1
|
Yan Z, Tan Z, Zhu Q, Shi Z, Feng J, Wei Y, Yin F, Wang X, Li Y. Cross-sectional and longitudinal evaluation of white matter microstructure damage and cognitive correlations by automated fibre quantification in relapsing-remitting multiple sclerosis patients. Brain Imaging Behav 2024; 18:1019-1033. [PMID: 38814544 DOI: 10.1007/s11682-024-00893-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2024] [Indexed: 05/31/2024]
Abstract
The purpose of this study was to characterize whole-brain white matter (WM) fibre tracts by automated fibre quantification (AFQ), capture subtle changes cross-sectionally and longitudinally in relapsing-remitting multiple sclerosis (RRMS) patients and explore correlations between these changes and cognitive performance A total of 114 RRMS patients and 71 healthy controls (HCs) were enrolled and follow-up investigations were conducted on 46 RRMS patients. Fractional anisotropy (FA), mean diffusion (MD), axial diffusivity (AD), and radial diffusivity (RD) at each node along the 20 WM fibre tracts identified by AFQ were investigated cross-sectionally and longitudinally in entire and pointwise manners. Partial correlation analyses were performed between the abnormal metrics and cognitive performance. At baseline, compared with HCs, patients with RRMS showed a widespread decrease in FA and increases in MD, AD, and RD among tracts. In the pointwise comparisons, more detailed abnormalities were localized to specific positions. At follow-up, although there was no significant difference in the entire WM fibre tract, there was a reduction in FA in the posterior portion of the right superior longitudinal fasciculus (R_SLF) and elevations in MD and AD in the anterior and posterior portions of the right arcuate fasciculus (R_AF) in the pointwise analysis. Furthermore, the altered metrics were widely correlated with cognitive performance in RRMS patients. RRMS patients exhibited widespread WM microstructure alterations at baseline and alterations in certain regions at follow-up, and the altered metrics were widely correlated with cognitive performance in RRMS patients, which will enhance our understanding of WM microstructure damage and its cognitive correlation in RRMS patients.
Collapse
Affiliation(s)
- Zichun Yan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zeyun Tan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Qiyuan Zhu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Zhuowei Shi
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqiu Wei
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Feiyue Yin
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China
| | - Xiaohua Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
- College of Medical Informatics, Chongqing Medical University, Chongqing, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Yuanjiagang, Yuzhong District, Chongqing, China.
| |
Collapse
|
2
|
Sempik I, Dziadkowiak E, Moreira H, Zimny A, Pokryszko-Dragan A. Primary Progressive Multiple Sclerosis-A Key to Understanding and Managing Disease Progression. Int J Mol Sci 2024; 25:8751. [PMID: 39201438 PMCID: PMC11354232 DOI: 10.3390/ijms25168751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Primary progressive multiple sclerosis (PPMS), the least frequent type of multiple sclerosis (MS), is characterized by a specific course and clinical symptoms, and it is associated with a poor prognosis. It requires extensive differential diagnosis and often a long-term follow-up before its correct recognition. Despite recent progress in research into and treatment for progressive MS, the diagnosis and management of this type of disease still poses a challenge. Considering the modern concept of progression "smoldering" throughout all the stages of disease, a thorough exploration of PPMS may provide a better insight into mechanisms of progression in MS, with potential clinical implications. The goal of this study was to review the current evidence from investigations of PPMS, including its background, clinical characteristics, potential biomarkers and therapeutic opportunities. Processes underlying CNS damage in PPMS are discussed, including chronic immune-mediated inflammation, neurodegeneration, and remyelination failure. A review of potential clinical, biochemical and radiological biomarkers is presented, which is useful in monitoring and predicting the progression of PPMS. Therapeutic options for PPMS are summarized, with approved therapies, ongoing clinical trials and future directions of investigations. The clinical implications of findings from PPMS research would be associated with reliable assessments of disease outcomes, improvements in individualized therapeutic approaches and, hopefully, novel therapeutic targets, relevant for the management of progression.
