1
|
Powers J, Jang Y. Advancing Biomimetic Functions of Synthetic Cells through Compartmentalized Cell-Free Protein Synthesis. Biomacromolecules 2023; 24:5539-5550. [PMID: 37962115 DOI: 10.1021/acs.biomac.3c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Synthetic cells are artificial constructs that mimic the structures and functions of living cells. They are attractive for studying diverse biochemical processes and elucidating the origins of life. While creating a living synthetic cell remains a grand challenge, researchers have successfully synthesized hundreds of unique synthetic cell platforms. One promising approach to developing more sophisticated synthetic cells is to integrate cell-free protein synthesis (CFPS) mechanisms into vesicle platforms. This makes it possible to create synthetic cells with complex biomimetic functions such as genetic circuits, autonomous membrane modifications, sensing and communication, and artificial organelles. This Review explores recent advances in the use of CFPS to impart advanced biomimetic structures and functions to bottom-up synthetic cell platforms. We also discuss the potential applications of synthetic cells in biomedicine as well as the future directions of synthetic cell research.
Collapse
Affiliation(s)
- Jackson Powers
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| | - Yeongseon Jang
- Department of Chemical Engineering, University of Florida, 1006 Center Drive, Gainesville, Florida 32611, United States
| |
Collapse
|
2
|
Blackholly LR, Harris NJ, Findlay HE, Booth PJ. Cell-Free Expression to Probe Co-Translational Insertion of an Alpha Helical Membrane Protein. Front Mol Biosci 2022; 9:795212. [PMID: 35187078 PMCID: PMC8847741 DOI: 10.3389/fmolb.2022.795212] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/11/2022] [Indexed: 01/23/2023] Open
Abstract
The majority of alpha helical membrane proteins fold co-translationally during their synthesis on the ribosome. In contrast, most mechanistic folding studies address refolding of full-length proteins from artificially induced denatured states that are far removed from the natural co-translational process. Cell-free translation of membrane proteins is emerging as a useful tool to address folding during translation by a ribosome. We summarise the benefits of this approach and show how it can be successfully extended to a membrane protein with a complex topology. The bacterial leucine transporter, LeuT can be synthesised and inserted into lipid membranes using a variety of in vitro transcription translation systems. Unlike major facilitator superfamily transporters, where changes in lipids can optimise the amount of correctly inserted protein, LeuT insertion yields are much less dependent on the lipid composition. The presence of a bacterial translocon either in native membrane extracts or in reconstituted membranes also has little influence on the yield of LeuT incorporated into the lipid membrane, except at high reconstitution concentrations. LeuT is considered a paradigm for neurotransmitter transporters and possesses a knotted structure that is characteristic of this transporter family. This work provides a method in which to probe the formation of a protein as the polypeptide chain is being synthesised on a ribosome and inserting into lipids. We show that in comparison with the simpler major facilitator transporter structures, LeuT inserts less efficiently into membranes when synthesised cell-free, suggesting that more of the protein aggregates, likely as a result of the challenging formation of the knotted topology in the membrane.
Collapse
Affiliation(s)
| | | | | | - Paula J. Booth
- Department of Chemistry, King’s College London, London, United Kingdom
| |
Collapse
|
3
|
Kruyer NS, Sugianto W, Tickman BI, Alba Burbano D, Noireaux V, Carothers JM, Peralta-Yahya P. Membrane Augmented Cell-Free Systems: A New Frontier in Biotechnology. ACS Synth Biol 2021; 10:670-681. [PMID: 33749249 DOI: 10.1021/acssynbio.0c00625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins are present in a wide array of cellular processes from primary and secondary metabolite synthesis to electron transport and single carbon metabolism. A key barrier to applying membrane proteins industrially is their difficult functional production. Beyond expression, folding, and membrane insertion, membrane protein activity is influenced by the physicochemical properties of the associated membrane, making it difficult to achieve optimal membrane protein performance outside the endogenous host. In this review, we highlight recent work on production of membrane proteins in membrane augmented cell-free systems (CFSs) and applications thereof. CFSs lack membranes and can thus be augmented with user-specified, tunable, mimetic membranes to generate customized environments for production of functional membrane proteins of interest. Membrane augmented CFSs would enable the synthesis of more complex plant secondary metabolites, the growth and division of synthetic cells for drug delivery and cell therapeutic applications, as well as enable green energy applications including methane capture and artificial photosynthesis.
