1
|
Harrison SA, Webb WL, Rammu H, Lane N. Prebiotic Synthesis of Aspartate Using Life's Metabolism as a Guide. Life (Basel) 2023; 13:life13051177. [PMID: 37240822 DOI: 10.3390/life13051177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
A protometabolic approach to the origins of life assumes that the conserved biochemistry of metabolism has direct continuity with prebiotic chemistry. One of the most important amino acids in modern biology is aspartic acid, serving as a nodal metabolite for the synthesis of many other essential biomolecules. Aspartate's prebiotic synthesis is complicated by the instability of its precursor, oxaloacetate. In this paper, we show that the use of the biologically relevant cofactor pyridoxamine, supported by metal ion catalysis, is sufficiently fast to offset oxaloacetate's degradation. Cu2+-catalysed transamination of oxaloacetate by pyridoxamine achieves around a 5% yield within 1 h, and can operate across a broad range of pH, temperature, and pressure. In addition, the synthesis of the downstream product β-alanine may also take place in the same reaction system at very low yields, directly mimicking an archaeal synthesis route. Amino group transfer supported by pyridoxal is shown to take place from aspartate to alanine, but the reverse reaction (alanine to aspartate) shows a poor yield. Overall, our results show that the nodal metabolite aspartate and related amino acids can indeed be synthesised via protometabolic pathways that foreshadow modern metabolism in the presence of the simple cofactor pyridoxamine and metal ions.
Collapse
Affiliation(s)
- Stuart A Harrison
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - William L Webb
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Hanadi Rammu
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| | - Nick Lane
- Centre for Life's Origins and Evolution (CLOE), Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, UK
| |
Collapse
|
2
|
Self-Similar Patterns from Abiotic Decarboxylation Metabolism through Chemically Oscillating Reactions: A Prebiotic Model for the Origin of Life. Life (Basel) 2023; 13:life13020551. [PMID: 36836908 PMCID: PMC9960873 DOI: 10.3390/life13020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
The origin of life must have included an abiotic stage of carbon redox reactions that involved electron transport chains and the production of lifelike patterns. Chemically oscillating reactions (COR) are abiotic, spontaneous, out-of-equilibrium, and redox reactions that involve the decarboxylation of carboxylic acids with strong oxidants and strong acids to produce CO2 and characteristic self-similar patterns. Those patterns have circular concentricity, radial geometries, characteristic circular twins, colour gradients, cavity structures, and branching to parallel alignment. We propose that COR played a role during the prebiotic cycling of carboxylic acids, furthering the new model for geology where COR can also explain the patterns of diagenetic spheroids in sediments. The patterns of COR in Petri dishes are first considered and compared to those observed in some eukaryotic lifeforms. The molecular structures and functions of reactants in COR are then compared to key biological metabolic processes. We conclude that the newly recognised similarities in compositions and patterns warrant future research to better investigate the role of halogens in biochemistry; COR in life-forms, including in humans; and the COR-stage of prebiotic carbon cycling on other planets, such as Mars.
Collapse
|
3
|
Prebiotic synthesis of α-amino acids and orotate from α-ketoacids potentiates transition to extant metabolic pathways. Nat Chem 2022; 14:1142-1150. [PMID: 35902742 DOI: 10.1038/s41557-022-00999-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
The Strecker reaction of aldehydes is the pre-eminent pathway to explain the prebiotic origins of α-amino acids. However, biology employs transamination of α-ketoacids to synthesize amino acids which are then transformed to nucleobases, implying an evolutionary switch-abiotically or biotically-of a prebiotic pathway involving the Strecker reaction into today's biosynthetic pathways. Here we show that α-ketoacids react with cyanide and ammonia sources to form the corresponding α-amino acids through the Bucherer-Bergs pathway. An efficient prebiotic transformation of oxaloacetate to aspartate via N-carbamoyl aspartate enables the simultaneous formation of dihydroorotate, paralleling the biochemical synthesis of orotate as the precursor to pyrimidine nucleobases. Glyoxylate forms both glycine and orotate and reacts with malonate and urea to form aspartate and dihydroorotate. These results, along with the previously demonstrated protometabolic analogues of the Krebs cycle, suggest that there can be a natural emergence of congruent forerunners of biological pathways with the potential for seamless transition from prebiotic chemistry to modern metabolism.
Collapse
|
4
|
Cyanide as a primordial reductant enables a protometabolic reductive glyoxylate pathway. Nat Chem 2022; 14:170-178. [PMID: 35115655 DOI: 10.1038/s41557-021-00878-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022]
Abstract
Investigation of prebiotic metabolic pathways is predominantly based on abiotically replicating the reductive citric acid cycle. While attractive from a parsimony point of view, attempts using metal/mineral-mediated reductions have produced complex mixtures with inefficient and uncontrolled reactions. Here we show that cyanide acts as a mild and efficient reducing agent mediating abiotic transformations of tricarboxylic acid intermediates and derivatives. The hydrolysis of the cyanide adducts followed by their decarboxylation enables the reduction of oxaloacetate to malate and of fumarate to succinate, whereas pyruvate and α-ketoglutarate themselves are not reduced. In the presence of glyoxylate, malonate and malononitrile, alternative pathways emerge that bypass the challenging reductive carboxylation steps to produce metabolic intermediates and compounds found in meteorites. These results suggest a simpler prebiotic forerunner of today's metabolism, involving a reductive glyoxylate pathway without oxaloacetate and α-ketoglutarate-implying that the extant metabolic reductive carboxylation chemistries are an evolutionary invention mediated by complex metalloproteins.
