1
|
Kant R, Singh V, Agarwal A. An efficient and economical synthesis of 5-substituted 1H-tetrazoles via Pb(II) salt catalyzed [3+2] cycloaddition of nitriles and sodium azide. CR CHIM 2016. [DOI: 10.1016/j.crci.2015.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
2
|
Leu K, Kervio E, Obermayer B, Turk-MacLeod RM, Yuan C, Luevano JM, Chen E, Gerland U, Richert C, Chen IA. Cascade of reduced speed and accuracy after errors in enzyme-free copying of nucleic acid sequences. J Am Chem Soc 2013; 135:354-66. [PMID: 23259600 PMCID: PMC3557965 DOI: 10.1021/ja3095558] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nonenzymatic, template-directed synthesis of nucleic acids is a paradigm for self-replicating systems. The evolutionary dynamics of such systems depend on several factors, including the mutation rates, relative replication rates, and sequence characteristics of mutant sequences. We measured the kinetics of correct and incorrect monomer insertion downstream of a primer-template mismatch (mutation), using a range of backbone structures (RNA, DNA, and LNA templates and RNA and DNA primers) and two types of 5'-activated nucleotides (oxyazabenzotriazolides and imidazolides, i.e., nucleoside 5'-phosphorimidazolides). Our study indicated that for all systems studied, an initial mismatch was likely to be followed by another error (54-75% of the time), and extension after a single mismatch was generally 10-100 times slower than extension without errors. If the mismatch was followed by a matched base pair, the extension rate recovered to nearly normal levels. On the basis of these data, we simulated nucleic acid replication in silico, which indicated that a primer suffering an initial error would lag behind properly extended counterparts due to a cascade of subsequent errors and kinetic stalling, with the typical mutational event consisting of several consecutive errors. Our study also included different sequence contexts, which suggest the presence of cooperativity among monomers affecting both absolute rate (by up to 2 orders of magnitude) and fidelity. The results suggest that molecular evolution in enzyme-free replication systems would be characterized by large "leaps" through sequence space rather than isolated point mutations, perhaps enabling rapid exploration of diverse sequences. The findings may also be useful for designing self-replicating systems combining high fidelity with evolvability.
Collapse
Affiliation(s)
- Kevin Leu
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Eric Kervio
- Institute for Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | | | | | - Caterina Yuan
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | | - Eric Chen
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | - Ulrich Gerland
- Physics Department and Center for Nanoscience, University of Munich, Munich, Germany
| | - Clemens Richert
- Institute for Organic Chemistry, University of Stuttgart, Stuttgart, Germany
| | - Irene A. Chen
- FAS Center for Systems Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, USA
| |
Collapse
|
3
|
Cape JL, Edson JB, Spencer LP, DeClue MS, Ziock HJ, Maurer S, Rasmussen S, Monnard PA, Boncella JM. Phototriggered DNA phosphoramidate ligation in a tandem 5'-amine deprotection/3'-imidazole activated phosphate coupling reaction. Bioconjug Chem 2012; 23:2014-9. [PMID: 22985338 DOI: 10.1021/bc300093y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the preparation and use of an N-methyl picolinium carbamate protecting group for applications in a phototriggered nonenzymatic DNA phosphoramidate ligation reaction. Selective 5'-amino protection of a modified 13-mer oligonucleotide is achieved in aqueous solution by reaction with an N-methyl-4-picolinium carbonyl imidazole triflate protecting group precursor. Deprotection is carried out by photoinduced electron transfer from Ru(bpy)(3)(2+) using visible light photolysis and ascorbic acid as a sacrificial electron donor. Phototriggered 5'- amino oligonucleotide deprotection is used to initiate a nonenzymatic ligation of the 13-mer to an imidazole activated 3'-phospho-hairpin template to generate a ligated product with a phosphoramidate linkage. We demonstrate that this methodology offers a simple way to exert control over reaction initiation and rates in nonenzymatic DNA ligation for potential applications in the study of model protocellular systems and prebiotic nucleic acid synthesis.