Collapse
Affiliation(s)
- Izabela Sempik
- Department of Neurology, Regional Hospital in Legnica, Iwaszkiewicza 5, 59-220 Legnica, Poland;
| | - Edyta Dziadkowiak
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Helena Moreira
- Department of Basic Medical Sciences, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| | - Anna Pokryszko-Dragan
- Clinical Department of Neurology, University Centre of Neurology and Neurosurgery, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland;
| |
Collapse
|
3
|
Menéndez-Pérez C, Rivas-Santisteban R, del Valle E, Tolivia J, Navarro A, Franco R, Martínez-Pinilla E. Heteromers Formed by GPR55 and Either Cannabinoid CB 1 or CB 2 Receptors Are Upregulated in the Prefrontal Cortex of Multiple Sclerosis Patients. Int J Mol Sci 2024; 25:4176. [PMID: 38673761 PMCID: PMC11050292 DOI: 10.3390/ijms25084176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune, inflammatory, and neurodegenerative disease of the central nervous system for which there is no cure, making it necessary to search for new treatments. The endocannabinoid system (ECS) plays a very important neuromodulatory role in the CNS. In recent years, the formation of heteromers containing cannabinoid receptors and their up/downregulation in some neurodegenerative diseases have been demonstrated. Despite the beneficial effects shown by some phytocannabinoids in MS, the role of the ECS in its pathophysiology is unknown. The main objective of this work was to identify heteromers of cell surface proteins receptive to cannabinoids, namely GPR55, CB1 and CB2 receptors, in brain samples from control subjects and MS patients, as well as determining their cellular localization, using In Situ Proximity Ligation Assays and immunohistochemical techniques. For the first time, CB1R-GPR55 and CB2R-GPR55 heteromers are identified in the prefrontal cortex of the human brain, more in the grey than in the white matter. Remarkably, the number of CB1R-GPR55 and CB2R-GPR55 complexes was found to be increased in MS patient samples. The results obtained open a promising avenue of research on the use of these receptor complexes as potential therapeutic targets for the disease.
Collapse
Affiliation(s)
- Carlota Menéndez-Pérez
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Rafael Rivas-Santisteban
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (R.R.-S.); (R.F.)
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28031 Madrid, Spain
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Campus Bellaterra, 08193 Bellaterra, Spain
| | - Eva del Valle
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Jorge Tolivia
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Ana Navarro
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| | - Rafael Franco
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain; (R.R.-S.); (R.F.)
- CiberNed, Network Center for Neurodegenerative Diseases, National Spanish Health Institute Carlos III, 28031 Madrid, Spain
| | - Eva Martínez-Pinilla
- Department of Morphology and Cell Biology, University of Oviedo, 33006 Oviedo, Spain; (C.M.-P.); (E.d.V.); (J.T.); (A.N.)
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33006 Oviedo, Spain
| |
Collapse
|
4
|
Kampaite A, Gustafsson R, York EN, Foley P, MacDougall NJJ, Bastin ME, Chandran S, Waldman AD, Meijboom R. Brain connectivity changes underlying depression and fatigue in relapsing-remitting multiple sclerosis: A systematic review. PLoS One 2024; 19:e0299634. [PMID: 38551913 PMCID: PMC10980255 DOI: 10.1371/journal.pone.0299634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 02/13/2024] [Indexed: 04/01/2024] Open
Abstract
Multiple Sclerosis (MS) is an autoimmune disease affecting the central nervous system, characterised by neuroinflammation and neurodegeneration. Fatigue and depression are common, debilitating, and intertwined symptoms in people with relapsing-remitting MS (pwRRMS). An increased understanding of brain changes and mechanisms underlying fatigue and depression in RRMS could lead to more effective interventions and enhancement of quality of life. To elucidate the relationship between depression and fatigue and brain connectivity in pwRRMS we conducted a systematic review. Searched databases were PubMed, Web-of-Science and Scopus. Inclusion criteria were: studied participants with RRMS (n ≥ 20; ≥ 18 years old) and differentiated between MS subtypes; published between 2001-01-01 and 2023-01-18; used fatigue and depression assessments validated for MS; included brain structural, functional magnetic resonance imaging (fMRI) or diffusion MRI (dMRI). Sixty studies met the criteria: 18 dMRI (15 fatigue, 5 depression) and 22 fMRI (20 fatigue, 5 depression) studies. The literature was heterogeneous; half of studies reported no correlation between brain connectivity measures and fatigue or depression. Positive findings showed that abnormal cortico-limbic structural and functional connectivity was associated with depression. Fatigue was linked to connectivity measures in cortico-thalamic-basal-ganglial networks. Additionally, both depression and fatigue were related to altered cingulum structural connectivity, and functional connectivity involving thalamus, cerebellum, frontal lobe, ventral tegmental area, striatum, default mode and attention networks, and supramarginal, precentral, and postcentral gyri. Qualitative analysis suggests structural and functional connectivity changes, possibly due to axonal and/or myelin loss, in the cortico-thalamic-basal-ganglial and cortico-limbic network may underlie fatigue and depression in pwRRMS, respectively, but the overall results were inconclusive, possibly explained by heterogeneity and limited number of studies. This highlights the need for further studies including advanced MRI to detect more subtle brain changes in association with depression and fatigue. Future studies using optimised imaging protocols and validated depression and fatigue measures are required to clarify the substrates underlying these symptoms in pwRRMS.