Collapse
|
5
|
Weber JM, Henderson BL, LaRowe DE, Goldman AD, Perl SM, Billings K, Barge LM. Testing Abiotic Reduction of NAD + Directly Mediated by Iron/Sulfur Minerals. ASTROBIOLOGY 2022; 22:25-34. [PMID: 34591607 DOI: 10.1089/ast.2021.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Life emerged in a geochemical context, possibly in the midst of mineral substrates. However, it is not known to what extent minerals and dissolved inorganic ions could have facilitated the evolution of biochemical reactions. Herein, we have experimentally shown that iron sulfide minerals can act as electron transfer agents for the reduction of the ubiquitous biological protein cofactor nicotinamide adenine dinucleotide (NAD+) under anaerobic prebiotic conditions, observing the NAD+/NADH redox transition by using ultraviolet-visible spectroscopy and 1H nuclear magnetic resonance. This reaction was mediated with iron sulfide minerals, which were likely abundant on early Earth in seafloor and hydrothermal settings; and the NAD+/NADH redox reaction occurred in the absence of UV light, peptide ligand(s), or dissolved mediators. To better understand this reaction, thermodynamic modeling was also performed. The ability of an iron sulfide mineral to transfer electrons to a biochemical cofactor that is found in every living cell demonstrates how geologic materials could have played a direct role in the evolution of certain cofactor-driven metabolic pathways.
Collapse
Affiliation(s)
- Jessica M Weber
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Bryana L Henderson
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Douglas E LaRowe
- Department of Earth Sciences, University of Southern California, Los Angeles, California, USA
| | - Aaron D Goldman
- Blue Marble Space Institute of Science, Seattle, Washington, United States of America
- Department of Biology, Oberlin College, Oberlin, Ohio, USA
| | - Scott M Perl
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Keith Billings
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Laura M Barge
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
6
|
Goldman AD, Kacar B. Cofactors are Remnants of Life's Origin and Early Evolution. J Mol Evol 2021; 89:127-133. [PMID: 33547911 PMCID: PMC7982383 DOI: 10.1007/s00239-020-09988-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/21/2020] [Indexed: 12/22/2022]
Abstract
The RNA World is one of the most widely accepted hypotheses explaining the origin of the genetic system used by all organisms today. It proposes that the tripartite system of DNA, RNA, and proteins was preceded by one consisting solely of RNA, which both stored genetic information and performed the molecular functions encoded by that genetic information. Current research into a potential RNA World revolves around the catalytic properties of RNA-based enzymes, or ribozymes. Well before the discovery of ribozymes, Harold White proposed that evidence for a precursor RNA world could be found within modern proteins in the form of coenzymes, the majority of which contain nucleobases or nucleoside moieties, such as Coenzyme A and S-adenosyl methionine, or are themselves nucleotides, such as ATP and NADH (a dinucleotide). These coenzymes, White suggested, had been the catalytic active sites of ancient ribozymes, which transitioned to their current forms after the surrounding ribozyme scaffolds had been replaced by protein apoenzymes during the evolution of translation. Since its proposal four decades ago, this groundbreaking hypothesis has garnered support from several different research disciplines and motivated similar hypotheses about other classes of cofactors, most notably iron-sulfur cluster cofactors as remnants of the geochemical setting of the origin of life. Evidence from prebiotic geochemistry, ribozyme biochemistry, and evolutionary biology, increasingly supports these hypotheses. Certain coenzymes and cofactors may bridge modern biology with the past and can thus provide insights into the elusive and poorly-recorded period of the origin and early evolution of life.
Collapse
Affiliation(s)
- Aaron D Goldman
- Department of Biology, Oberlin College and Conservatory, Oberlin, OH, 44074, USA. .,Blue Marble Space Institute of Science, Seattle, WA, 98154, USA.
| | - Betul Kacar
- Blue Marble Space Institute of Science, Seattle, WA, 98154, USA. .,Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, 85721, USA. .,Lunar and Planetary Laboratory and Department of Astronomy, University of Arizona, Tucson, AZ, 85721, USA. .,Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo, 152-8550, Japan.
| |
Collapse
|
7
|
Stubbs RT, Yadav M, Krishnamurthy R, Springsteen G. A plausible metal-free ancestral analogue of the Krebs cycle composed entirely of α-ketoacids. Nat Chem 2020; 12:1016-1022. [PMID: 33046840 PMCID: PMC8570912 DOI: 10.1038/s41557-020-00560-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 08/26/2020] [Indexed: 12/02/2022]
Abstract
Efforts to decipher the prebiotic roots of metabolic pathways have focused on recapitulating modern biological transformations, with metals typically serving in place of cofactors and enzymes. Here we show that the reaction of glyoxylate with pyruvate under mild aqueous conditions produces a series of α-ketoacid analogues of the reductive citric acid cycle without the need for metals or enzyme catalysts. The transformations proceed in the same sequence as the reverse Krebs cycle, resembling a protometabolic pathway, with glyoxylate acting as both the carbon source and reducing agent. Furthermore, the α-ketoacid analogues provide a natural route for the synthesis of amino acids by transamination with glycine, paralleling the extant metabolic mechanisms and obviating the need for metal-catalysed abiotic reductive aminations. This emerging sequence of prebiotic reactions could have set the stage for the advent of increasingly sophisticated pathways operating under catalytic control.
Collapse
Affiliation(s)
- R Trent Stubbs
- Department of Chemistry, Furman University, Greenville, SC, USA
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA
| | - Mahipal Yadav
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ramanarayanan Krishnamurthy
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Greg Springsteen
- Department of Chemistry, Furman University, Greenville, SC, USA.
- NSF-NASA Center for Chemical Evolution, Atlanta, GA, USA.
| |
Collapse
|