1
|
Shields AL, Barnes R, Agol E, Charnay B, Bitz C, Meadows VS. The Effect of Orbital Configuration on the Possible Climates and Habitability of Kepler-62f. ASTROBIOLOGY 2016; 16:443-64. [PMID: 27176715 PMCID: PMC4900229 DOI: 10.1089/ast.2015.1353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 02/21/2016] [Indexed: 05/21/2023]
Abstract
UNLABELLED As lower-mass stars often host multiple rocky planets, gravitational interactions among planets can have significant effects on climate and habitability over long timescales. Here we explore a specific case, Kepler-62f (Borucki et al., 2013 ), a potentially habitable planet in a five-planet system with a K2V host star. N-body integrations reveal the stable range of initial eccentricities for Kepler-62f is 0.00 ≤ e ≤ 0.32, absent the effect of additional, undetected planets. We simulate the tidal evolution of Kepler-62f in this range and find that, for certain assumptions, the planet can be locked in a synchronous rotation state. Simulations using the 3-D Laboratoire de Météorologie Dynamique (LMD) Generic global climate model (GCM) indicate that the surface habitability of this planet is sensitive to orbital configuration. With 3 bar of CO2 in its atmosphere, we find that Kepler-62f would only be warm enough for surface liquid water at the upper limit of this eccentricity range, providing it has a high planetary obliquity (between 60° and 90°). A climate similar to that of modern-day Earth is possible for the entire range of stable eccentricities if atmospheric CO2 is increased to 5 bar levels. In a low-CO2 case (Earth-like levels), simulations with version 4 of the Community Climate System Model (CCSM4) GCM and LMD Generic GCM indicate that increases in planetary obliquity and orbital eccentricity coupled with an orbital configuration that places the summer solstice at or near pericenter permit regions of the planet with above-freezing surface temperatures. This may melt ice sheets formed during colder seasons. If Kepler-62f is synchronously rotating and has an ocean, CO2 levels above 3 bar would be required to distribute enough heat to the nightside of the planet to avoid atmospheric freeze-out and permit a large enough region of open water at the planet's substellar point to remain stable. Overall, we find multiple plausible combinations of orbital and atmospheric properties that permit surface liquid water on Kepler-62f. KEY WORDS Extrasolar planets-Habitability-Planetary environments. Astrobiology 16, 443-464.
Collapse
Affiliation(s)
- Aomawa L Shields
- 1 NSF Astronomy and Astrophysics Postdoctoral Fellow, UC President's Postdoctoral Program Fellow, Department of Physics and Astronomy, University of California , Los Angeles, and Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts
| | - Rory Barnes
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Eric Agol
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Benjamin Charnay
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| | - Cecilia Bitz
- 3 Department of Atmospheric Sciences, University of Washington , Seattle, Washington
| | - Victoria S Meadows
- 2 Department of Astronomy and Astrobiology Program, University of Washington , Seattle, Washington
| |
Collapse
|
2
|
Heller R, Williams D, Kipping D, Limbach MA, Turner E, Greenberg R, Sasaki T, Bolmont É, Grasset O, Lewis K, Barnes R, Zuluaga JI. Formation, habitability, and detection of extrasolar moons. ASTROBIOLOGY 2014; 14:798-835. [PMID: 25147963 PMCID: PMC4172466 DOI: 10.1089/ast.2014.1147] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 06/05/2014] [Indexed: 06/03/2023]
Abstract
The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.
Collapse
Affiliation(s)
- René Heller
- Origins Institute, Department of Physics and Astronomy, McMaster University, Hamilton, Canada
| | - Darren Williams
- The Behrend College School of Science, Penn State Erie, Erie, Pennsylvania, USA
| | - David Kipping
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | - Mary Anne Limbach
- Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey, USA
| | - Edwin Turner
- Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey, USA
- The Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo, Kashiwa, Japan
| | - Richard Greenberg
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
| | | | - Émeline Bolmont
- Université de Bordeaux, LAB, UMR 5804, Floirac, France
- CNRS, LAB, UMR 5804, Floirac, France
| | - Olivier Grasset
- Planetology and Geodynamics, University of Nantes, CNRS, Nantes, France
| | - Karen Lewis
- Earth and Planetary Sciences, Tokyo Institute of Technology, Tokyo, Japan
| | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| | - Jorge I. Zuluaga
- FACom—Instituto de Física—FCEN, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
3
|
Setting the stage for habitable planets. Life (Basel) 2014; 4:35-65. [PMID: 25370028 PMCID: PMC4187148 DOI: 10.3390/life4010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 02/10/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022] Open
Abstract
Our understanding of the processes that are relevant to the formation and maintenance of habitable planetary systems is advancing at a rapid pace, both from observation and theory. The present review focuses on recent research that bears on this topic and includes discussions of processes occurring in astrophysical, geophysical and climatic contexts, as well as the temporal evolution of planetary habitability. Special attention is given to recent observations of exoplanets and their host stars and the theories proposed to explain the observed trends. Recent theories about the early evolution of the Solar System and how they relate to its habitability are also summarized. Unresolved issues requiring additional research are pointed out, and a framework is provided for estimating the number of habitable planets in the Universe.
Collapse
|
4
|
Heller R, Barnes R. Exomoon habitability constrained by illumination and tidal heating. ASTROBIOLOGY 2013; 13:18-46. [PMID: 23305357 PMCID: PMC3549631 DOI: 10.1089/ast.2012.0859] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The detection of moons orbiting extrasolar planets ("exomoons") has now become feasible. Once they are discovered in the circumstellar habitable zone, questions about their habitability will emerge. Exomoons are likely to be tidally locked to their planet and hence experience days much shorter than their orbital period around the star and have seasons, all of which works in favor of habitability. These satellites can receive more illumination per area than their host planets, as the planet reflects stellar light and emits thermal photons. On the contrary, eclipses can significantly alter local climates on exomoons by reducing stellar illumination. In addition to radiative heating, tidal heating can be very large on exomoons, possibly even large enough for sterilization. We identify combinations of physical and orbital parameters for which radiative and tidal heating are strong enough to trigger a runaway greenhouse. By analogy with the circumstellar habitable zone, these constraints define a circumplanetary "habitable edge." We apply our model to hypothetical moons around the recently discovered exoplanet Kepler-22b and the giant planet candidate KOI211.01 and describe, for the first time, the orbits of habitable exomoons. If either planet hosted a satellite at a distance greater than 10 planetary radii, then this could indicate the presence of a habitable moon.
Collapse
Affiliation(s)
- René Heller
- Leibniz-Institute for Astrophysics Potsdam (AIP), Potsdam, Germany
| | - Rory Barnes
- Astronomy Department, University of Washington, Seattle, Washington, USA
- NASA Astrobiology Institute—Virtual Planetary Laboratory Lead Team, USA
| |
Collapse
|