Collapse
Affiliation(s)
- Agniete Kampaite
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rebecka Gustafsson
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Elizabeth N. York
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter Foley
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
| | - Niall J. J. MacDougall
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - Mark E. Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, United Kingdom
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam D. Waldman
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| | - Rozanna Meijboom
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Edinburgh Imaging, Edinburgh Imaging Facility, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
5
|
Nicholson S, Russo AW, Brewer K, Bien H, Tobyne SM, Eloyan A, Klawiter EC. The effect of ibudilast on thalamic volume in progressive multiple sclerosis. Mult Scler 2023; 29:1819-1830. [PMID: 37947294 PMCID: PMC10841081 DOI: 10.1177/13524585231204710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Thalamic volume loss is known to be associated with clinical and cognitive disability in progressive multiple sclerosis (PMS). OBJECTIVE To investigate the treatment effect of ibudilast on thalamic atrophy more than 96 weeks in the phase 2 trial in progressive(MS Secondary and Primary Progressive Ibudilast NeuroNEXT Trial in Multiple Sclerosis [SPRINT-MS]). METHODS A total of 231 participants were randomized to either ibudilast (n = 114) or placebo (n = 117). Thalamic volume change was computed using Bayesian Sequence Adaptive Multimodal Segmentation tool (SAMseg) incorporating T1, fluid-attenuated inversion recovery (FLAIR), and fractional anisotropy maps and analyzed with a mixed-effects repeated-measures model. RESULTS There was no significant difference in thalamic volumes between treatment groups. On exploratory analysis, participants with primary progressive multiple sclerosis (PPMS) on placebo had a 0.004% greater rate of thalamic atrophy than PPMS participants on ibudilast (p = 0.058, 95% confidence interval (CI) = -0.008 to <0.001). Greater reductions in thalamic volumes at more than 96 weeks were associated with worsening multiple sclerosis functional composite (MSFC-4) scores (p = 0.002) and worsening performance on the symbol digit modality test (SDMT) (p < 0.001). CONCLUSION In a phase 2 trial evaluating ibudilast in PMS, no treatment effect was demonstrated in preventing thalamic atrophy. Participants with PPMS exhibited a treatment effect that trended toward significance. Longitudinal changes in thalamic volume were related to worsening of physical and cognitive disability, highlighting this outcome's clinical importance.
Collapse
Affiliation(s)
- Showly Nicholson
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Bien
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sean M Tobyne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ani Eloyan
- Department of Biostatistics, Brown University, Providence, RI, USA
| | - Eric C Klawiter
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Cagna CJ, Ceceli AO, Sandry J, Bhanji JP, Tricomi E, Dobryakova E. Altered functional connectivity during performance feedback processing in multiple sclerosis. Neuroimage Clin 2023; 37:103287. [PMID: 36516729 PMCID: PMC9755233 DOI: 10.1016/j.nicl.2022.103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Effective learning from performance feedback is vital for adaptive behavior regulation necessary for successful cognitive performance. Yet, how this learning operates in clinical groups that experience cognitive dysfunction is not well understood. Multiple sclerosis (MS) is an autoimmune, degenerative disease of the central nervous system characterized by physical and cognitive dysfunction. A highly prevalent impairment in MS is cognitive fatigue (CF). CF is associated with altered functioning within cortico-striatal regions that also facilitate feedback-based learning in neurotypical (NT) individuals. Despite this cortico-striatal overlap, research about feedback-based learning in MS, its associated neural underpinnings, and its sensitivity to CF, are all lacking. The present study investigated feedback-based learning ability in MS, as well as associated cortico-striatal function and connectivity. MS and NT participants completed a functional magnetic resonance imaging (fMRI) paired-word association task during which they received trial-by-trial monetary, non-monetary, and uninformative performance feedback. Despite reporting greater CF throughout the task, MS participants displayed comparable task performance to NTs, suggesting preserved feedback-based learning ability in the MS group. Both groups recruited the ventral striatum (VS), caudate nucleus, and ventromedial prefrontal cortex in response to the receipt of performance feedback, suggesting that people with MS also recruit cortico-striatal regions during feedback-based learning. However, compared to NT participants, MS participants also displayed stronger functional connectivity between the VS and task-relevant regions, including the left angular gyrus and right superior temporal gyrus, in response to feedback receipt. Results indicate that CF may not interfere with feedback-based learning in MS. Nonetheless, people with MS may recruit alternative connections with the striatum to assist with this form of learning. These findings have implications for cognitive rehabilitation treatments that incorporate performance feedback to remediate cognitive dysfunction in clinical populations.