Collapse
Affiliation(s)
- Jonathan L Cape
- Material, Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
El-Murr N, Maurel MC, Rihova M, Vergne J, Hervé G, Kato M, Kawamura K. Behavior of a hammerhead ribozyme in aqueous solution at medium to high temperatures. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2012; 99:731-8. [PMID: 22915317 DOI: 10.1007/s00114-012-0954-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/17/2012] [Accepted: 07/19/2012] [Indexed: 11/28/2022]
Abstract
The "RNA world" hypothesis proposes that--early in the evolution of life--RNA molecules played important roles both in information storage and in enzymatic functions. However, this hypothesis seems to be inconsistent with the concept that life may have emerged under hydrothermal conditions since RNA molecules are considered to be labile under such extreme conditions. Presently, the possibility that the last common ancestor of the present organisms was a hyperthermophilic organism which is important to support the hypothesis of the hydrothermal origin of life has been subject of strong discussions. Consequently, it is of importance to study the behavior of RNA molecules under hydrothermal conditions from the viewpoints of stability, catalytic functions, and storage of genetic information of RNA molecules and determination of the upper limit of temperature where life could have emerged. In the present work, self-cleavage of a natural hammerhead ribozyme was examined at temperatures 10-200 °C. Self-cleavage was investigated in the presence of Mg(2+), which facilitates and accelerates this reaction. Self-cleavage of the hammerhead ribozyme was clearly observed at temperatures up to 60 °C, but at higher temperatures self-cleavage occurs together with hydrolysis and with increasing temperature hydrolysis becomes dominant. The influence of the amount of Mg(2+) on the reaction rate was also investigated. In addition, we discovered that the reaction proceeds in the presence of high concentrations of monovalent cations (Na(+) or K(+)), although very slowly. Furthermore, at high temperatures (above 60 °C), monovalent cations protect the ribozyme against degradation.
Collapse
Affiliation(s)
- Nizar El-Murr
- ER12, ANBioPhy, Fonctions et Interactions des Acides Nucléiques, UPMC Univ Paris 6, 75005, Paris, France
| | | | | | | | | | | | | |
Collapse
|
5
|
Kawamura K. Drawbacks of the ancient RNA-based life-like system under primitive earth conditions. Biochimie 2012; 94:1441-50. [PMID: 22738727 DOI: 10.1016/j.biochi.2012.02.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/16/2012] [Indexed: 11/27/2022]
Abstract
Following the discovery of ribozymes, the "RNA world" hypothesis has become the most accepted hypothesis concerning the origin of life and genetic information. However, this hypothesis has several drawbacks. Verification of the hypothesis from different viewpoints led us to proposals from the viewpoint of the hydrothermal origin of life, solubility of RNA and related biopolymers, and the possibility of creating an evolutionary system comparable to the in vitro selection technique for functional RNA molecules based on molecular biology.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Human Environmental Studies, Hiroshima Shudo University, 1-1-1, Ozuka-higashi, Asaminami-ku, Hiroshima 731-3195, Japan.
| |
Collapse
|
6
|
Reality of the Emergence of Life-Like Systems from Simple Prebiotic Polymers on Primitive Earth. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-2941-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
7
|
Carny O, Gazit E. Creating prebiotic sanctuary: self-assembling supramolecular Peptide structures bind and stabilize RNA. ORIGINS LIFE EVOL B 2011; 41:121-32. [PMID: 20585856 DOI: 10.1007/s11084-010-9219-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 06/13/2010] [Indexed: 12/15/2022]
Abstract
Any attempt to uncover the origins of life must tackle the known 'blind watchmaker problem'. That is to demonstrate the likelihood of the emergence of a prebiotic system simple enough to be formed spontaneously and yet complex enough to allow natural selection that will lead to Darwinistic evolution. Studies of short aromatic peptides revealed their ability to self-assemble into ordered and stable structures. The unique physical and chemical characteristics of these peptide assemblies point out to their possible role in the origins of life. We have explored mechanisms by which self-assembling short peptides and RNA fragments could interact together and go through a molecular co-evolution, using diphenylalanine supramolecular assemblies as a model system. The spontaneous formation of these self-assembling peptides under prebiotic conditions, through the salt-induced peptide formation (SIPF) pathway was demonstrated. These peptide assemblies possess the ability to bind and stabilize ribonucleotides in a sequence-depended manner, thus increase their relative fitness. The formation of these peptide assemblies is dependent on the homochirality of the peptide monomers: while homochiral peptides (L-Phe-L-Phe and D-Phe-D-Phe) self-assemble rapidly in aqueous environment, heterochiral diastereoisomers (L-Phe-D-Phe and D-Phe-L-Phe) do not tend to self-assemble. This characteristic consists with the homochirality of all living matter. Finally, based on these findings, we propose a model for the role of short self-assembling peptides in the prebiotic molecular evolution and the origin of life.
