1
|
Chen J, Wei Y, Li N, Pi C, Zhao W, Zhong Y, Li W, Shen H, Yang Y, Zheng W, Jiang J, Liu Z, Liu K, Zhao L. Preliminary Investigation Into the Antidepressant Effects of a Novel Curcumin Analogue (CACN136) In Vitro and In Vivo. Mol Neurobiol 2025; 62:2124-2147. [PMID: 39080204 DOI: 10.1007/s12035-024-04363-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 07/09/2024] [Indexed: 01/28/2025]
Abstract
The aim of this study was to develop a novel antidepressant with high activity. Based on the findings of molecular docking, eight novel curcumin analogues were evaluated in vitro to check for antidepressant efficacy. Among them, CACN136 had the strongest antidepressant effect. Firstly, CACN136 had a stronger 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonate) radical ion scavenging ability (IC50: 17.500 ± 0.267 μg/mL) compared to ascorbic acid (IC50: 38.858 ± 0.263 μg/mL) and curcumin (27.189 ± 0.192 μg/mL). Secondly, only CACN136 demonstrated clear protective effects on cells damaged by glutamate and oxidative stress at all concentrations. Finally, only CACN136 showed ASP + inhibition and was more effective than fluoxetine hydrochloride (FLU) at low concentrations. To further confirm the antidepressant effect of CACN136 in vivo, the CUMS model was established. Following 28 days of oral administration of CUMS mice, CACN136 increased the central area residence time in the open-field test, significantly increased the sucrose preference rate in the sucrose preference test (P < 0.001) and significantly reduced the immobility period in the tail suspension test (P < 0.0001), all of which were more effective than those of FLU. Subsequent research indicated that the antidepressant properties of CACN136 were linked to a decrease in the metabolism of 5-HT and the modulation of oxidative stress levels in vivo. In particular, the activation of the Keap1-Nrf2/BDNF-TrkB signaling pathway by CACN136 resulted in elevated levels of antioxidant enzymes, enhancing the antioxidant capability in mice subjected to CUMS. In conclusion, CACN136 has the potential to treat depression and could be an effective antidepressant.
Collapse
Affiliation(s)
- Jinglin Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Nong Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wenmei Zhao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Yueting Zhong
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Wen Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Hongping Shen
- Clinical Trial Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Yan Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenwu Zheng
- Department of Cardiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jun Jiang
- Department of Thyroid Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China
| | - Zerong Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, 646000, Sichuan, China.
| | - Kezhi Liu
- Department of Psychiatry, Fundamental and Clinical Research On Mental Disorders Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built By Sichuan and Chongqing, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, P.R. China.
| |
Collapse
|
2
|
Lim EY, Kim GD. Particulate Matter-Induced Emerging Health Effects Associated with Oxidative Stress and Inflammation. Antioxidants (Basel) 2024; 13:1256. [PMID: 39456509 PMCID: PMC11505051 DOI: 10.3390/antiox13101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Environmental pollution continues to increase with industrial development and has become a threat to human health. Atmospheric particulate matter (PM) was designated as a Group 1 carcinogen by the International Agency for Research on Cancer in 2013 and is an emerging global environmental risk factor that is a major cause of death related to cardiovascular and respiratory diseases. PM is a complex composed of highly reactive organic matter, chemicals, and metal components, which mainly cause excessive production of reactive oxygen species (ROS) that can lead to DNA and cell damage, endoplasmic reticulum stress, inflammatory responses, atherosclerosis, and airway remodeling, contributing to an increased susceptibility to and the exacerbation of various diseases and infections. PM has various effects on human health depending on the particle size, physical and chemical characteristics, source, and exposure period. PM smaller than 5 μm can penetrate and accumulate in the alveoli and circulatory system, causing harmful effects on the respiratory system, cardiovascular system, skin, and brain. In this review, we describe the relationship and mechanism of ROS-mediated cell damage, oxidative stress, and inflammatory responses caused by PM and the health effects on major organs, as well as comprehensively discuss the harmfulness of PM.
Collapse
Affiliation(s)
| | - Gun-Dong Kim
- Division of Food Functionality Research, Korea Food Research Institute (KFRI), Wanju 55365, Republic of Korea;
| |
Collapse
|
4
|
Sakul AA, Balcikanli Z, Ozsoy NA, Orhan C, Sahin N, Tuzcu M, Juturu V, Kilic E, Sahin K. A highly bioavailable curcumin formulation ameliorates inflammation cytokines and neurotrophic factors in mice with traumatic brain injury. Chem Biol Drug Des 2024; 103:e14439. [PMID: 38230778 DOI: 10.1111/cbdd.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024]
Abstract
A novel curcumin formulation increases relative absorption by 46 times (CurcuWIN®) of the total curcuminoids over the unformulated standard curcumin form. However, the exact mechanisms by which curcumin demonstrates its neuroprotective effects are not fully understood. This study aimed to investigate the impact of a novel formulation of curcumin on the expression of brain-derived neurotrophic factor (BDNF), glial fibrillary acidic protein (GFAP), a main component of the glial scar and growth-associated protein-43 (GAP-43), a signaling molecule in traumatic brain injury (TBI). Mice (adult, male, C57BL/6j) were randomly divided into three groups as follows: TBI group (TBI-induced mice); TBI + CUR group (TBI mice were injected i.p. curcumin just after TBI); TBI+ CurcuWIN® group (TBI mice were injected i.p. CurcuWIN® just after TBI). Brain injury was induced using a cold injury model. Injured brain tissue was stained with Cresyl violet to evaluate infarct volume and brain swelling, analyzed, and measured using ImageJ by Bethesda (MD, USA). Western blot analysis was performed to determine the protein levels related to injury. While standard curcumin significantly reduced brain injury, CurcuWIN® showed an even greater reduction associated with reductions in glial activation, NF-κB, and the inflammatory cytokines IL-1β and IL-6. Additionally, both standard curcumin and CurcuWIN® led to increased BDNF, GAP-43, ICAM-1, and Nrf2 expression. Notably, CurcuWIN® enhanced their expression more than standard curcumin. This data suggests that highly bioavailable curcumin formulation has a beneficial effect on the traumatic brain in mice.
Collapse
Affiliation(s)
- Ayse Arzu Sakul
- Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
| | - Zeynep Balcikanli
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Nilay Ates Ozsoy
- Department of Pharmacology, School of Medicine, University of Istanbul Medipol, Istanbul, Turkey
- Regenerative and Restorative Medical Research Center, Experimental Neurology Laboratory, Istanbul Medipol University, Istanbul, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University Elazig, Elazig, Turkey
| | - Vijaya Juturu
- Scientific and Clinical Affairs, Research, and Development, OmniActives Health Technologies Inc., Morristown, New Jersey, USA
| | - Ertugrul Kilic
- Department of Physiology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|