Collapse
Affiliation(s)
- Christopher J Cagna
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Ahmet O Ceceli
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, United States.
| | - Joshua Sandry
- Department of Psychology, Montclair State University, 1 Normal Avenue, Montclair, NJ 07043, United States.
| | - Jamil P Bhanji
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Elizabeth Tricomi
- Department of Psychology, Rutgers University - Newark, 101 Warren Street, Newark, NJ 07102, United States.
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, 120 Eagle Rock Avenue, East Hanover, NJ 07936, United States.
| |
Collapse
|
7
|
Pagani E, Storelli L, Pantano P, Petsas N, Tedeschi G, Gallo A, De Stefano N, Battaglini M, Rocca MA, Filippi M. Multicenter data harmonization for regional brain atrophy and application in multiple sclerosis. J Neurol 2023; 270:446-459. [PMID: 36152049 DOI: 10.1007/s00415-022-11387-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND In multiple sclerosis (MS), determination of regional brain atrophy is clinically relevant. However, analysis of large datasets is rare because of the increased variability in multicenter data. PURPOSE To compare different methods to correct for center effects. To investigate regional gray matter (GM) volume in relapsing-remitting MS in a large multicenter dataset. METHODS MRI scans of 466 MS patients and 279 healthy controls (HC) were retrieved from the Italian Neuroimaging Network Initiative repository. Voxel-based morphometry was performed. The center effect was accounted for with different methods: (a) no correction, (b) factor in the statistical model, (c) ComBat method and (d) subsampling procedure to match single-center distributions. By applying the best correction method, GM atrophy was assessed in MS patients vs HC and according to clinical disability, disease duration and T2 lesion volume. Results were assessed voxel-wise using general linear model. RESULTS The average residuals for the harmonization methods were 5.03 (a), 4.42 (b), 4.26 (c) and 2.98 (d). The comparison between MS patients and HC identified thalami and other deep GM nuclei, the cerebellum and several cortical regions. At single-center analysis, the thalami were always involved, whereas different other regions were found in each center. Cerebellar atrophy correlated with clinical disability, while deep GM nuclei atrophy correlated with T2-lesion volume. CONCLUSION Harmonization based on subsampling more effectively decreased the residuals of the statistical model applied. In comparison with findings from single-center analysis, the multicenter results were more robust, highlighting the importance of data repositories from multiple centers.