Collapse
Affiliation(s)
- Ohad Carny
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | | |
Collapse
|
8
|
Kawamura K, Maeda J. Kinetics and activation parameter analysis for the prebiotic oligocytidylate formation on Na(+)-montmorillonite at 0-100 degrees C. J Phys Chem A 2008; 112:8015-23. [PMID: 18693705 DOI: 10.1021/jp801969g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The kinetic analysis of the temperature dependence of the formation of oligocytidylate (oligo(C)) from the 5'-monophosphorimidazolide moiety of cytidine (ImpC) in the presence of Na (+)-montmorillonite (Na (+)-Mont) catalyst has been carried out at 0-100 degrees C. The rate constants for the formation of oligo(C), hydrolysis of ImpC with and without Na (+)-Mont and degradation of oligo(C) were determined. The apparent activation parameters were 30.8 +/- 3.9 kJ mol (-1) ( Ea), 28.3 +/- 4.0 kJ mol (-1) (Delta H++), and -231 +/- 13 J mol (-1) K (-1) (Delta S++) for the formation of the 2-mer; 45.6 +/- 2.9 kJ mol (-1) ( Ea), 43.0 +/- 3.0 kJ mol (-1) (Delta H++), -164 +/- 10 J mol (-1) K (-1) (Delta S++) for the 3-mer; and 45.2 +/- 0.6 kJ mol (-1) ( Ea), 42.7 +/- 0.7 kJ mol (-1) (Delta H++), -159 +/- 2 J mol (-1) K (-1) (Delta S++) for the 4-mer in the presence of Na (+)-Mont. An increasing trend for the rate constants for the formation of oligo(C) in the order 2-mer << 3-mer <4-mer was observed at high temperatures, which is consistent with that observed at low temperatures. These analyses implied for the first time that the associate formation between an activated nucleotide monomer and an elongating oligonucleotide prior to the phosphodiester bond formation during the elongation of an oligonucleotide on a clay surface would be based on the interaction between the two reactants at the phosphoester and/or ribose moieties rather than at the nucleotide bases. The hydrolysis rate of ImpC at 25-100 degrees C was 5.3-10.6 times greater in the presence of Na (+)-Mont than in its absence. Although the degradation of oligo(C) in the presence of Na (+)-Mont was slower than the formation of the 3-mer and longer oligo(C) on Na (+)-Mont, its yield decreased with temperature. This is mainly because the ratios of the rate constant of the 2-mer formation to those of ImpC hydrolysis and the 3-mer and 4-mer formation decrease with an increase in temperature, which is attributed to the enthalpy and entropy changes for the formation of the 2-mer. This trend resembles the case of the template-directed formation of oligo(G) on a poly(C) template but is different from the Pb (2+)-ion-catalyzed oligo(C) formation. According to the kinetics and activation parameter analyses regarding the clay reaction and other prebiotic polymerase models, the possible pathways for the oligonucleotide formation are discussed and compared.
Collapse
Affiliation(s)
- Kunio Kawamura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Gakuen-cho 1-1, Naka-ku, Sakai, Osaka, Japan 599-8531.
| | | |
Collapse
|