Collapse
Affiliation(s)
- Nicholas S. Kruyer
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Widianti Sugianto
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin I. Tickman
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
| | - Diego Alba Burbano
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - James M. Carothers
- Molecular Engineering & Sciences Institute and Center for Synthetic Biology, University of Washington, Seattle, Washington 98195, United States
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Pamela Peralta-Yahya
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Kögler LM, Stichel J, Beck-Sickinger AG. Structural investigations of cell-free expressed G protein-coupled receptors. Biol Chem 2020; 401:97-116. [PMID: 31539345 DOI: 10.1515/hsz-2019-0292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/02/2019] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are of great pharmaceutical interest and about 35% of the commercial drugs target these proteins. Still there is huge potential left in finding molecules that target new GPCRs or that modulate GPCRs differentially. For a rational drug design, it is important to understand the structure, binding and activation of the protein of interest. Structural investigations of GPCRs remain challenging, although huge progress has been made in the last 20 years, especially in the generation of crystal structures of GPCRs. This is mostly caused by issues with the expression yield, purity or labeling. Cell-free protein synthesis (CFPS) is an efficient alternative for recombinant expression systems that can potentially address many of these problems. In this article the use of CFPS for structural investigations of GPCRs is reviewed. We compare different CFPS systems, including the cellular basis and reaction configurations, and strategies for an efficient solubilization. Next, we highlight recent advances in the structural investigation of cell-free expressed GPCRs, with special emphasis on the role of photo-crosslinking approaches to investigate ligand binding sites on GPCRs.
Collapse
Affiliation(s)
- Lisa Maria Kögler
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| | - Annette G Beck-Sickinger
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr. 34, D-04103 Leipzig, Germany
| |
Collapse
|
5
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
6
|
Ayoubi-Joshaghani MH, Dianat-Moghadam H, Seidi K, Jahanban-Esfahalan A, Zare P, Jahanban-Esfahlan R. Cell-free protein synthesis: The transition from batch reactions to minimal cells and microfluidic devices. Biotechnol Bioeng 2020; 117:1204-1229. [PMID: 31840797 DOI: 10.1002/bit.27248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/23/2019] [Accepted: 12/09/2019] [Indexed: 12/13/2022]
Abstract
Thanks to the synthetic biology, the laborious and restrictive procedure for producing a target protein in living microorganisms by biotechnological approaches can now experience a robust, pliant yet efficient alternative. The new system combined with lab-on-chip microfluidic devices and nanotechnology offers a tremendous potential envisioning novel cell-free formats such as DNA brushes, hydrogels, vesicular particles, droplets, as well as solid surfaces. Acting as robust microreactors/microcompartments/minimal cells, the new platforms can be tuned to perform various tasks in a parallel and integrated manner encompassing gene expression, protein synthesis, purification, detection, and finally enabling cell-cell signaling to bring a collective cell behavior, such as directing differentiation process, characteristics of higher order entities, and beyond. In this review, we issue an update on recent cell-free protein synthesis (CFPS) formats. Furthermore, the latest advances and applications of CFPS for synthetic biology and biotechnology are highlighted. In the end, contemporary challenges and future opportunities of CFPS systems are discussed.
Collapse
Affiliation(s)
| | | | - Khaled Seidi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Peyman Zare
- Faculty of Medicine, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Focke PJ, Hein C, Hoffmann B, Matulef K, Bernhard F, Dötsch V, Valiyaveetil FI. Combining in Vitro Folding with Cell Free Protein Synthesis for Membrane Protein Expression. Biochemistry 2016; 55:4212-9. [PMID: 27384110 DOI: 10.1021/acs.biochem.6b00488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell free protein synthesis (CFPS) has emerged as a promising methodology for protein expression. While polypeptide production is very reliable and efficient using CFPS, the correct cotranslational folding of membrane proteins during CFPS is still a challenge. In this contribution, we describe a two-step protocol in which the integral membrane protein is initially expressed by CFPS as a precipitate followed by an in vitro folding procedure using lipid vesicles for converting the protein precipitate to the correctly folded protein. We demonstrate the feasibility of using this approach for the K(+) channels KcsA and MVP and the amino acid transporter LeuT. We determine the crystal structure of the KcsA channel obtained by CFPS and in vitro folding to show the structural similarity to the cellular expressed KcsA channel and to establish the feasibility of using this two-step approach for membrane protein production for structural studies. Our studies show that the correct folding of these membrane proteins with complex topologies can take place in vitro without the involvement of the cellular machinery for membrane protein biogenesis. This indicates that the folding instructions for these complex membrane proteins are contained entirely within the protein sequence.
Collapse
Affiliation(s)
- Paul J Focke
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Christopher Hein
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Kimberly Matulef
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University , Max-von-Laue Strasse 9, 60438 Frankfurt am Main, Germany
| | - Francis I Valiyaveetil
- Program in Chemical Biology, Department of Physiology and Pharmacology, Oregon Health & Science University , 3181 Southwest Sam Jackson Park Road, Portland, Oregon 97239, United States
| |
Collapse
|