Collapse
Affiliation(s)
- Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy
| | - Patrizia Pantano
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy.,IRCCS NEUROMED, Pozzilli, Italy
| | - Nikolaos Petsas
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Gioacchino Tedeschi
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, and 3T MRI-Center, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Marco Battaglini
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
8
|
Qi Z, Wang J, Gong J, Su T, Fu S, Huang L, Wang Y. Common and specific patterns of functional and structural brain alterations in schizophrenia and bipolar disorder: a multimodal voxel-based meta-analysis. J Psychiatry Neurosci 2022; 47:E32-E47. [PMID: 35105667 PMCID: PMC8812718 DOI: 10.1503/jpn.210111] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/12/2021] [Accepted: 11/16/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Schizophrenia and bipolar disorder have been linked to alterations in the functional activity and grey matter volume of some brain areas, reflected in impaired regional homogeneity and aberrant voxel-based morphometry. However, because of variable findings and methods used across studies, identifying patterns of brain alteration in schizophrenia and bipolar disorder has been difficult. METHODS We conducted a meta-analysis of differences in regional homogeneity and voxel-based morphometry between patients and healthy controls for schizophrenia and bipolar disorder separately, using seed-based d mapping. RESULTS We included 45 publications on regional homogeneity (26 in schizophrenia and 19 in bipolar disorder) and 190 publications on voxel-based morphometry (120 in schizophrenia and 70 in bipolar disorder). Patients with schizophrenia showed increased regional homogeneity in the frontal cortex and striatum and the supplementary motor area; they showed decreased regional homogeneity in the insula, primary sensory cortex (visual and auditory cortices) and sensorimotor cortex. Patients with bipolar disorder showed increased regional homogeneity in the frontal cortex and striatum; they showed decreased regional homogeneity in the insula. Patients with schizophrenia showed decreased grey matter volume in the superior temporal gyrus, inferior frontal gyrus, cingulate cortex and cerebellum. Patients with bipolar disorder showed decreased grey matter volume in the insula, cingulate cortex, frontal cortex and thalamus. Overlap analysis showed that patients with schizophrenia displayed decreased regional homogeneity and grey matter volume in the left insula and left superior temporal gyrus; patients with bipolar disorder displayed decreased regional homogeneity and grey matter volume in the left insula. LIMITATIONS The small sample size for our subgroup analysis (unmedicated versus medicated patients and substantial heterogeneity in the results for some regions could limit the interpretability and generalizability of the results. CONCLUSION Patients with schizophrenia and bipolar disorder shared a common pattern of regional functional and structural alterations in the insula and frontal cortex. Patients with schizophrenia showed more widespread functional and structural impairment, most prominently in the primary sensory motor areas.
Collapse
Affiliation(s)
| | - Junjing Wang
- From the Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou 510630, China (Qi, Su, Fu, Huang, Y. Wang); the Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China (Qi, Su, Fu, Huang, Y. Wang); the Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, China (J. Wang); and the Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China (Gong)
| | | | | | | | | | | |
Collapse
|
9
|
Chaudhary S, Zhornitsky S, Chao HH, van Dyck CH, Li CSR. Cerebral Volumetric Correlates of Apathy in Alzheimer's Disease and Cognitively Normal Older Adults: Meta-Analysis, Label-Based Review, and Study of an Independent Cohort. J Alzheimers Dis 2022; 85:1251-1265. [PMID: 34924392 PMCID: PMC9215906 DOI: 10.3233/jad-215316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Affecting nearly half of the patients with Alzheimer's disease (AD), apathy is associated with higher morbidity and reduced quality of life. Basal ganglia and cortical atrophy have been implicated in apathy. However, the findings have varied across studies and left unclear whether subdomains of apathy may involve distinct neuroanatomical correlates. OBJECTIVE To identify neuroanatomical correlates of AD-associated apathy. METHODS We performed a meta-analysis and label-based review of the literature. Further, following published routines of voxel-based morphometry, we aimed to confirm the findings in an independent cohort of 19 patients with AD/mild cognitive impairment and 25 healthy controls assessed with the Apathy Evaluation Scale. RESULTS Meta-analysis of 167 AD and 56 healthy controls showed convergence toward smaller basal ganglia gray matter volume (GMV) in apathy. Label-based review showed anterior cingulate, putamen, insula, inferior frontal gyrus (IFG) and middle temporal gyrus (MTG) atrophy in AD apathy. In the independent cohort, with small-volume-correction, right putamen and MTG showed GMVs in negative correlation with Apathy Evaluation Scale total, behavioral, and emotional scores, and right IFG with emotional score (p < 0.05 family-wise error (FWE)-corrected), controlling for age, education, intracranial volume, and depression. With the Mini-Mental State Examination scores included as an additional covariate, the correlation of right putamen GMV with behavioral and emotional score, right MTG GMV with total and emotional score, and right IFG GMV with emotional score were significant. CONCLUSION The findings implicate putamen, MTG and IFG atrophy in AD associated apathy, potentially independent of cognitive impairment and depression, and suggest potentially distinct volumetric correlates of apathy.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Herta H Chao
- Comprehensive Cancer Center, Department of Medicine, Yale University School of Medicine, New Haven, CT, USA
- Cancer Center, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Christopher H van Dyck
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| |
Collapse
|