea for future therapeutic approaches to SCI.
Collapse
Affiliation(s)
- Hui Guo
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Li-Qing Chen
- Department of Endocrinology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Zhi-Ru Zou
- Pharmacy School, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Shuai Cheng
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Yu Hu
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Liang Mao
- Department of Oncology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - He Tian
- School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning, China; Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| | - Xi-Fan Mei
- Liaoning Provincial Collaborative Innovation Center of Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
8
|
Qi Y, Zhang YM, Gao YN, Chen WG, Zhou T, Chang L, Zang Y, Li J. AMPK role in epilepsy: a promising therapeutic target? J Neurol 2024; 271:748-771. [PMID: 38010498 DOI: 10.1007/s00415-023-12062-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023]
Abstract
Epilepsy is a complex and multifaceted neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to its diverse etiology and often-refractory nature. This comprehensive review highlights the pivotal role of AMP-activated protein kinase (AMPK), a key metabolic regulator involved in cellular energy homeostasis, which may be a promising therapeutic target for epilepsy. Current therapeutic strategies such as antiseizure medication (ASMs) can alleviate seizures (up to 70%). However, 30% of epileptic patients may develop refractory epilepsy. Due to the complicated nature of refractory epilepsy, other treatment options such as ketogenic dieting, adjunctive therapy, and in limited cases, surgical interventions are employed. These therapy options are only suitable for a select group of patients and have limitations of their own. Current treatment options for epilepsy need to be improved. Emerging evidence underscores a potential association between impaired AMPK functionality in the brain and the onset of epilepsy, prompting an in-depth examination of AMPK's influence on neural excitability and ion channel regulation, both critical factors implicated in epileptic seizures. AMPK activation through agents such as metformin has shown promising antiepileptic effects in various preclinical and clinical settings. These effects are primarily mediated through the inhibition of the mTOR signaling pathway, activation of the AMPK-PI3K-c-Jun pathway, and stimulation of the PGC-1α pathway. Despite the potential of AMPK-targeted therapies, several aspects warrant further exploration, including the detailed mechanisms of AMPK's role in different brain regions, the impact of AMPK under various conditional circumstances such as neural injury and zinc toxicity, the long-term safety and efficacy of chronic metformin use in epilepsy treatment, and the potential benefits of combination therapy involving AMPK activators. Moreover, the efficacy of AMPK activators in refractory epilepsy remains an open question. This review sets the stage for further research with the aim of enhancing our understanding of the role of AMPK in epilepsy, potentially leading to the development of more effective, AMPK-targeted therapeutic strategies for this challenging and debilitating disorder.
Collapse
Affiliation(s)
- Yingbei Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong-Mei Zhang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ya-Nan Gao
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Wen-Gang Chen
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Ting Zhou
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liuliu Chang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Jia Li
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, Zhejiang, China.
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|